JPS5913374A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5913374A
JPS5913374A JP12210382A JP12210382A JPS5913374A JP S5913374 A JPS5913374 A JP S5913374A JP 12210382 A JP12210382 A JP 12210382A JP 12210382 A JP12210382 A JP 12210382A JP S5913374 A JPS5913374 A JP S5913374A
Authority
JP
Japan
Prior art keywords
substrate
element region
nitride film
semiconductor device
assg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12210382A
Other languages
Japanese (ja)
Inventor
Naoyuki Shigyo
直之 執行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP12210382A priority Critical patent/JPS5913374A/en
Publication of JPS5913374A publication Critical patent/JPS5913374A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Abstract

PURPOSE:To form the semiconductor device whose threshold voltage is hard to depend upon channel width by a method wherein field ions are implanted to a region isolated from an element region, impurities with reverse conductive type of a substrate are diffused, and net impurity concentration is lowered at the circumferential part of the element region than the central part of the element region. CONSTITUTION:An oxide film 22 is formed according to the thermal oxidation method on the P type silicon substrate 21, and a silicon nitride film 23 is formed thereon and is patterned. Then anisotropic dry etching is performed using Freon, hydrogen gas, for example, and an oxide film 24 on the surface of the substrate is etched. Arsenic is diffused to the substrate 21 from AsSG 24, and moreover field ions are implanted through the silicon nitride film 23, AsSG 24 and the nitride film 23 to form the boron ion implanted layer 25 (refer to the picture). Moreover AsSG is etched to be removed according to NH4F, etc., and the field part 27 is formed according to the thermal oxidation method.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は半導体装置の製造方法に係わり、特に耐酸化膜
を用いた選択酸化法による高集積度、高性能の半導体装
置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a highly integrated, high-performance semiconductor device by a selective oxidation method using an oxidation-resistant film.

〔従来技術とその問題点〕[Prior art and its problems]

711図は従来のシリコン手導体の製造工程における選
択酸化法の工程を示したものである。まずシリコン基体
11の一主面に熱酸化法によって酸化膜12を形成する
(第り図a参照)。次に前記熱酸化膜12の上に窒化シ
リコン膜13を形成し、公知のフォトエツチング技術に
より該N化シリコン膜13をパターニングする(第1図
す参照)。さしにf+iJ記酸化ju 12を介してシ
リコン基体中ヘポロンのイオン注入を行ないポロンイオ
ン注入層14を形成する(第1図C参照)。そののち選
択酸化をイテなう(第1図C参照)。以後周知の技術に
よりt4iJ記酸化膜12下のシリコン基体11にM 
OS mMj界効果トランジスタ等を形成する。
FIG. 711 shows the selective oxidation process in the conventional silicon hand conductor manufacturing process. First, an oxide film 12 is formed on one main surface of the silicon substrate 11 by a thermal oxidation method (see FIG. 1A). Next, a silicon nitride film 13 is formed on the thermal oxide film 12, and the silicon nitride film 13 is patterned by a known photoetching technique (see FIG. 1). First, heporon ions are implanted into the silicon substrate through the f+iJ oxidation layer 12 to form a poron ion implantation layer 14 (see FIG. 1C). After that, selective oxidation is performed (see Figure 1C). Thereafter, M is applied to the silicon substrate 11 under the oxide film 12 using a well-known technique.
OS mMj field effect transistor etc. are formed.

しかし、こLの選択酸化法により形成されたMO8型ト
ランジスタでll″L′第2図に示す如くチャネル幅が
狭<す゛るに従いしきい値電圧が増大するいわゆる狭チ
ャネル効果が生じる欠点がある。ざtPにこの工程にお
いてはシリコン基体中にイオン注入したポロンが素子領
域へしみ出し、第3図に示すような不純物分布となり、
前記狭チャネル効果がさらに強調される。狭チャネル効
果によるしきい値電圧のヂャネル幅依存性l−L累子の
微細化に従い増大し、素子特性に悪影響を与えるととも
に集積回路の設計に際して厄介な問題となる。
However, the MO8 type transistor formed by this selective oxidation method has a drawback that a so-called narrow channel effect occurs in which the threshold voltage increases as the channel width becomes narrower, as shown in FIG. In this process, the poron ions implanted into the silicon substrate seep into the element region, resulting in an impurity distribution as shown in Figure 3.
The narrow channel effect is further emphasized. The channel width dependence of the threshold voltage due to the narrow channel effect increases with the miniaturization of the L-L transistor, which adversely affects device characteristics and poses a troublesome problem in the design of integrated circuits.

〔発明の目的〕[Purpose of the invention]

本発明は上述した従来方法の欠点を改良したもので、し
きい値電圧がチャネル幅に依存しにくい半導体装置を提
供するこ〜とを目的とする。
The present invention improves the drawbacks of the conventional method described above, and aims to provide a semiconductor device in which the threshold voltage is less dependent on the channel width.

〔発ψ」のg要〕〔G essential for ``ψ'']

本発明は上述した素子領域への基板と同導電型のイオン
のしみ出しを防止するために、累、子領域からしみ出し
分たけ離れた領域にフィールドイオン注入するとともに
基板と逆4電型不純物の拡散を行ない第4図に示すよう
な素子領域中央部よりも素子領域周辺部において正味の
不純物濃度が低〜くなる不純物分布を得ることを特徴と
する。
In order to prevent ions of the same conductivity type as the substrate from seeping into the element region described above, the present invention performs field ion implantation into a region far away from the child region and injects impurities of the opposite 4-conductivity type to the substrate. The present invention is characterized in that an impurity distribution as shown in FIG. 4 is obtained in which the net impurity concentration is lower at the periphery of the element region than at the center of the element region.

〔)ら明の効果〕[)Raming effect]

本発明により第5図に示すように狭チャイ・ル効果が従
来よりも抑えられた半導体装{煮が得られ、集積回路の
集積度、信頼性が大幅に向上した。
According to the present invention, as shown in FIG. 5, a semiconductor device is obtained in which the narrow cell effect is suppressed compared to the conventional one, and the degree of integration and reliability of the integrated circuit are greatly improved.

(第4図、第5図において、aは従来なりによるもの、
b l−1本発明によるもの) 〔発明の実施例〕 以下本発明を一実施例により図面を用いて詳細に説明す
る。
(In Figures 4 and 5, a is conventional,
bl-1 According to the Present Invention) [Embodiments of the Invention] The present invention will be described in detail below by way of an embodiment with reference to the drawings.

第6図は本発明の一実施例の工程l1l(の1所面図で
ある。まj−13型シリコン基体2]に熱酸化法により
例えば1000 Kの酸化膜22を形成する(第6図C
参照)。その上に例えば4000 Kの窒化ンリコン膜
おを形成し必要部分を公知のフォトエツチング技術でパ
ターニングする(第6図す参照)。そののち全面にたと
えば、AsH,ガスと5rkl、ガスと02ガスを含ム
CV D 法K ヨIJ As 8 (324f例えば
3000 A形成する(第6図C参照)。次に例んばフ
レオン、水嵩ガスを用いて0.01−0.03 Lor
rのガス圧で、角力性ドライエツチングを行ない、基体
表面の前記酸化膜ムをエツチングすると前記値化シリコ
ン基体中の側壁およびその近傍のみにAs5G、24が
残置される(第6図d参照)。次に、As5G24から
砒素を基板21に例えば1000℃加分の熱工程により
拡散し、さらに1、前記砲化シリコン膜Z3、ASSG
Z4および窒化シリコン膜nを通して例えば加速電圧1
(ト)Key、  ドーズ量lXl013儂−2でフィ
ールドイオン注入を行4fう。注入イオンには例えばポ
ロンを使用し、ポロンイオン注入層5を形成する(第6
図d参照)。さらに、前記As5GをNH4F等により
エツチング除去する(第6図C参照)。こののち、熱酸
化法によりフィールド部27を形成する(第6図C参照
)。最後に、従来技術によりAil記窒化シリコン膜ツ
を一除去し、開孔したシリコン基体表面にA40 B型
トランジスタを形成する。
FIG. 6 is a plan view of step 11 of an embodiment of the present invention. An oxide film 22 of, for example, 1000 K is formed on a J-13 type silicon substrate 2 by a thermal oxidation method (see FIG. 6). C
reference). A silicon nitride film of, for example, 4000 K is formed thereon, and the necessary portions are patterned using a known photoetching technique (see FIG. 6). After that, for example, AsH, gas and 5rkl, gas and 02 gas are formed using CV D method K YoIJ As 8 (324f, for example, 3000 A (see Fig. 6C)).Next, for example, Freon, water volume is formed. 0.01-0.03 Lor using gas
When the oxide film on the surface of the substrate is etched by angular dry etching at a gas pressure of . Next, arsenic is diffused from As5G24 into the substrate 21 by a heating process at 1000° C., and further 1. the arsenic film Z3, ASSG
For example, an acceleration voltage of 1 is applied through Z4 and the silicon nitride film n.
(G) Key, perform field ion implantation 4f at a dose of lXl013-2. For example, poron is used as the implanted ion, and the poron ion implantation layer 5 is formed (sixth
(see figure d). Furthermore, the As5G is removed by etching with NH4F or the like (see FIG. 6C). Thereafter, a field portion 27 is formed by a thermal oxidation method (see FIG. 6C). Finally, the silicon nitride film is removed using a conventional technique, and an A40B type transistor is formed on the surface of the silicon substrate with the hole formed.

なお、上記実施例ではAs5G24から基板21への′
砒素の、拡散を、ポロンのイオン注入工程前に行なった
が、イオン注入後に行なってもよい。
In addition, in the above embodiment, the voltage from As5G24 to the substrate 21 is
Although the arsenic diffusion was performed before the poron ion implantation step, it may be performed after the ion implantation.

また、上記実施例では、第6−C図に示す工程において
As5G膜消を堆積したが、かイっりに、砒素をドープ
した多結晶シリコン膜をCVD法により堆積してもよい
。この場合、上記実施例では、16−e図に示す工程に
おいてエツチング除去したがこの工程を省き、第7図に
示すように、次に、熱酸化法によりフィールド部37を
形成してもよい。
Further, in the above embodiment, an As5G film was deposited in the step shown in FIG. 6-C, but an arsenic-doped polycrystalline silicon film may be deposited by the CVD method. In this case, in the above embodiment, the etching was removed in the step shown in FIG. 16-e, but this step may be omitted and the field portion 37 may then be formed by thermal oxidation as shown in FIG.

とうすることにより、より平担化されることとなる。By doing so, it becomes more even.

上記実施例では、P型基体を用いたnチャネルMO8を
例にして説明したが、[1型基体を用いたPチャネル、
戒はCへ+OSにも同様に用いることができる。
In the above embodiment, the explanation was given using an n-channel MO8 using a P-type substrate, but [P-channel using a type 1 substrate,
The precept can be used for C+OS as well.

本発明の半導体装置の製造方法を用いると、従来の選択
酸化法の特徴を損うことなり1.狭ヂャネル効果の抑制
されたしふい値電圧のチャイ、ル幅依存性の小さいトラ
ンジスタが得られ高集積化、高性能化にきイ〕めで効果
がある。
When the method of manufacturing a semiconductor device of the present invention is used, the characteristics of the conventional selective oxidation method are lost.1. It is possible to obtain a transistor with a suppressed narrow channel effect and a small channel width dependence of the threshold voltage, which is effective in achieving high integration and high performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(21)〜(d)は従来の選択酸化法に、おける
シリコン牛導体の奥造工8断面図、第2図は促米法によ
り得られたトランジスタにおけるしきい値電圧のチャネ
ル幅依存性を示す特性図、第3図は従来法による酸化膜
とシリコンの界面における正味の不純物分布図、第4図
は本発明によるトランジスタにおける酸化膜とシリコン
の界面における不純物分布図、第5図は本発明によるト
ランジスタに導体の製造工程断°面図、第7図は本発明
の他の実11.21.31・・・シリコン基体、12 
、15.22.24.27 、34.37・・・酸化膜
、13 、23 、33−・・窒化シリコン膜、   
          Lc。 14.25 、35・・・ボロンイオン層、26 、3
6・・・シリ、コンイオン層。 (d) 代理人弁理士 則近憲佑 (他1名) 第1図 第2図 第3図 トを縛ネル福→ 第4図 第5図 ν →Nキネ−し福  −+\ 第6図 第7図
Figures 1 (21) to (d) are 8 cross-sectional views of silicon conductors obtained by the conventional selective oxidation method, and Figure 2 is the channel width of the threshold voltage in a transistor obtained by the rice pressing method. A characteristic diagram showing the dependence. Figure 3 is a net impurity distribution diagram at the interface between the oxide film and silicon in the conventional method. Figure 4 is a diagram showing the impurity distribution at the interface between the oxide film and silicon in the transistor according to the present invention. Figure 5 7 is a cross-sectional view of the manufacturing process of a conductor in a transistor according to the present invention, and FIG.
, 15.22.24.27, 34.37... Oxide film, 13, 23, 33-... Silicon nitride film,
Lc. 14.25, 35...Boron ion layer, 26, 3
6...Siri, con ion layer. (d) Representative patent attorney Kensuke Norichika (and 1 other person) Figure 1 Figure 2 Figure 3 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 耐酸化性皮膜をマスクとして用い半導体基体表面に選択
的に熱酸化膜を形成する半導体装置の製造方法において
、該耐酸化性皮膜を選択的に形成後、少なくとも一膚以
上の基板と逆導電型不純物をドープした物質層を該耐酸
化性皮膜を被う如く設置し、上記耐酸化性皮膜の側面お
よびその近傍のみを被う如く上記物質層を形成し、上記
物質層より基板に基板と逆導電型不純物を拡散したのち
、基板と同導電型不純物のイオン注入を行ない、上記物
質層を除去したのち、選択的に熱酸化層を形成し、正味
の基板と同導電型不純物濃度が素子領域中央部よりも素
子領域周辺部において低くしたことを特徴とする半導体
装置の製造方法。
In a method for manufacturing a semiconductor device in which a thermal oxide film is selectively formed on the surface of a semiconductor substrate using an oxidation-resistant film as a mask, after the oxidation-resistant film is selectively formed, at least one substrate is of opposite conductivity type. A material layer doped with impurities is placed so as to cover the oxidation-resistant film, the material layer is formed so as to cover only the side surfaces and the vicinity of the oxidation-resistant film, and the material layer is applied to the substrate in the opposite direction to the substrate. After diffusing conductivity type impurities, ion implantation of impurities of the same conductivity type as the substrate is performed, and after removing the above material layer, a thermal oxidation layer is selectively formed, and the element region has the same conductivity type impurity concentration as the net substrate. A method of manufacturing a semiconductor device, characterized in that the peripheral part of the element region is lower than the central part.
JP12210382A 1982-07-15 1982-07-15 Manufacture of semiconductor device Pending JPS5913374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12210382A JPS5913374A (en) 1982-07-15 1982-07-15 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12210382A JPS5913374A (en) 1982-07-15 1982-07-15 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5913374A true JPS5913374A (en) 1984-01-24

Family

ID=14827712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12210382A Pending JPS5913374A (en) 1982-07-15 1982-07-15 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5913374A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5196367A (en) * 1991-05-08 1993-03-23 Industrial Technology Research Institute Modified field isolation process with no channel-stop implant encroachment
JPH1095411A (en) * 1996-09-18 1998-04-14 Yamagata Gravure:Kk Method and device for providing suspension piece in bag

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5196367A (en) * 1991-05-08 1993-03-23 Industrial Technology Research Institute Modified field isolation process with no channel-stop implant encroachment
JPH1095411A (en) * 1996-09-18 1998-04-14 Yamagata Gravure:Kk Method and device for providing suspension piece in bag

Similar Documents

Publication Publication Date Title
JP2889137B2 (en) Method of fabricating a low leakage substrate plate trench DRAM cell and device formed thereby
US3954523A (en) Process for fabricating devices having dielectric isolation utilizing anodic treatment and selective oxidation
JPH1126597A (en) Fabrication of semiconductor device
US5482869A (en) Gettering of unwanted metal impurity introduced into semiconductor substrate during trench formation
US4679299A (en) Formation of self-aligned stacked CMOS structures by lift-off
US4408387A (en) Method for producing a bipolar transistor utilizing an oxidized semiconductor masking layer in conjunction with an anti-oxidation mask
JPS60254659A (en) Field effect transistor element and method of producing same
JPS60213053A (en) Semiconductor memory element
US20050164446A1 (en) Method for manufacturing single-sided buried strap in semiconductor devices
JPS58220445A (en) Manufacture of semiconductor integrated circuit
JPS5913374A (en) Manufacture of semiconductor device
US5124817A (en) Polysilicon emitter and a polysilicon gate using the same etch of polysilicon on a thin gate oxide
JPH10308448A (en) Isolation film of semiconductor device and formation method thereof
JPS6325713B2 (en)
JPS5818784B2 (en) Hand-crafted construction work
JPS6315744B2 (en)
US6313034B1 (en) Method for forming integrated circuit device structures from semiconductor substrate oxidation mask layers
JPS5838939B2 (en) integrated circuit
JP2000252290A (en) Semiconductor device and its manufacture
JPS61129872A (en) Manufacture of semiconductor device
JPH06151834A (en) Manufacture of semiconductor device
JPS62128542A (en) Manufacture of semiconductor device
JPS6156448A (en) Manufacture of complementary semiconductor device
JPS63300564A (en) Manufacture of semiconductor device
JPH02210867A (en) Manufacture of semiconductor device