JP2006337148A - On-machine shape-measuring apparatus and working machine - Google Patents

On-machine shape-measuring apparatus and working machine Download PDF

Info

Publication number
JP2006337148A
JP2006337148A JP2005161530A JP2005161530A JP2006337148A JP 2006337148 A JP2006337148 A JP 2006337148A JP 2005161530 A JP2005161530 A JP 2005161530A JP 2005161530 A JP2005161530 A JP 2005161530A JP 2006337148 A JP2006337148 A JP 2006337148A
Authority
JP
Japan
Prior art keywords
shape
machine
measurement
probe
vibration component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005161530A
Other languages
Japanese (ja)
Other versions
JP4622683B2 (en
Inventor
Takashi Matsumoto
崇 松本
Toshiyuki Okita
俊之 沖田
Yoshiji Yamamoto
吉二 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2005161530A priority Critical patent/JP4622683B2/en
Publication of JP2006337148A publication Critical patent/JP2006337148A/en
Application granted granted Critical
Publication of JP4622683B2 publication Critical patent/JP4622683B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an on-machine shape-measuring apparatus capable of measuring the surface shape of a work piece, while and making it contact the measurement probe at low-contact pressure. <P>SOLUTION: The on-machine shape measuring apparatus 30 measures the vibration components in the locked state of a servo-motor before starting the measurement (S14), sets up the notch filter 66 for removing the vibration components (S18), removes the machine vibration components in the locked state etc., of the servomotor by the set notch filter 66 (S20) from the output of a linear scale 44, after starting the measurement. Thereby, even if the measurement probe 32 goes into a state of light contact with the workpiece, the state of the probe is apt to receive the effects of the machine vibration, high-accuracy shape measurements can be realized, by removing the machine vibration component and canceling the effects. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、低接触力で被測定物に接触する測定子を備える形状測定器に関し、好適には、複数のサーボモータを有する加工機に搭載される機上形状測定器に関するものである。 The present invention relates to a shape measuring instrument having a probe that contacts an object to be measured with a low contact force, and preferably relates to an on-machine shape measuring instrument mounted on a processing machine having a plurality of servo motors.

従来より、光学レンズ等の表面形状を測定する形状測定器は、被測定物に傷を付けないように接触圧を極力小さくしている。係る接触圧を小さくした形状測定器として、例えば、重力方向に測定プローブを保持し、バネ等で重力を釣り合わせて接触圧を調整する形状測定器が特許文献1に示されている。また、測定プローブを傾斜させて保持することにより、被測定物への接触圧を小さくした形状測定器が特許文献2に示されている。
特開平7−260471号公報 特表2005−502876号公報
2. Description of the Related Art Conventionally, a shape measuring instrument for measuring the surface shape of an optical lens or the like has a contact pressure as small as possible so as not to damage a measured object. As a shape measuring device with a reduced contact pressure, for example, Patent Document 1 discloses a shape measuring device that holds a measurement probe in the direction of gravity and adjusts the contact pressure by balancing gravity with a spring or the like. Further, Patent Document 2 discloses a shape measuring instrument in which the contact pressure on the object to be measured is reduced by tilting and holding the measurement probe.
JP-A-7-260471 JP 2005-502876 gazette

しかしながら、低接触力で被測定物に測定プローブを接触させると、機上形状測定器では搭載される加工機からの機械振動により高精度で測定が行えないという問題が生じる。加工機で、機上形状測定器を動作させる際には、サーボモータを特定位置で停止させるサーボロック制御を行うが、サーボモータは、サーボロック状態においても微視的には指令位置の前後に回動を続けており、サーボモータ等からの振動が、測定器の信号に重畳して誤差分となり高精度測定の妨げとなった。この振動は、サーボモータのサーボロック位置により異なり、また、サーボモータの特性は経年変化するため、対応が難しかった。 However, when the measuring probe is brought into contact with the object to be measured with a low contact force, there is a problem that the on-machine shape measuring instrument cannot measure with high accuracy due to mechanical vibration from the processing machine mounted. When operating an on-machine shape measuring instrument on a processing machine, servo lock control is performed to stop the servo motor at a specific position. The servo motor is microscopically before and after the command position even in the servo lock state. The rotation continued, and the vibration from the servo motor etc. was superimposed on the signal of the measuring instrument and became an error, which hindered high precision measurement. This vibration differs depending on the servo lock position of the servo motor, and the characteristics of the servo motor change over time, making it difficult to cope with it.

ここで、既存の機上形状測定器では、上記誤差分に対応するため、形状測定誤差に移動平均を加えたり、ローパスフィルタなどで平滑化処理を行っていたが、やはり振動成分が残り、高精度な測定の妨げとなっていた。 Here, in the existing on-machine shape measuring instrument, in order to deal with the above error, a moving average is added to the shape measurement error, or smoothing processing is performed by a low-pass filter or the like. This hindered accurate measurement.

本発明は、上述した課題を解決するためになされたものであり、その目的とするところは、測定子を低接触力で接触させながら被測定物の表面形状を高精度に測定できる機上形状測定器を提供することにある。 The present invention has been made in order to solve the above-described problems, and the object of the present invention is an on-machine shape capable of measuring the surface shape of an object to be measured with high accuracy while bringing the probe into contact with a low contact force. To provide a measuring instrument.

上記目的を達成するため、請求項1の形状測定器30は、被測定物の表面に低接触力で接触する測定子32と、
前記測定子の位置を測定する位置検出器44とを備え、複数のサーボモータ22、24、26を有する加工機10に搭載される機上形状測定器30において、
前記サーボモータ22、24、26のロック状態における振動成分を測定する周波数解析手段62と、
前記周波数解析手段により測定された振動成分を除去するフィルタ66を設定するフィルタ設定手段62と、
前記位置検出器の出力から、前記フィルタ66により前記サーボモータのロック状態における振動成分を除去する振動成分除去手段66とを備えることを技術的特徴とする。
In order to achieve the above object, the shape measuring instrument 30 according to claim 1 includes a probe 32 that contacts the surface of the object to be measured with a low contact force,
An on-machine shape measuring instrument 30 mounted on a processing machine 10 having a plurality of servo motors 22, 24, 26, and a position detector 44 for measuring the position of the probe.
Frequency analysis means 62 for measuring vibration components in the locked state of the servo motors 22, 24, 26;
Filter setting means 62 for setting a filter 66 for removing the vibration component measured by the frequency analysis means;
The present invention is characterized by comprising vibration component removing means 66 for removing the vibration component in the locked state of the servo motor by the filter 66 from the output of the position detector.

請求項1の機上形状測定器30は、サーボモータのロック状態等における機械振動成分を測定し、振動成分を除去するフィルタを設定する。そして、位置検出器の出力から、設定したフィルタによりサーボモータのロック状態等における機械振動成分を除去する。このため、測定子を低接触力で接触させることで、機械振動の影響を受け易い状態となっても、サーボモータのロック等による機械振動を除去し、影響を打ち消すことで、高精度な形状測定を実現できる。 The on-machine shape measuring device 30 of the first aspect measures a mechanical vibration component in a locked state of the servo motor and sets a filter for removing the vibration component. Then, the mechanical vibration component in the locked state of the servo motor or the like is removed from the output of the position detector by the set filter. For this reason, even if it is in a state where it is easily affected by mechanical vibration by bringing the probe into contact with a low contact force, it eliminates the mechanical vibration due to the lock of the servo motor, etc. Measurement can be realized.

請求項2の機上形状測定器30は、振動成分の除去された位置検出器の出力と設計形状値とを比較して形状誤差を求め、求めた形状誤差から加工データを補正する。サーボモータのロック等による機械振動を除去し、高精度な形状測定を行っているため、測定結果に基づき補正した加工データを用いて所望形状への高精度な加工が実現できる。 The on-machine shape measuring instrument 30 according to claim 2 compares the output of the position detector from which the vibration component is removed with the design shape value to obtain a shape error, and corrects the machining data from the obtained shape error. Since the mechanical vibration due to the lock of the servo motor or the like is removed and highly accurate shape measurement is performed, highly accurate machining to a desired shape can be realized using machining data corrected based on the measurement result.

請求項3の機上形状測定器30は、支持手段42で、測定プローブ32を自重で後退するように傾斜θを持たせて支持する。一方、付勢手段40で、測定プローブ32を被測定物W側へ突出させるように付勢する。このため、被測定物Wへの測定プローブ32の接触力は、傾斜を持たせて測定プローブ32の自重による後退力と、付勢手段40の付勢力との差分になるので、接触力を非常に小さくなるように調整することが可能である。同時に、測定子を低接触力で接触させることで、機械振動の影響を受け易い状態となっても、サーボモータのロック等による機械振動を除去し、影響を打ち消すことで、高精度な形状測定を実現できる。 The on-machine shape measuring instrument 30 of claim 3 is supported by the support means 42 with an inclination θ so that the measuring probe 32 moves backward by its own weight. On the other hand, the urging means 40 urges the measurement probe 32 to protrude toward the object to be measured W. For this reason, the contact force of the measurement probe 32 to the object W to be measured is a difference between the retreating force due to the weight of the measurement probe 32 with an inclination and the urging force of the urging means 40. It is possible to adjust so that it may become small. At the same time, even if it is in a state that is easily affected by mechanical vibration by bringing the probe into contact with a low contact force, high-precision shape measurement is achieved by eliminating the mechanical vibration due to the lock of the servo motor and canceling the influence. Can be realized.

請求項4の機上形状測定器は、特別な振動計(例えば加速度ピックアップ)を用いることなく、加工物と測定子とを含む機械系の振動が測定可能である。これにより、ユーザ側での測定を可能にし、機械振動の経年変化に対応することができる。 The on-machine shape measuring instrument of claim 4 can measure the vibration of the mechanical system including the workpiece and the measuring element without using a special vibrometer (for example, an acceleration pickup). As a result, measurement on the user side is possible, and it is possible to cope with aging of mechanical vibration.

請求項5の加工機は、機械振動成分を除去できる機上形状測定器を備えるたため、サーボモータのロック等による機械振動を除去すことで、高精度な形状測定を実現し、高精度な加工が可能である。 Since the processing machine according to claim 5 is provided with an on-machine shape measuring device capable of removing mechanical vibration components, high-precision shape measurement is realized by removing mechanical vibration caused by a servo motor lock or the like. Is possible.

以下、本発明の実施形態について、図を参照して説明する。
図1は、本発明の一実施形態に係る形状測定器を搭載する超精密加工機の構成を示している。
超精密加工機10は、ワークWを固定するワーク固定台12と、工具16を保持する砥石軸14と、砥石軸14をX方向へ送るサーボモータ22と、Y軸方向へ送るサーボモータ24と、Z軸方向へ送るサーボモータ26とを備える。ワークWの形状を測定プローブ32により測定する形状測定器30が、砥石軸14と併設されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a configuration of an ultra-precision machine equipped with a shape measuring instrument according to an embodiment of the present invention.
The ultra-precision machine 10 includes a workpiece fixing base 12 for fixing a workpiece W, a grinding wheel shaft 14 for holding a tool 16, a servo motor 22 for feeding the grinding wheel shaft 14 in the X direction, and a servo motor 24 for feeding in the Y axis direction. And a servo motor 26 for feeding in the Z-axis direction. A shape measuring device 30 for measuring the shape of the workpiece W by the measuring probe 32 is provided along with the grindstone shaft 14.

形状測定器30の構成について、図2の平面図を参照して説明する。
形状測定器30は、エアシリンダ40により付勢される主動シリンダ34と、該主動シリンダ34にブラケット38により連結された従動シリンダ36とを備える。従動シリンダ36には、測定プローブ32が取り付けられている。主動シリンダ34及び従動シリンダ36は、エアベアリング42により傾斜状態で支持されている。即ち、エアベアリング42で、主動シリンダ34及び従動シリンダ36の自重で後退する(図中左方向に向かう)よう肉眼では識別できない程に微少な傾斜を持たせて支持している。従動シリンダ36には位置検出器としてリニアスケール44が設けられている。形状測定器30は、従動シリンダ36のストロークが10mmに設定され、後述するように測定圧を、数10mgf〜数100mgfの範囲で調整可能に構成されている。なお、この実施形態では、主動シリンダ34と従動シリンダ36とを設けることで、円柱状のシリンダの回り止めがなされる。
The configuration of the shape measuring instrument 30 will be described with reference to the plan view of FIG.
The shape measuring instrument 30 includes a main drive cylinder 34 urged by an air cylinder 40 and a driven cylinder 36 connected to the main drive cylinder 34 by a bracket 38. A measurement probe 32 is attached to the driven cylinder 36. The main cylinder 34 and the driven cylinder 36 are supported in an inclined state by an air bearing 42. That is, the air bearing 42 is supported with a slight inclination so that it cannot be recognized by the naked eye so as to move backward (toward the left in the figure) by the weight of the main cylinder 34 and the driven cylinder 36. The driven cylinder 36 is provided with a linear scale 44 as a position detector. The shape measuring instrument 30 is configured such that the stroke of the driven cylinder 36 is set to 10 mm, and the measurement pressure can be adjusted in the range of several tens mgf to several hundreds mgf as described later. In this embodiment, the main cylinder 34 and the driven cylinder 36 are provided to prevent the columnar cylinder from rotating.

図3を参照して実施形態の形状測定器30での測定プローブ32の接触力(測定圧)Fについて説明する。
本実施形態の形状測定器30では、エアベアリング42で、測定プローブ32を備える従動シリンダ36及び主動シリンダ34の自重で後退するように傾斜θを持たせて支持する。エアシリンダ40の摩擦力は非常に小さい。ここで、従動シリンダ36及び主動シリンダ34の後退する力は、エアベアリングでの傾斜θによって生じ、自重mに比べて遙かに小さいmgsigθとなる。一方、エアシリンダ40で、測定プローブ32をワークW側へ突出させるように押出力Fcで付勢する。このため、ワークWへの測定プローブ32の接触力Fは、エアベアリング42で傾斜θを持たせて支持された従動シリンダ36及び主動シリンダ34の自重mによる後退力(測定子自重傾斜成分)mgsigθと、エアシリンダ40の押出力Fcとの差分(F=Fc−mgsigθ)になるので、接触力Fを非常に小さくするように、数10mgfまで調整することが可能である。このため、アルミニューム製品、樹脂製品等の甦生変形し易い被測定物の表面を変形させることなく測定できる。
With reference to FIG. 3, the contact force (measurement pressure) F of the measurement probe 32 in the shape measuring instrument 30 of the embodiment will be described.
In the shape measuring instrument 30 of the present embodiment, the air bearing 42 supports the driven cylinder 36 having the measurement probe 32 and the main driving cylinder 34 so as to move backward with the inclination θ. The friction force of the air cylinder 40 is very small. Here, the retreating force of the driven cylinder 36 and the main driving cylinder 34 is generated by the inclination θ in the air bearing and becomes mgsigθ which is much smaller than the own weight m. On the other hand, the air cylinder 40 urges the measurement probe 32 with a pushing force Fc so as to protrude toward the workpiece W side. For this reason, the contact force F of the measurement probe 32 to the workpiece W is set such that the driven cylinder 36 and the main cylinder 34 supported by the air bearing 42 with an inclination θ and the retraction force due to the own weight m (measurement element own weight inclination component) mgsigθ. And a difference (F = Fc−mgsigθ) from the pushing force Fc of the air cylinder 40, the contact force F can be adjusted to several tens of mgf so as to be very small. For this reason, it is possible to measure without deforming the surface of an object to be measured which is easily deformed, such as aluminum products and resin products.

本実施形態の形状測定器30では、空気圧により測定プローブ32を付勢するエアシリンダ40を用いるため、容易に測定プローブ32へ加える付勢力を調整することができる。即ち、本実施形態の形状測定器30では、エアシリンダ40の付勢力(押出力Fc)を変えることで、測定プローブ32の測定圧を連続的に変えることができ、これにより複雑な形状のワークの表面形状を測定プローブ32の測定圧を変えながら測定することで、高精度に測定を実現できる。また、測定圧を変えても測定プローブが被測定物Wに当たっている位置が変わることがない。 In the shape measuring instrument 30 of the present embodiment, since the air cylinder 40 that biases the measurement probe 32 by air pressure is used, the biasing force applied to the measurement probe 32 can be easily adjusted. That is, in the shape measuring instrument 30 of the present embodiment, the measurement pressure of the measurement probe 32 can be continuously changed by changing the urging force (pushing force Fc) of the air cylinder 40, and thereby the workpiece having a complicated shape. By measuring the surface shape while changing the measurement pressure of the measurement probe 32, the measurement can be realized with high accuracy. Even if the measurement pressure is changed, the position where the measurement probe is in contact with the workpiece W does not change.

上述したように測定プローブ32の接触力を下げると、機上形状測定器では、加工機に生じる機械振動の影響を受け易くなる。このため、本実施形態の機上形状測定器30では、機械振動を除去する処理を行っている。この機上形状測定器30の制御構成について図4を参照して説明する。 As described above, when the contact force of the measurement probe 32 is lowered, the on-machine shape measuring instrument is easily affected by mechanical vibration generated in the processing machine. For this reason, in the on-machine shape measuring instrument 30 of this embodiment, the process which removes mechanical vibration is performed. The control configuration of the on-machine shape measuring instrument 30 will be described with reference to FIG.

形状測定器30には、空気圧を発生する空圧機器50と、形状測定器30のエアシリンダ40への供給気圧を調整するシリンダ給気圧制御機器52とが接続されている。空圧機器50からの気圧は、エアベアリング42へ直接供給されるように構成されている。リニアスケール44からの出力は、アンプ部60へ入力される。アンプ部60には、測定開始前に加工機10の機械振動の周波数解析を行う周波数解析手段62と、解析された機械振動分の除去を行うノッチフィルタ66と、被測定物の形状を測定する形状測定手段64とを備え、形状測定手段64で測定された形状データ(形状信号)は、該ノッチフィルタ66を介して機械振動が除去されてから形状解析手段68へ出力される。形状解析手段68は、形状データ保持手段67に保持された被測定物(ワーク)の設計形状と測定された形状との差分を求める。形状解析手段68で求められた差分から、形状誤差算出手段72が形状誤差を算出し、算出した形状誤差を補正するための補正値が補正値演算手段74にて演算され、加工誤差分の修正加工を行うためのNCデータが、NC作成手段76により作成される。 The shape measuring device 30 is connected to a pneumatic device 50 that generates air pressure and a cylinder air pressure control device 52 that adjusts the air pressure supplied to the air cylinder 40 of the shape measuring device 30. The air pressure from the pneumatic device 50 is configured to be supplied directly to the air bearing 42. The output from the linear scale 44 is input to the amplifier unit 60. The amplifier unit 60 measures the frequency analysis means 62 that performs frequency analysis of mechanical vibrations of the processing machine 10 before the start of measurement, the notch filter 66 that removes the analyzed mechanical vibrations, and the shape of the object to be measured. The shape data (shape signal) measured by the shape measuring means 64 is output to the shape analyzing means 68 after the mechanical vibration is removed through the notch filter 66. The shape analysis means 68 obtains the difference between the design shape of the object to be measured (workpiece) held in the shape data holding means 67 and the measured shape. From the difference obtained by the shape analysis means 68, the shape error calculation means 72 calculates the shape error, and a correction value for correcting the calculated shape error is calculated by the correction value calculation means 74, thereby correcting the machining error. NC data for processing is created by the NC creation means 76.

次に、機上形状測定器30による形状測定について図5〜図8を参照して説明する。
図5は、形状測定器による形状測定処理を示すフローチャートである。
図1に示す工具16により加工の完了したワークWをワーク固定台12上の固定したままの状態で、加工機10を停止、即ち、各サーボモータ22、24、26をサーボロック状態にする(S12)。この状態で、形状測定器30により測定プローブ32をワークWに押し付け、ワークW上に重畳する機械振動成分をリニアスケール44から測定する(S14)。測定したリニアスケール44からの信号LS(振動成分を図6(A)中に示す)を、例えば120Hzで高速フーリエ解析し、振動(主としてサーボモータのサーボロックにより生じる振動)の周波数成分を解析する(S16)。そして周波数成分解析の結果から、ピーク周波数を探し、機械振動周波数として記憶すると共に、該機械振動周波数を除去するノッチフィルタ66を生成する(S18)。ノッチフィルタ66の特性は、図6(B)に示すように上記機械振動周波数成分を減衰させる。以上の処理により形状測定の前準備が完了する。なお、機械振動成分はサーボモータのサーボロック位置により異なるため、サーボロック位置によってノッチフィルタ66の特性は変わってくる。
Next, shape measurement by the on-machine shape measuring instrument 30 will be described with reference to FIGS.
FIG. 5 is a flowchart showing the shape measurement processing by the shape measuring instrument.
The processing machine 10 is stopped, that is, the servo motors 22, 24, and 26 are set in the servo lock state while the workpiece W that has been processed by the tool 16 shown in FIG. S12). In this state, the measurement probe 32 is pressed against the workpiece W by the shape measuring instrument 30, and the mechanical vibration component superimposed on the workpiece W is measured from the linear scale 44 (S14). The measured signal LS from the linear scale 44 (the vibration component is shown in FIG. 6A) is subjected to fast Fourier analysis at 120 Hz, for example, and the frequency component of the vibration (mainly vibration caused by the servo lock of the servo motor) is analyzed. (S16). Then, the peak frequency is searched for from the result of the frequency component analysis, stored as a mechanical vibration frequency, and a notch filter 66 for removing the mechanical vibration frequency is generated (S18). The characteristic of the notch filter 66 attenuates the mechanical vibration frequency component as shown in FIG. The preparation for shape measurement is completed by the above processing. Since the mechanical vibration component varies depending on the servo lock position of the servo motor, the characteristics of the notch filter 66 vary depending on the servo lock position.

形状測定を開始する(S20)ここでは、走査用の移動ステージ(加工機制御軸)を駆動して、図7(A)に示すようにワークWの測定面を測定プローブ32でY軸方向へ走査する。測定プローブ32は、ワークWの形状に倣って移動するため、そのときの測定プローブ32の軌跡が、ワークWの形状となる。この測定した形状を図7(B)に示す。この測定した形状の波形には、サーボモータのサーボロック等による機械振動分が重畳したものとなっているため、図6(B)を参照して上述した解析した機械振動周波数成分を除去するノッチフィルタ66を通過させることで、機械振動が除去された図7(C)に示す形状のデータを得る。次に、測定した形状を座標変換して、図8(A)に示すように形状の頂点が座標の原点と合うようにする(S22)。 The shape measurement is started (S20). Here, the scanning moving stage (processing machine control axis) is driven, and the measurement surface of the workpiece W is moved in the Y-axis direction by the measurement probe 32 as shown in FIG. Scan. Since the measurement probe 32 moves following the shape of the workpiece W, the locus of the measurement probe 32 at that time becomes the shape of the workpiece W. This measured shape is shown in FIG. The waveform of the measured shape is superimposed with the mechanical vibration due to the servo lock of the servo motor, etc., so that the notch for removing the mechanical vibration frequency component analyzed as described above with reference to FIG. By passing the filter 66, data having the shape shown in FIG. 7C from which mechanical vibration has been removed is obtained. Next, the measured shape is subjected to coordinate transformation so that the vertex of the shape matches the origin of the coordinate as shown in FIG. 8A (S22).

ここで、図8(B)は、ワークの設計値(設計形状、例えば、レンズ設計用の非球面多項式)を示している。このワークの設計値と、図8(A)に示す座標変換後の測定形状とを比較することで形状解析を行い(S24)、設計値と測定形状との差分を求め形状誤差を計算する(S26)。図8(C)は、算出した形状誤差を示している。 Here, FIG. 8B shows a design value (design shape, for example, an aspherical polynomial for lens design) of the workpiece. The shape analysis is performed by comparing the design value of the workpiece with the measured shape after coordinate conversion shown in FIG. 8A (S24), and the difference between the designed value and the measured shape is obtained to calculate the shape error ( S26). FIG. 8C shows the calculated shape error.

引き続き、形状誤差を補正するための値を計算し(S28)、最後に形状誤差を補正(修正)するための加工用NCデータを作成する(S30)。例えば、光学用レンズを加工する際には、絶対寸法が重要ではなく、相対的な曲面形状を精密に作り出す必要がある。例えば、削り過ぎの部位があれば、その部位よりも突出する他の部位を削る加工データを作成することで、相対的な曲面形状を精密に作り出すためのNCデータを作成する。作成したNCデータを用いて加工機10側でワークWを再度加工することで、所望の形状への加工を実現する。 Subsequently, a value for correcting the shape error is calculated (S28), and finally machining NC data for correcting (correcting) the shape error is created (S30). For example, when processing an optical lens, the absolute dimension is not important, and it is necessary to accurately create a relative curved surface shape. For example, if there is a part that is excessively cut, NC data for precisely creating a relative curved surface shape is created by creating machining data that cuts other parts that protrude beyond that part. By processing the workpiece W again on the processing machine 10 side using the created NC data, processing into a desired shape is realized.

本実施形態の機上形状測定器30は、測定開始前にサーボモータ22,24、26のロック状態等における機械振動成分を測定し、振動成分を除去するノッチフィルタ66を設定する。そして、リニアスケール44の出力から、設定したノッチフィルタ66によりサーボモータのロック状態等における機械振動成分を除去する。このため、測定プローブ32を低接触力(例えば数10mgf)で接触させることで、機械振動の影響を受け易い状態となっても、サーボモータのロック等による機械振動を除去し、影響を打ち消すことで、高精度な形状測定を実現できる。 The on-machine shape measuring instrument 30 of this embodiment measures a mechanical vibration component in a locked state or the like of the servo motors 22, 24, and 26 before starting measurement, and sets a notch filter 66 that removes the vibration component. Then, the mechanical vibration component in the locked state of the servo motor or the like is removed from the output of the linear scale 44 by the set notch filter 66. For this reason, even if the measurement probe 32 is brought into contact with a low contact force (for example, several tens of mgf), even if the measurement probe 32 is easily affected by the mechanical vibration, the mechanical vibration due to the servo motor lock or the like is removed and the influence is canceled out. Thus, highly accurate shape measurement can be realized.

更に、測定開始前に実施することで、そのときの機械状態に応じ、また、加工機の経年変化に対応させて、振動除去が可能になる。ワークの大小、ワーク材質等の様々な被測定物に対応することが可能になる。更に、特別な機械振動計(例えば、加速度ピックアップ)を必要としないので、機上形状測定器の使用者が随時、振動成分の測定を行い得る。 Furthermore, by carrying out before the start of measurement, vibration can be removed according to the machine state at that time and corresponding to the secular change of the processing machine. It is possible to deal with various objects to be measured such as the size of workpieces and workpiece materials. Furthermore, since a special mechanical vibrometer (for example, an accelerometer) is not required, the user of the on-board shape measuring instrument can measure the vibration component at any time.

本実施形態の機上形状測定器30は、振動成分の除去されたリニアスケール44の出力と設計形状値とを比較して形状誤差を求め、求めた形状誤差から加工データを生成する。サーボモータのロック等による機械振動を除去し、高精度な形状測定を行っているため、測定結果に基づき生成した加工データを用いて、所望形状への高精度な加工が実現できる。 The on-machine shape measuring instrument 30 of this embodiment compares the output of the linear scale 44 from which the vibration component is removed with the design shape value to obtain a shape error, and generates machining data from the obtained shape error. Since the mechanical vibration due to the lock of the servo motor or the like is removed and highly accurate shape measurement is performed, highly accurate machining to a desired shape can be realized using machining data generated based on the measurement result.

本実施形態の機上形状測定器30は、エアベアリング42で、測定プローブ32を自重で後退するように傾斜θを持たせて支持する。一方、エアシリンダ40で、測定プローブ32をワークW側へ突出させるように付勢する。このため、ワークWへの測定プローブ32の接触力は、傾斜を持たせて測定プローブ32の自重による後退力と、エアシリンダ40の付勢力との差分になるので、接触力を非常に小さくなるように調整することが可能である。同時に、測定プローブ32を低接触力で接触させることで、機械振動の影響を受け易い状態となっても、サーボモータのロック等による機械振動を除去し、影響を打ち消すことで、高精度な形状測定を実現できる。 The on-machine shape measuring instrument 30 of the present embodiment supports the measurement probe 32 with an inclination θ so as to retreat by its own weight by an air bearing 42. On the other hand, the air cylinder 40 urges the measurement probe 32 to protrude toward the workpiece W side. For this reason, the contact force of the measurement probe 32 to the workpiece W is a difference between the retraction force due to the weight of the measurement probe 32 with an inclination and the biasing force of the air cylinder 40, so the contact force becomes very small. It is possible to adjust as follows. At the same time, even if the measuring probe 32 is brought into contact with a low contact force, even if the measuring probe 32 is easily affected by mechanical vibration, the mechanical vibration due to the lock of the servo motor, etc. is removed and the influence is canceled out, thereby achieving a highly accurate shape. Measurement can be realized.

上述した実施形態では、上記実施形態では、測定プローブを自重で後退する方向に傾斜を持たせて支持することで接触力を下げた機上形状測定器に適用する例を挙げたが、本発明の構成は、接触力を低減させた接触子を備える種々の機上形状測定器に適用可能であることは言うまでもない。また、上述した実施形態では、ノッチフィルタをソフトウエアーで構成したが、ノッチフィルタはハードウエアーで構成することも可能である。 In the embodiment described above, in the above-described embodiment, an example is given in which the measurement probe is applied to an on-machine shape measuring device in which the contact force is reduced by supporting the measurement probe with a tilt in the direction of retreating by its own weight. Needless to say, the above configuration can be applied to various on-machine shape measuring instruments having a contact with reduced contact force. In the above-described embodiment, the notch filter is configured by software. However, the notch filter may be configured by hardware.

上述した実施形態では、測定プローブをワークWの形状の倣うように動作させたが、測定プローブ位置を一定に保ち、機械制御軸を加工プログラムに応じて倣わせるように動作させることも可能である。このときは、測定プローブ位置の変動が、加工誤差に相当することになる。 In the embodiment described above, the measurement probe is operated so as to follow the shape of the workpiece W. However, the measurement probe position can be kept constant and the machine control axis can be operated according to the machining program. is there. At this time, the variation of the measurement probe position corresponds to a processing error.

本発明の一実施形態に係る形状測定器を搭載する超精密加工機の構成を示す構成図である。It is a block diagram which shows the structure of the ultraprecision processing machine carrying the shape measuring device which concerns on one Embodiment of this invention. 機上形状測定器の平面図である。It is a top view of an on-machine shape measuring device. 機上形状測定器で接触圧を実現する説明図である。It is explanatory drawing which implement | achieves a contact pressure with an on-machine shape measuring device. 機上形状測定器の制御構成を示すブロック図である。It is a block diagram which shows the control structure of an on-machine shape measuring device. 機上形状測定器による測定処理を示すフローチャートである。It is a flowchart which shows the measurement process by an on-machine shape measuring device. (A)は、機上形状測定器による解析された機械振動成分を示すグラフであり、(B)は、ノッチフィルタの周波数特性を示すグラフである。(A) is a graph which shows the mechanical vibration component analyzed by the on-machine shape measuring device, (B) is a graph which shows the frequency characteristic of a notch filter. (A)は、ワークの測定プローブによる形状測定の説明図であり、(B)は、機械振動分が重畳した形状データを示す説明図であり、(C)は、機械振動分を除去した形状データを示す説明図である。(A) is explanatory drawing of the shape measurement by the measurement probe of a workpiece | work, (B) is explanatory drawing which shows the shape data on which the mechanical vibration component was superimposed, (C) is the shape which removed the mechanical vibration component. It is explanatory drawing which shows data. (A)は、座標変換後の形状データを示す説明図であり、(B)は、ワークの設計形状を示す説明図であり、(C)は、形状誤差を示す説明図である。(A) is explanatory drawing which shows the shape data after coordinate transformation, (B) is explanatory drawing which shows the design shape of a workpiece | work, (C) is explanatory drawing which shows a shape error.

符号の説明Explanation of symbols

10 超精密加工機
30 形状測定器
32 測定プローブ
34 主動シリンダ
36 従動シリンダ
40 エアシリンダ
42 エアベアリング
44 リニアスケール
60 周波数解析手段
66 ノッチフィルタ
72 形状誤差算出手段
76 NC作成手段
W ワーク(被測定物)
DESCRIPTION OF SYMBOLS 10 Super precision processing machine 30 Shape measuring device 32 Measuring probe 34 Main drive cylinder 36 Followed cylinder 40 Air cylinder 42 Air bearing 44 Linear scale 60 Frequency analysis means 66 Notch filter 72 Shape error calculation means 76 NC preparation means W Workpiece (measurement object)

Claims (5)

被測定物の表面に低接触力で接触する測定子と、
前記測定子の位置を測定する位置検出器とを備え、複数のサーボモータを有する加工機に搭載される機上形状測定器において、
前記サーボモータのロック状態における振動成分を測定する周波数解析手段と、
前記周波数解析手段により測定された振動成分を除去するフィルタを設定するフィルタ設定手段と、
前記位置検出器の出力から、前記フィルタにより前記サーボモータのロック状態における振動成分を除去する振動成分除去手段とを備えることを特徴とする機上形状測定器。
A probe that contacts the surface of the object to be measured with a low contact force;
An on-machine shape measuring instrument equipped with a position detector for measuring the position of the probe, and mounted on a processing machine having a plurality of servo motors,
Frequency analysis means for measuring a vibration component in the locked state of the servo motor;
Filter setting means for setting a filter for removing the vibration component measured by the frequency analysis means;
An on-machine shape measuring device comprising: vibration component removing means for removing a vibration component in a locked state of the servo motor by the filter from the output of the position detector.
前記振動成分除去手段により振動成分の除去された位置検出器の出力と設計形状値とを比較して形状誤差を求める形状誤差解析手段と、
求めた形状誤差から加工データを補正する加工データ補正手段とを有する請求項1の機上形状測定器。
A shape error analyzing means for comparing the output of the position detector from which the vibration component has been removed by the vibration component removing means and the design shape value to obtain a shape error;
2. The on-machine shape measuring instrument according to claim 1, further comprising machining data correction means for correcting machining data from the obtained shape error.
前記測定子を自重で後退するように水平面に対して傾斜角度を持たせて支持する支持手段と、
前記測定子を前記被測定物側へ付勢する付勢手段を備えることを特徴とする請求項1又は請求項2の機上形状測定器。
A supporting means for supporting the measuring element with an inclination angle with respect to a horizontal plane so as to retract the measuring element by its own weight;
The on-machine shape measuring instrument according to claim 1 or 2, further comprising biasing means for biasing the measuring element toward the object to be measured.
前記周波数解析手段は、前記測定子を被測定物の表面に接触させて、前記サーボモータのロック状態における振動成分を測定することを特徴とする請求項1〜請求項3のいずれか1の機上形状測定器。 The apparatus according to any one of claims 1 to 3, wherein the frequency analysis means measures the vibration component in the locked state of the servo motor by bringing the probe into contact with the surface of the object to be measured. Upper shape measuring instrument. 請求項1〜請求項4のいずれか1の機上形状測定器を備えることを特徴とする加工機。 A processing machine comprising the on-machine shape measuring instrument according to any one of claims 1 to 4.
JP2005161530A 2005-06-01 2005-06-01 Processing machine Expired - Fee Related JP4622683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005161530A JP4622683B2 (en) 2005-06-01 2005-06-01 Processing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005161530A JP4622683B2 (en) 2005-06-01 2005-06-01 Processing machine

Publications (2)

Publication Number Publication Date
JP2006337148A true JP2006337148A (en) 2006-12-14
JP4622683B2 JP4622683B2 (en) 2011-02-02

Family

ID=37557836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005161530A Expired - Fee Related JP4622683B2 (en) 2005-06-01 2005-06-01 Processing machine

Country Status (1)

Country Link
JP (1) JP4622683B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241608A (en) * 2007-03-28 2008-10-09 Jtekt Corp On board method for detecting work standard point, and machining device using the method
CN102109338A (en) * 2011-01-10 2011-06-29 山东力诺瑞特新能源有限公司 Testing method for radian of end cover
JP2014130059A (en) * 2012-12-28 2014-07-10 Canon Inc Contact type three-dimensional shape measuring apparatus and probe control method
JP2017187495A (en) * 2016-04-05 2017-10-12 ケースレー・インスツルメンツ・インコーポレイテッドKeithley Instruments,Inc. Electrical test measurement apparatus and method by processor control

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126402A (en) * 1985-11-27 1987-06-08 Omron Tateisi Electronics Co Xy stage control device
JPH0361809A (en) * 1989-07-31 1991-03-18 Mitsubishi Heavy Ind Ltd Digitizer
JP2002039743A (en) * 2000-07-28 2002-02-06 Mori Seiki Co Ltd Measuring instrument
JP2005103739A (en) * 2003-10-02 2005-04-21 Yaskawa Electric Corp Vibration suppressing control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126402A (en) * 1985-11-27 1987-06-08 Omron Tateisi Electronics Co Xy stage control device
JPH0361809A (en) * 1989-07-31 1991-03-18 Mitsubishi Heavy Ind Ltd Digitizer
JP2002039743A (en) * 2000-07-28 2002-02-06 Mori Seiki Co Ltd Measuring instrument
JP2005103739A (en) * 2003-10-02 2005-04-21 Yaskawa Electric Corp Vibration suppressing control device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241608A (en) * 2007-03-28 2008-10-09 Jtekt Corp On board method for detecting work standard point, and machining device using the method
KR101441989B1 (en) * 2007-03-28 2014-09-18 가부시키가이샤 제이텍트 Detection method for a fiducial point of a workpiece on machine and machining apparatus using the same
CN102109338A (en) * 2011-01-10 2011-06-29 山东力诺瑞特新能源有限公司 Testing method for radian of end cover
JP2014130059A (en) * 2012-12-28 2014-07-10 Canon Inc Contact type three-dimensional shape measuring apparatus and probe control method
JP2017187495A (en) * 2016-04-05 2017-10-12 ケースレー・インスツルメンツ・インコーポレイテッドKeithley Instruments,Inc. Electrical test measurement apparatus and method by processor control
JP7061416B2 (en) 2016-04-05 2022-04-28 ケースレー・インスツルメンツ・エルエルシー Electrical test measuring device and processor controlled method

Also Published As

Publication number Publication date
JP4622683B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
JP4276275B2 (en) Machine tool position detection error measurement method
Dow et al. Application of a fast tool servo for diamond turning of nonrotationally symmetric surfaces
US4894597A (en) Deburring robot
JP5351639B2 (en) On-machine measuring method and measuring apparatus
US9316476B2 (en) Profile measuring instrument, adjusting method for profile measuring instrument, and profile measuring method
JP4622683B2 (en) Processing machine
WO2012035883A1 (en) Machining method
JP6147022B2 (en) Spatial accuracy measuring method and spatial accuracy measuring apparatus for machine tool
JP4923441B2 (en) Shape measuring instrument
JP2011115885A (en) Locus measuring device
KR20060101895A (en) Ground measurement system of cam grinding machine
JP2003039282A (en) Free-form surface working device and free-form surface working method
JP6198393B2 (en) Contact type three-dimensional shape measuring apparatus and probe control method
JP2010201581A (en) Workpiece attitude control device of machine tool
JP2007333442A (en) Shape measurement method
JPH0699336A (en) Surface roughness measuring apparatus
KR100514989B1 (en) Apparatus and method for cutting work-piece according to compensation of in-line error
JP2006337076A (en) Shape-measuring instrument
JP2024034308A (en) Positioning device, processing device, shape measuring device, positioning method, and article manufacturing method
Sahajdak In-Process Optical Gauging for Numerical Machine Tool Control
JP6623883B2 (en) Cutting unit
JP2018128350A (en) Position detector, stage device, and shape measuring device
JP2006239846A (en) Nc machining device
JP2000233353A (en) Grinding method and grinding device
JP2000237956A (en) Machining device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees