JPS59132122A - Vapor-phase crystal growth method - Google Patents

Vapor-phase crystal growth method

Info

Publication number
JPS59132122A
JPS59132122A JP702383A JP702383A JPS59132122A JP S59132122 A JPS59132122 A JP S59132122A JP 702383 A JP702383 A JP 702383A JP 702383 A JP702383 A JP 702383A JP S59132122 A JPS59132122 A JP S59132122A
Authority
JP
Japan
Prior art keywords
single crystal
crystal substrate
susceptor
crystal growth
grown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP702383A
Other languages
Japanese (ja)
Inventor
Nobuaki Konno
金野 信明
Kazuhisa Takahashi
和久 高橋
Kenji Ikeda
健志 池田
Wataru Suzaki
須崎 渉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP702383A priority Critical patent/JPS59132122A/en
Publication of JPS59132122A publication Critical patent/JPS59132122A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45587Mechanical means for changing the gas flow
    • C23C16/45591Fixed means, e.g. wings, baffles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Abstract

PURPOSE:To equalize film thickness on a crystal growth by fitting and placing a square-shaped flow regulating cover with a U-shaped section for making the flow of a gas corresponding to a material to be grown constant so as to cross a single crystal substrate. CONSTITUTION:A square-shaped flow regulating cover 7 is fitted and placed on a susceptor 4 set up to an inserting and removing bar 3 together with a single crystal substrate 5 so as to cross the single crystal substrate 5. The cover is inserted into a cylindrical reaction pipe 1. A high frequency coil 2 is conducted to heat the susceptor 4, and the single crystal substrate 5 is heated indirectly by the generation of heat of the susceptor 4. A gas 6 adapted to a material to be grown is flowed in the reaction pipe 1, and a crystal is grown on the surface, on which the crystal is grown, of the single crystal substrate 5.

Description

【発明の詳細な説明】 〔発向の技術分野〕 この発明は気相結晶成長方法に関するものである。[Detailed description of the invention] [Technical field of development] This invention relates to a method for vapor phase crystal growth.

〔従来技術〕[Prior art]

従来例によるこの種の気相結晶成長方法を第1図に示す
。すなわち、この第1図において、符号(1)は円筒形
の反応管、(2)はこの反応管(1)の外部に設けられ
た加熱用の高周波コイル、(3)は反応管(1)内への
被処理物挿入用の挿脱棒、(4)はこの挿脱棒(3)上
に装着されるサセプタ、(5)はこのサセプタ(4)上
に載置される被処理物としてのGaA、とかSiの単結
晶基板である。
A conventional method of vapor phase crystal growth of this type is shown in FIG. That is, in this FIG. 1, the code (1) is a cylindrical reaction tube, (2) is a high frequency coil for heating provided outside the reaction tube (1), and (3) is the reaction tube (1). (4) is a susceptor that is mounted on this insertion/removal rod (3), and (5) is a workpiece that is placed on this susceptor (4). It is a single crystal substrate of GaA or Si.

この従来装置における処理、すなわち気相結晶成長は、
挿脱棒(3)に装着させたサセプタ(4)上に、被処理
物である単結晶基板(5)を載置して、これを反応管(
1)内へ挿入し、高周波コイル(2)に通電して   
−サセプタ(4)、ひいては単結晶基板(5)全加熱す
ると共に、反応管(1)内にABHsとか、その他TM
G()リメチルガリウム)、もしくはSiH4などの被
成長物に対応した気体(6)を流すことによシ、加熱状
態にある単結晶基板(5)上で気体(6)を反応させて
、目的とする気相成長、換言するとInPとかGaAs
彦どの結晶成長を行なわせるものである。
The process in this conventional apparatus, that is, vapor phase crystal growth, is
A single crystal substrate (5), which is the object to be processed, is placed on the susceptor (4) attached to the insertion/removal rod (3), and this is transferred to the reaction tube (
1) Insert it inside and energize the high frequency coil (2).
- The susceptor (4) and even the single crystal substrate (5) are completely heated, and ABHs and other TMs are added to the reaction tube (1).
By flowing a gas (6) corresponding to the growth target such as G () or SiH4, the gas (6) is reacted on the heated single crystal substrate (5), Targeted vapor phase growth, in other words, InP or GaAs
This is used to cause crystal growth of Hikodo.

しかし乍らこのような従来装置による気相結晶成長方法
においては、円筒形の反応管(1)内にあって、サセプ
タ(4)上に載置されて挿入される単結晶基板(5)の
被成長面と、反応管0)の内壁面との間隔に差を生じて
平行でないために、被成長面に対する反応気体(6)の
流れが一定せず、結果的に一定膜 厚の結晶成長を得難
いという不都合があシ、またこれに対して角形の反応管
では、加圧とか減圧による差圧に弱くて、差圧を生ずる
気相成長には実用的でたい憾みがあるほか、別にこれら
の方法ではサセプタ(4)の発熱で加熱された気体(6
)が分解されて反応管(1)内面に付着し、この反応管
(1)全汚染するなどの諸欠点があった。
However, in a vapor phase crystal growth method using such a conventional device, a single crystal substrate (5) is inserted into a cylindrical reaction tube (1) and placed on a susceptor (4). Because there is a difference in the distance between the growth surface and the inner wall surface of the reaction tube 0) and they are not parallel, the flow of the reaction gas (6) to the growth surface is not constant, resulting in crystal growth with a constant film thickness. On the other hand, rectangular reaction tubes are sensitive to differential pressure caused by pressurization or depressurization, and are not practical for vapor phase growth that generates a pressure differential. In the method described above, the gas (6) heated by the heat generated by the susceptor (4)
) is decomposed and adheres to the inner surface of the reaction tube (1), resulting in the complete contamination of the reaction tube (1).

〔発明の概要〕[Summary of the invention]

この発明は従来のこのような欠点に鑑み、円筒形の反応
管を使用する気相結晶成長において、サセプタ上にあっ
て、被処理物である単結晶基板と共に、この基板上での
気体の流れを一定にするためのコ字形断面をもつ角形整
流カバーを、同単結晶基板を跨いで載置させ、この状態
で気相結晶成長を行なわせるようにしたものである。
In view of these conventional drawbacks, the present invention was developed in the vapor phase crystal growth using a cylindrical reaction tube. A rectangular rectifying cover with a U-shaped cross section is placed across the same single crystal substrate to maintain a constant value, and vapor phase crystal growth is performed in this state.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明に係わる気相結晶成長方法の一実施例に
つき、第2図を参照して詳細に説明する。
Hereinafter, one embodiment of the vapor phase crystal growth method according to the present invention will be described in detail with reference to FIG. 2.

この第2図実施例において、前記第1図従来例と同一符
号は同一まだは相当部分を示しておシ、この実施例方法
では、前記サセプタ(4)上にあって、単結晶基板(5
)ヲ跨ぐようにしてコ字形断面をもつ角形整流カバー(
7)を載置させ、この状態のま\気相結晶成長を行なわ
せるようにしたものである。
In the embodiment shown in FIG. 2, the same reference numerals as in the conventional example shown in FIG. 1 indicate the same or corresponding parts.
) A square rectifier cover with a U-shaped cross section (
7) was placed and vapor phase crystal growth was performed in this state.

すなわち、さらに詳述すると、前記挿脱棒(3)に装着
させたサセプタ(4)上に、被処理物である単結晶基板
(5]と共に、この単結晶基板(5)を跨ぐようにして
、角形整流カバーσ)を被嵌載置させ、これを円筒形の
反応管(1)内に挿入させ、高周波コイル(2)に通電
してサセプタ(4)全加熱し、このサセプタ(4)の発
熱によシ間接的に単結晶基板(5)を加熱すると共に、
反応管(1)内に被成長物対応の気体(6)ヲ流して、
単結晶基板(5)の被成長面に結晶成長を行なわせるの
である。
That is, to explain in more detail, on the susceptor (4) attached to the insertion/removal rod (3), together with the single crystal substrate (5) which is the object to be processed, the single crystal substrate (5) is straddled. , a rectangular rectifying cover σ) is fitted and placed, and this is inserted into the cylindrical reaction tube (1), and the high frequency coil (2) is energized to completely heat the susceptor (4). Indirectly heating the single crystal substrate (5) due to the heat generated by
Flowing a gas (6) corresponding to the substance to be grown into the reaction tube (1),
Crystal growth is performed on the growth target surface of the single crystal substrate (5).

しかしてこの実施例方法にあっては、単結晶基板(5)
を跨ぐようにして、角形整流カバー(7)を載置させで
あるために、単結晶基板(5)の被成長面と、角形整眞
カQ =、(7)の内壁面とが、どの位置にあっても平
行とな広従ってこの角形整流カバーCI)内。
However, in this embodiment method, the single crystal substrate (5)
Since the rectangular rectifier cover (7) is placed so as to straddle the rectifier, the growth surface of the single crystal substrate (5) and the inner wall surface of the rectangular rectifier Q =, (7) are Therefore, the inside of this rectangular rectifier cover CI) is parallel even if it is in a wide position.

ひいては被成長面に接して流れる気体(6)の流れが一
定して、気体の熱分解反応がこの角形整流カバーσ)の
内部と、その付近に限定されるために、被成長面での成
長を一定膜厚で行ない得られ、かつ反応管内壁への付着
汚染を減少できるのである。
Furthermore, the flow of gas (6) that flows in contact with the growth surface is constant, and the thermal decomposition reaction of the gas is limited to the inside of this rectangular rectifying cover σ) and its vicinity, so that the growth on the growth surface is It is possible to obtain a film with a constant film thickness, and to reduce the amount of contamination that adheres to the inner wall of the reaction tube.

〔発明の効果〕〔Effect of the invention〕

以上詳述したようにこの発明方法によるときは、サセプ
タ上にあって、被処理物である単結晶基板と共に、この
基板上での気体の流れを一定にするためのコ字形断面を
もつ角形整流カバーを、同単結晶基板を跨ぐようにして
被嵌載置させて結晶成長を行なわせるようにしたから、
単結晶基板の被成長面に流れる気体が一定になって、均
一膜厚め、結晶成長を得られる利点があシ、また気体の
熱分解反応が角形整流カバー・とその付近に限定される
ために、反応管内壁面への付着汚染を可及的に減少でき
る副次的効果もあυ、角形整流カバーの取り換えるのみ
で反応管を連続使用できるなどの、特長を有するもので
ある。
As described in detail above, when using the method of the present invention, a rectangular rectifier with a U-shaped cross section is provided on the susceptor together with the single crystal substrate as the object to be processed. Since the cover is placed over the single crystal substrate to allow crystal growth to occur,
This method has the advantage that the gas flowing on the growth surface of the single crystal substrate becomes constant, resulting in uniform film thickness and crystal growth, and also because the thermal decomposition reaction of the gas is limited to the rectangular rectifier cover and its vicinity. It also has the secondary effect of reducing contamination adhering to the inner wall surface of the reaction tube as much as possible, and the reaction tube can be used continuously by simply replacing the rectangular rectifying cover.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来方法による気相結晶成長装置を示す断面説
明図、第2図はこの発明の一実施例による気相結晶成長
状態の要部を示す説明図である。 (1)・・・・円筒形反応管、(2)・・・・加熱用高
周波コイル、(3)・・・・挿脱棒、(4)・・・・サ
セプタ、(5)・・・・単結晶基板(被処理物)、(6
)・・・・被成長気体、(7)・・・・コ字形断面の角
形整流カバー。 代  理  人      葛  野  信  −特許
庁長官殿 1・事件の表示   特願昭 58−7023号2、発
明の名称 気相結晶成長方法 3、補正をする者 代表者片山仁へ部 5、補正の対象 (1)明細書の発明の詳細な説明の欄 (2)図 面 6、補正の内容 (11明細書第1頁第14行の「発向の技術分野」を「
発明の技術分野」と補正する。 (2)図面の第1図を別紙の通シ補正する。 以  上
FIG. 1 is an explanatory cross-sectional view showing a vapor phase crystal growth apparatus according to a conventional method, and FIG. 2 is an explanatory view showing essential parts of a vapor phase crystal growth state according to an embodiment of the present invention. (1)...Cylindrical reaction tube, (2)...Heating high frequency coil, (3)...Insertion/removal rod, (4)...Susceptor, (5)...・Single crystal substrate (processed object), (6
)... Gas to be grown, (7)... Square rectifying cover with U-shaped cross section. Agent Makoto Kuzuno - Commissioner of the Japan Patent Office 1. Indication of the case: Japanese Patent Application No. 58-7023 2. Title of the invention: Vapor phase crystal growth method 3. To the person making the amendment: Representative Hitoshi Katayama Part 5: Subject of the amendment (1) Column for detailed explanation of the invention in the specification (2) Drawing 6, contents of amendment (11) Change the "technical field of origin" in line 14 of page 1 of the specification to "
amended to read "technical field of invention". (2) Amend Figure 1 of the drawings in a separate sheet. that's all

Claims (1)

【特許請求の範囲】[Claims] 円筒形反応管を使用する気相成長において、前記反応管
内に挿入されるサセプタ上に、被処理物である単結晶基
板と共に、この基板上での被成長物対応の気体の流れを
可及的一定にするためのコ字形断面をもつ角形整流カバ
ーを、この単結晶基板を跨ぐようにして被嵌載置させ、
この状態のま\で結晶成長を行なわせるようにしたこと
を特徴とする気相結晶成長方法。
In vapor phase growth using a cylindrical reaction tube, a susceptor inserted into the reaction tube is placed on a single crystal substrate, which is the object to be processed, and a gas flow corresponding to the object to be grown on this substrate is made as possible. A rectangular rectifying cover with a U-shaped cross section for uniformity is placed so as to straddle this single crystal substrate.
A vapor phase crystal growth method characterized in that crystal growth is performed in this state.
JP702383A 1983-01-17 1983-01-17 Vapor-phase crystal growth method Pending JPS59132122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP702383A JPS59132122A (en) 1983-01-17 1983-01-17 Vapor-phase crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP702383A JPS59132122A (en) 1983-01-17 1983-01-17 Vapor-phase crystal growth method

Publications (1)

Publication Number Publication Date
JPS59132122A true JPS59132122A (en) 1984-07-30

Family

ID=11654437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP702383A Pending JPS59132122A (en) 1983-01-17 1983-01-17 Vapor-phase crystal growth method

Country Status (1)

Country Link
JP (1) JPS59132122A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60182723A (en) * 1984-02-29 1985-09-18 Nec Corp Vapor growth device for semiconductor
US8298747B2 (en) 2007-03-12 2012-10-30 Hitachi Chemical Dupont Microsystems, Ltd. Photosensitive resin composition, process for producing patterned hardened film with use thereof and electronic part
US8420291B2 (en) 2007-10-29 2013-04-16 Hitachi Chemical Dupont Microsystems, Ltd. Positive photosensitive resin composition, method for forming pattern, electronic component
US8758977B2 (en) 2005-09-22 2014-06-24 Hitachi Chemical Dupont Microsystems, Ltd. Negative-type photosensitive resin composition, pattern forming method and electronic parts

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60182723A (en) * 1984-02-29 1985-09-18 Nec Corp Vapor growth device for semiconductor
US8758977B2 (en) 2005-09-22 2014-06-24 Hitachi Chemical Dupont Microsystems, Ltd. Negative-type photosensitive resin composition, pattern forming method and electronic parts
US8871422B2 (en) 2005-09-22 2014-10-28 Hitachi Chemical Dupont Microsystems Ltd. Negative-type photosensitive resin composition, pattern forming method and electronic parts
US8298747B2 (en) 2007-03-12 2012-10-30 Hitachi Chemical Dupont Microsystems, Ltd. Photosensitive resin composition, process for producing patterned hardened film with use thereof and electronic part
US8420291B2 (en) 2007-10-29 2013-04-16 Hitachi Chemical Dupont Microsystems, Ltd. Positive photosensitive resin composition, method for forming pattern, electronic component

Similar Documents

Publication Publication Date Title
JPS59132122A (en) Vapor-phase crystal growth method
JPS59223294A (en) Vapor phase growth device
IL113198A0 (en) Filter for a photothermographic developer
US3554162A (en) Diffusion tube
JPS6045017A (en) Diffusion furnace
JPS6149391B2 (en)
JPS5694750A (en) Heating treatment device
JPS60253212A (en) Vapor growth device
JP2551172B2 (en) Vapor phase epitaxial growth system
JPS56161832A (en) Gaseous phase treatment device
JPH02284417A (en) Vapor phase epitaxy device
JPH0510351Y2 (en)
JPH06295849A (en) Impurity removing device for pipe
US5860805A (en) Effluent-gas-scavenger system for process tube, minimizing back diffusion and atmospheric contamination
JPS62160476A (en) Solvent fixing device
JPS572527A (en) Reduced-pressure vapor phase growing apparatus
JPS54157473A (en) Vapor reaction method for semiconductor wafer
JPH0532902B2 (en)
JPS59169123A (en) Epitaxial growth of compound semiconductor
JPS5628636A (en) Cvd film forming apparatus
JPS5654744A (en) Preventive device against contamination on electron optics equipment
JPH06288837A (en) Device for measuring temperature of silicon wafer
JPS61216423A (en) Production unit for semiconductor through vapor phase growth
JPS5681924A (en) Susceptor for vertical type high frequency heating vapor phase growing system
JPS57113701A (en) Manufacture and manufacturing device of duct type trolley