JPS59124546A - Device for positioning body - Google Patents

Device for positioning body

Info

Publication number
JPS59124546A
JPS59124546A JP23452582A JP23452582A JPS59124546A JP S59124546 A JPS59124546 A JP S59124546A JP 23452582 A JP23452582 A JP 23452582A JP 23452582 A JP23452582 A JP 23452582A JP S59124546 A JPS59124546 A JP S59124546A
Authority
JP
Japan
Prior art keywords
tool
reference mirror
piezoelectric element
holder
error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23452582A
Other languages
Japanese (ja)
Inventor
Shuhei Takasu
高巣 周平
Kazuhiko Nagayama
永山 和彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23452582A priority Critical patent/JPS59124546A/en
Publication of JPS59124546A publication Critical patent/JPS59124546A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/182Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by the machine tool function, e.g. thread cutting, cam making, tool direction control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37275Laser, interferometer
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41344Piezo, electrostrictive linear drive
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49195Slide, guideway, robot arm deviation

Abstract

PURPOSE:To carry out positioning control with high accuracy, by using a laser means to detect the x-direction displacement of a table carrying a tool rest, due to the error in the squareness of a guide or the like, to control a voltage impressed upon piezoelectric elements supporting a tool holder. CONSTITUTION:When a table 2 is displaced by DELTAx toward a reference mirror 26 due to the error in the squareness of a guide 1 or the inaccuracy of a drive system as the table is slid, laser light f2 generated by a laser oscillator 28 and transmitted to a receiver 27 through a polarized beam slitter 25, a cube corner 21, etc. undergoes a Doppler frequency modulation by the displacement DELTAx. The output of the receiver 27 is processed by a counter 29 to apply a displacement signal to a controller 30. The controller then supplies a controlled voltage to piezoelectric elements 8, 9 pinch-holding the flange of a tool holder 6, to move a tool 7 by DELTAx toward a workpiece 10. The position of the tool 7 is thus corrected.

Description

【発明の詳細な説明】 〔発明の利用分野〕 この発明は切削加工装置に係り、特に工具等の位置決め
を高精度に行う装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a cutting device, and more particularly to a device for positioning tools and the like with high precision.

〔従来技術〕[Prior art]

従来の切削における工具の精密な位置決めは、工具を取
付けた刃物台を搭載したテーブルの位置をレーザ測長器
によって測定し、テーブル位置誤差は、テーブルを駆動
するモータ捷たは油圧シリンダにフィードバックされ、
テーブルの位置を補正していた。従ってテーブルのスラ
イド時における姿勢の変化、すなわちヨーイング、ロー
リング、ピッチングによる刃先位置の変化は測定されず
、さらにテーブルの平行移動による変位の補正において
も、刃物台を搭載したテーブル全体を送りねじの回転ま
たは油圧シリンダの差圧等により微動補正するため、位
置検出から位置補正までに時間がかかり、加工形状精度
が悪化する欠点があった。
Precise positioning of tools in conventional cutting involves measuring the position of a table equipped with a tool rest with a laser length measuring device, and table position errors are fed back to the motor or hydraulic cylinder that drives the table. ,
The position of the table was corrected. Therefore, changes in posture when the table slides, that is, changes in the position of the cutting edge due to yawing, rolling, and pitching, are not measured.Furthermore, even when compensating for displacement due to parallel movement of the table, the entire table equipped with the tool rest is rotated by the feed screw. Alternatively, since the fine movement is corrected by differential pressure of the hydraulic cylinder, etc., it takes time from position detection to position correction, which has the drawback of deteriorating the accuracy of the machined shape.

〔発明の目的〕[Purpose of the invention]

この発明の目的は、上記した従来技術の欠点をなくし、
テーブルの姿勢に一関係なく、工具等の位置を正確に測
定し、精密に工具等の位置決め制御を行う要位置決め物
の位置決め装置を提供することにある。
The purpose of this invention is to eliminate the above-mentioned drawbacks of the prior art,
It is an object of the present invention to provide a positioning device for an object to be positioned, which accurately measures the position of a tool or the like and precisely controls the positioning of the tool or the like, regardless of the posture of a table.

〔発明の概要〕 刃物台を搭載したテーブルのスライド方向に平行に基糸
平面ミラーを設置し、工具(または被削物)ホルダ後端
に三面反射鏡(キーーブコーナ)を取付け、上記基準平
面ミラーと工具(捷たは被削物)ホルダ後端との距離を
直接測定して工具(甘たは被削物)の位置決めを行うと
ともに、上記工具(まだは被削物〕ホルダを圧電素子を
介して刃物台に固定し、位置決めの誤差の修正を上記圧
電素子への印加電圧を制御して行うようにしたものであ
る。
[Summary of the invention] A base thread plane mirror is installed parallel to the sliding direction of a table on which a tool post is mounted, a three-sided reflector (keeb corner) is attached to the rear end of the tool (or workpiece) holder, and The distance to the rear end of the tool (cutting or workpiece) holder is directly measured to determine the position of the tool (cutting or cutting), and the tool (or workpiece) is connected to the holder via a piezoelectric element. The piezoelectric element is fixed to a tool post, and positioning errors are corrected by controlling the voltage applied to the piezoelectric element.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明を図面に基づいて説明する。第1図は、
この発明の一実施例の平面図、第2図は・、レーザ測定
システムの説明図、才だ第6図は、この発明の一実施例
の作動説明図を示す。寸ず第1図によって、この発明の
詳細な説明する。ガイド1上をスライドするテーブル2
には、内部をくり抜いた刃物台、5が設けられており、
該刃物台5は線膨張係数が極めて小さい素材で作られ、
一方の端に工具7をまた他端にキー−−ブコーナ21を
具備した工具ホルダ6は、その外周部に設けたフランジ
をその両側に取付けた圧電素子8.9によって切込み方
向に挾持され上記刃物台5内に固定されている。また、
テーブル2のスライド方向と平行でかつ反射面が上記キ
ー−ブコーナ21と向い合うように基準ミラー26を設
け、該基準ミラー26とキューブコーナ21との間に、
偏光ビームスプリッタ25、λ/4偏光板26.24、
キーーブコーナ22、レシーバ27からなる光路長測定
部が上記テーブル2上に固定されている。29ば、上記
レシーバ27からの出力信号を演算処理するカウンタを
示し、上記キー−ブコーナ21と基準ミラー26との間
の距離の基準値に対する誤差がここで計算されろ。コン
トローラ6oは、上記の誤差値によって上記圧電素子8
.9に対する印加電圧■1、■2を適宜変化させぞ、工
具ホルダ乙の一端にある上記キー−ブコーナ21と上記
基準ミラー26 との間の相対距離の誤差が0になるよ
うに工具ホルダ乙の位置決め制御をする。なお、1oは
被削物、28はレーザ発振器を示す。
The present invention will be explained below based on the drawings. Figure 1 shows
FIG. 2 is a plan view of an embodiment of the present invention, and FIG. 6 is an explanatory diagram of the operation of an embodiment of the present invention. The present invention will now be described in detail with reference to FIG. Table 2 sliding on guide 1
is equipped with a tool rest, 5, which is hollowed out inside.
The tool rest 5 is made of a material with an extremely small coefficient of linear expansion,
A tool holder 6, which is equipped with a tool 7 at one end and a key corner 21 at the other end, is held in the cutting direction by piezoelectric elements 8.9, which have flanges provided on its outer periphery and attached to both sides of the tool holder 6. It is fixed inside the stand 5. Also,
A reference mirror 26 is provided parallel to the sliding direction of the table 2 and with its reflective surface facing the cube corner 21, and between the reference mirror 26 and the cube corner 21,
Polarizing beam splitter 25, λ/4 polarizing plate 26.24,
An optical path length measuring section consisting of a key corner 22 and a receiver 27 is fixed on the table 2. 29 shows a counter for arithmetic processing of the output signal from the receiver 27, and the error in the distance between the key corner 21 and the reference mirror 26 with respect to the reference value is calculated here. The controller 6o controls the piezoelectric element 8 according to the error value.
.. 9, change the voltages (1) and (2) applied to the tool holder B so that the error in the relative distance between the key corner 21 at one end of the tool holder B and the reference mirror 26 becomes 0. Perform positioning control. Note that 1o represents a workpiece, and 28 represents a laser oscillator.

第2図は、レーザにょる測長の説明図で、レーザ発振器
28から周波数f1、f2のコヒーレントなレーザ光が
発生する。そのうちのレーザ光f1は、偏光ビームスプ
リッタ25を通過し、ギ一ブコーナ22で反射して再び
偏光ビームスプリッタ25を通りレシーバ27に入る。
FIG. 2 is an explanatory diagram of length measurement using a laser, in which a laser oscillator 28 generates coherent laser beams of frequencies f1 and f2. The laser beam f1 passes through the polarizing beam splitter 25, is reflected at the give corner 22, passes through the polarizing beam splitter 25 again, and enters the receiver 27.

他方のレーザ光f2は、偏光ビームスプリッタ25で反
射してキューブコーナ21へ向い、該キュ−ブコーナ2
1で反射して上記偏光ビームスプリッタ25へ戻るが、
この間に該レーザ光f2はλ/4偏光板26を2回通過
するため偏光面の位相が90’ずれて偏光ビームスプリ
ッタ25を通シ、さらに基準ミラー26で反射して丑だ
偏光ビームスプリッタ25に戻ってくる。この間に該レ
ーザ光f2はλ7/4偏光板24を2回通過するので、
偏光面が90°回転し、上記偏光ビームスプリッタ25
で反射した後キューブコーナ22、偏光ビームスプリッ
タ25、λ/4偏光板24、基準ミラー26、λ/4偏
光板24、偏光ビームスプリッタ25、λ/4偏光板2
6キユーブコーナ21、λ/4偏光板23および偏光ビ
ームスプリッタ25を経て、最後にし7−バ27 に入
射する。
The other laser beam f2 is reflected by the polarizing beam splitter 25 and directed toward the cube corner 21.
1 and returns to the polarizing beam splitter 25,
During this time, the laser beam f2 passes through the λ/4 polarizing plate 26 twice, so the phase of the polarization plane shifts by 90', passes through the polarizing beam splitter 25, is further reflected by the reference mirror 26, and is sent to the discarded polarizing beam splitter 25. come back to. During this time, the laser beam f2 passes through the λ7/4 polarizing plate 24 twice, so
The polarization plane is rotated by 90°, and the polarization beam splitter 25
After being reflected at the cube corner 22, polarizing beam splitter 25, λ/4 polarizing plate 24, reference mirror 26, λ/4 polarizing plate 24, polarizing beam splitter 25, λ/4 polarizing plate 2
The light passes through the 6-cube corner 21, the λ/4 polarizing plate 23, and the polarizing beam splitter 25, and finally enters the 7-bar 27.

つぎに第6図によって、との発明の詳細な説明する。い
1、テーブル2がyだけスライドして図示dからa′の
位置1で移動したとし、このときガイド1の真直度誤差
まだは駆動系の誤差によって、上記テーブル2が基準ミ
ラー26側へΔXだけ変位したとすると、工具7の先端
もΔXだけ被削物10から離れる。この場合、上記テー
ブル2の変位量ΔXだけレーザ光f2がドプラ周波数変
調されてレシーバ27で検出され、カウンタ29によっ
て演算処理されて、変位量信号がコントローラ30に伝
送される。該コントローラ60ば、工具ホルダ乙のフラ
ンジ部を挾持する圧電素子8.9の印加電圧を制御する
。該圧電素子8.9への印加電圧と該印加電圧による伸
−びは比例関係にあり、上記ホルダ乙のキューブコーナ
21側の上記圧電素子9に変位量ΔXに相当する電圧淘
をバイアス電圧■。に加えて印加し、上記工具7側の上
記圧電素子8に変位量ΔXに相当する電圧■8をバイア
ス電圧■。から差引いた電圧を印加することにより、上
記工具7はΔXだけ被削物10側へ移動し、その結果、
上記工具7は被削物10に対して常に同じ位置にあるの
で、高精度に切削することができる。
Next, the invention will be explained in detail with reference to FIG. 1. Assume that the table 2 slides by y and moves from position d to position a' in the figure, and at this time, due to the straightness error of the guide 1 and also the error of the drive system, the table 2 moves ΔX toward the reference mirror 26. If the tip is displaced by ΔX, the tip of the tool 7 will also be separated from the workpiece 10 by ΔX. In this case, the laser beam f2 is subjected to Doppler frequency modulation by the displacement amount ΔX of the table 2, detected by the receiver 27, arithmetic processed by the counter 29, and a displacement amount signal is transmitted to the controller 30. The controller 60 controls the voltage applied to the piezoelectric element 8.9 that clamps the flange portion of the tool holder B. The voltage applied to the piezoelectric element 8.9 and the elongation due to the applied voltage are in a proportional relationship, and a bias voltage corresponding to the displacement ΔX is applied to the piezoelectric element 9 on the cube corner 21 side of the holder B. . In addition to this, a voltage (18) corresponding to the displacement amount ΔX is applied to the piezoelectric element 8 on the tool 7 side as a bias voltage (2). By applying a voltage subtracted from , the tool 7 moves by ΔX toward the workpiece 10, and as a result,
Since the tool 7 is always at the same position with respect to the workpiece 10, it is possible to cut with high precision.

なお、ここで上記圧電素子8.9にともに正のバイアス
電圧■。を印加した理由は、このバイアス電圧■。を加
えたことにより、該圧電素子8.9が伸びようとするの
に対して、該圧電素子8.9は刃物台5により伸びを規
制されているため、犬き力圧縮力で上記工具ホルダ6を
保持することになり、上記工具7の支持剛性を高くでき
るので°、外乱振動や切削力の影響を殆ど受けなくする
ことができる。
Incidentally, here, a positive bias voltage (■) is applied to both the piezoelectric elements 8 and 9. The reason for applying this bias voltage is ■. However, since the piezoelectric element 8.9 is restricted from elongating by the tool post 5, the compressive force causes the piezoelectric element 8.9 to expand. 6, the supporting rigidity of the tool 7 can be increased, and it can be made almost unaffected by external vibrations and cutting forces.

寸だ、この実施例の工具7と被削物10を互いに取り代
えて取付け、固定した被削物10を回転する工具7で加
工し、被削物10の支持部を圧電素子8.9を介してテ
ーブル2に固定して誤差補正指示を上記圧電素子8.9
に与え、微小位置決め制御を行なっても上記同様の作用
が得られる。
The tool 7 and the workpiece 10 of this embodiment are installed in place of each other, the fixed workpiece 10 is machined with the rotating tool 7, and the support part of the workpiece 10 is attached to the piezoelectric element 8.9. The piezoelectric element 8.9 is fixed to the table 2 through the piezoelectric element 8.
The same effect as described above can be obtained even if minute positioning control is performed.

なお、上記は平面を切削する場合について述べたが、テ
ーブル2のスライド方向と直角方向に案内を持ち、該直
角方向に切込み可能な第2のテーブルを上記テーブル2
上に案内を介して取付け、該第2のテーブル上に刃物台
を固定し、予めプログラムされた運動軌跡に従って上記
テーブル2と第2のテーブルを移動させ、上記同様の工
具ホルダ6と基準ミラー26間の相対距離を精度よく読
取り、理想の運動軌跡からの誤差を上記圧電素子8.9
捷たは第2のテーブルの切込み装置と該圧電素子8.9
への切込み補正指示としてフィードバックすることによ
り、軸対称な曲面切削の場合にも高精度仕上を行うこと
ができる。
Although the above description is about cutting a flat surface, a second table having a guide in a direction perpendicular to the sliding direction of the table 2 and capable of cutting in the direction perpendicular to the sliding direction of the table 2 is used.
The tool rest is fixed on the second table through a guide, and the table 2 and the second table are moved according to a preprogrammed movement trajectory, and a tool holder 6 and a reference mirror 26 similar to the above are attached. Accurately read the relative distance between the piezoelectric elements 8.9 and 10.
Cutting device or second table cutting device and the piezoelectric element 8.9
By providing feedback as a depth-of-cut correction instruction, high-precision finishing can be achieved even when cutting an axially symmetrical curved surface.

〔発明の効果〕〔Effect of the invention〕

以上、説明したように、この発明によれば、切削におけ
る刃物台を搭載したテーブルのスライド時の姿勢変化ま
たはガイドの真直度誤差によるテーブルのスライド誤差
に対し、極めて早い応答速度で工具の位置を補正するこ
とかでき、高精度な真直度の切削仕上面が得られるとい
う効果がある。
As explained above, according to the present invention, the position of the tool can be determined with an extremely fast response speed in response to changes in posture during sliding of the table on which the tool rest is mounted during cutting, or table sliding errors due to straightness errors of the guide. This has the effect of providing a cut surface with highly accurate straightness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一実施例の平面図、第2図は、レ
ーザ沖)長システムの説明図、笥6図は、この発明の一
実施例の作動説明図を示す。 符号の説明 1・・・ガイド      2・・テーブル6・・・つ
まみ      4・・・送りねじ5・・・刃物台  
    6・・・工具ホルダ7・・・工具      
 8.9・・・圧電素子10・・・被削物 21.22・・・キーーブコーナ 2ろ、24・・・λ/4偏光板 25・・偏光ビームスプリッタ 26・・・基準ミラー   27・・・レシーノく28
・・−レーザ発振器  29・・・カウンタ60・・コ
ントローラ 代理人弁理士 中村純之助 矛1 図 1 JU       2日 17′2図
FIG. 1 is a plan view of an embodiment of the present invention, FIG. 2 is an explanatory diagram of a laser beam length system, and FIG. 6 is an explanatory diagram of the operation of an embodiment of the present invention. Explanation of symbols 1...Guide 2...Table 6...Knob 4...Feed screw 5...Turret
6...Tool holder 7...Tool
8.9... Piezoelectric element 10... Workpiece 21. 22... Keyve corner 2, 24... λ/4 polarizing plate 25... Polarizing beam splitter 26... Reference mirror 27... Resinoku 28
...-Laser oscillator 29...Counter 60...Controller representative patent attorney Junnosuke Nakamura 1 Figure 1 JU 2nd 17'2 Figure

Claims (2)

【特許請求の範囲】[Claims] (1)工具と被削物間に相対運動を与える切削加工機に
おいて、先端に工具を固定する工具ホルダと、圧電素子
を介して上記工具ホルダを支持するようにした刃物台と
、上記工具ボルダの工具とは反対側に固定した切込み方
向に光軸を持つキ−プコーナと、刃物台を搭載した切込
み方向と直角にスライドするテーブルと、該テーブルの
移動方向に平行しかつ切込み方向に垂直な平面反射面を
持ち上記テーブルとは独笠して固定した基準ミラーと、
該基準ミラーと上記キー−ブコーナとの間にあって上記
テーブル上に固定され、上記キューブコーナと基準ミラ
ー間の距離を測定できるようにしだレーザ干渉器からな
る工具位置測定システムを有し、該工具位置測定システ
ムにはバイアス電圧を加えた少なくとも1対の対向した
上記圧電素子が配置されて上記工具ホルダに圧縮荷重を
がけるとともに、予めプログラミングされた理想加工面
形状に対して、上記工具位置測定システムにより測定さ
れた上記工具と基準ミラー間の相対距離の誤差を、上記
の対向した圧電素子への印加電位差を制御することによ
り取除くように構成したことを特徴とする要位置決め物
の位置決め装置。
(1) In a cutting machine that provides relative motion between a tool and a workpiece, there is a tool holder that fixes the tool at the tip, a tool post that supports the tool holder via a piezoelectric element, and a tool boulder that supports the tool holder through a piezoelectric element. A keep corner with an optical axis in the cutting direction fixed on the opposite side of the tool, a table that slides at right angles to the cutting direction and equipped with a tool rest, and a table that is parallel to the moving direction of the table and perpendicular to the cutting direction. A reference mirror with a flat reflective surface and fixed independently from the above table,
A tool position measuring system is provided between the reference mirror and the cube corner and fixed on the table to measure the distance between the cube corner and the reference mirror. At least one pair of opposing piezoelectric elements to which a bias voltage is applied are arranged in the measurement system to apply a compressive load to the tool holder, and the tool position measurement system A positioning device for an object to be positioned, characterized in that the error in the relative distance between the tool and the reference mirror measured by the method is removed by controlling the potential difference applied to the opposing piezoelectric elements.
(2)  上記工具の代りに被削物を増刊けるようにし
たホルダを有し、上記被削物と基準ミラーとの間の相対
距離の誤差を、上記対向した圧電素子への印加電位差を
制御することにより取除くように構成したことを特徴と
する特許請求の範囲第1項記載の要位置決め物の位置決
め装置。
(2) A holder is provided in place of the above-mentioned tool, and the error in the relative distance between the above-mentioned workpiece and the reference mirror can be controlled by controlling the potential difference applied to the above-mentioned opposing piezoelectric element. 2. A positioning device for an object to be positioned according to claim 1, wherein the device is configured to remove the object by removing the object.
JP23452582A 1982-12-28 1982-12-28 Device for positioning body Pending JPS59124546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23452582A JPS59124546A (en) 1982-12-28 1982-12-28 Device for positioning body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23452582A JPS59124546A (en) 1982-12-28 1982-12-28 Device for positioning body

Publications (1)

Publication Number Publication Date
JPS59124546A true JPS59124546A (en) 1984-07-18

Family

ID=16972388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23452582A Pending JPS59124546A (en) 1982-12-28 1982-12-28 Device for positioning body

Country Status (1)

Country Link
JP (1) JPS59124546A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61152303A (en) * 1984-12-25 1986-07-11 Kitamura Kikai Kk Spindle height adjusting device for machine tool
EP0304307A2 (en) * 1987-08-20 1989-02-22 Cincinnati Milacron Inc. Position error sensing and feedback apparatus and method
JPH0348903A (en) * 1989-07-17 1991-03-01 Ishikawa Pref Gov Numerical controller
JPH0375944U (en) * 1990-11-22 1991-07-30
JPH04240044A (en) * 1991-01-14 1992-08-27 Toshiba Corp Correction method for working error and machine tool
KR100598851B1 (en) 2004-12-21 2006-07-11 현대자동차주식회사 System for correcting tool
CN107971802A (en) * 2017-12-28 2018-05-01 安徽嘉瑞达汽车部件制造有限公司 A kind of lathe high-precision positioner

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61152303A (en) * 1984-12-25 1986-07-11 Kitamura Kikai Kk Spindle height adjusting device for machine tool
EP0304307A2 (en) * 1987-08-20 1989-02-22 Cincinnati Milacron Inc. Position error sensing and feedback apparatus and method
JPH0348903A (en) * 1989-07-17 1991-03-01 Ishikawa Pref Gov Numerical controller
JPH0375944U (en) * 1990-11-22 1991-07-30
JPH04240044A (en) * 1991-01-14 1992-08-27 Toshiba Corp Correction method for working error and machine tool
KR100598851B1 (en) 2004-12-21 2006-07-11 현대자동차주식회사 System for correcting tool
CN107971802A (en) * 2017-12-28 2018-05-01 安徽嘉瑞达汽车部件制造有限公司 A kind of lathe high-precision positioner

Similar Documents

Publication Publication Date Title
US4365301A (en) Positional reference system for ultraprecision machining
JP5103620B2 (en) Elliptical vibration cutting apparatus and elliptical vibration cutting method
US8381555B2 (en) Cutting device, machining method, and die machined by the machining method
JP2009534206A (en) Fastening device comprising means for measuring the distance between the chuck and the tool holder or workpiece holder
JPS5916202B2 (en) Measuring and positioning device using interference fringes
JPH10118894A (en) Method and system for measuring accuracy of indexed angle for machine tool
JPS59124546A (en) Device for positioning body
Kohno et al. In-process measurement and a workpiece-referred form accuracy control system (WORFAC): concept of the method and preliminary experiment
JP2001317933A (en) Shape-measuring apparatus
JP4923441B2 (en) Shape measuring instrument
JP2000504867A (en) Improved monitoring system for workpiece and tool carriage movement
JP2006337148A (en) On-machine shape-measuring apparatus and working machine
JP2607533B2 (en) Processing device and processing method
JPH0699336A (en) Surface roughness measuring apparatus
JP2539097B2 (en) Machining error correction method and machine tool
JPH0386443A (en) Tool position correction device for super-precision working machine
JP2000263380A (en) Machining method and device for work
KR100608270B1 (en) Method of compensating waviness in Ultraprecision machining
JPS5840247A (en) Precision positioning device
JPH02112724A (en) Encoder
JPH06266436A (en) Servo-feeding device
JPH0542450A (en) Working device
JPS62267093A (en) Focusing method
JP2511809B2 (en) Surface shape measuring device
JP2000237956A (en) Machining device