JP2005103739A - Vibration suppressing control device - Google Patents

Vibration suppressing control device Download PDF

Info

Publication number
JP2005103739A
JP2005103739A JP2003344087A JP2003344087A JP2005103739A JP 2005103739 A JP2005103739 A JP 2005103739A JP 2003344087 A JP2003344087 A JP 2003344087A JP 2003344087 A JP2003344087 A JP 2003344087A JP 2005103739 A JP2005103739 A JP 2005103739A
Authority
JP
Japan
Prior art keywords
vibration
servo driver
vibration frequency
axis
suppression control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003344087A
Other languages
Japanese (ja)
Other versions
JP2005103739A5 (en
JP4415631B2 (en
Inventor
Yasushi Yoshiura
泰史 吉浦
Yasuhiko Kako
靖彦 加来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2003344087A priority Critical patent/JP4415631B2/en
Publication of JP2005103739A publication Critical patent/JP2005103739A/en
Publication of JP2005103739A5 publication Critical patent/JP2005103739A5/ja
Application granted granted Critical
Publication of JP4415631B2 publication Critical patent/JP4415631B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Numerical Control (AREA)
  • Manipulator (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control device for suppressing vibration of a low rigidity machine whose vibration frequency is changed depending on conditions. <P>SOLUTION: Movement amounts of a first shaft and a second shaft calculated in a motion command decoding means 31 are respectively output to a first movement command calculation means 32 of the first shaft and a second movement command calculation means 33 of the second shaft. The first movement command calculation means 32 and the second movement command calculation means 33 are respectively constituted of a controller 3 for outputting a movement command to a first servo driver 1 and a second servo driver 2. A vibration frequency calculation means 34 of the controller 3 sequentially calculates vibration frequencies of the first shaft based on the second movement command calculation means 33, and outputs the vibration frequencies to a vibration suppressing means 11 of the firs servo driver 1. Therefore, vibration damping effect is always provided, even in a machine whose vibration frequency is changed depending on conditions. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は低剛性機械の振動抑制装置に関する。   The present invention relates to a vibration suppressing device for a low-rigidity machine.

従来、低剛性機械の振動抑制方法には例えば特許文献1がある。
図5により従来技術を説明する。図5で示されるように、機械は第1サーボドライバと第1モータからなる第1軸と第2サーボドライバと第2モータからなる第2軸で構成される。この機械の動作は、第2軸によってアームが伸縮し、第1軸によってアームが前後する。アームの前後によってアームは加振され、アームの伸縮によってアーム先端の振動周波数が変化する。この振動は、アーム先端からモータ間の機構によって吸収されてしまうため、モータを介してフィードバック信号を得ているサーボドライバには、振動していることが検出できない。しかし、この機械は、アーム先端が仕事をするので、アーム先端の振動が問題になる。この場合、図4のように、第1軸を駆動する第1サーボドライバ内で、あるアームの状態における振動周波数に対して設定した振動抑制制御を使用する必要がある。
また、特許文献1の従来技術では指令器から払い出される指令を通常の台形指令や三角波指令ではなく、アームの振動が発生しづらい指令を払い出す方法が開示されている。図7において、上は速度指令信号であり、加速時間の75%の時刻で加速度を最大とする。さらに減速時間の25%の時刻で減速の加速度を最大とする。つまり、アームの加速開始すなわち起動から加速終了すなわち所定速度に達するまでの加速時間において、加速開始時刻から起算して、加速時間の75%または約75%の時間が経過した時刻に、加速度のピークが来るよう、アーム駆動手段への加速指令を行う。また、アームの減速開始から減速終了すなわち停止までの減速時間においては、減速開始時刻から起算して、減速時間の25%または約25%の時間が経過した時刻に、加速度の負のピークが来るように、アーム駆動手段への減速指令を行うものである。
図5のような機械では、例えば1000mmから1500mmへアームが伸びると、振動周波数は20Hzから11Hzへと2倍程度変化する。サーボドライバによる従来の振動抑制制御は、設定した特定の周波数に対して振動をダンピングするものである。許容している振動周波数のずれは10%〜20%程度でしかない。
Conventionally, there is, for example, Patent Document 1 as a method for suppressing vibration of a low-rigidity machine.
The prior art will be described with reference to FIG. As shown in FIG. 5, the machine is composed of a first axis composed of a first servo driver and a first motor, and a second axis composed of a second servo driver and a second motor. In the operation of this machine, the arm extends and contracts by the second axis, and the arm moves back and forth by the first axis. The arm is vibrated by the front and back of the arm, and the vibration frequency of the arm tip changes due to the expansion and contraction of the arm. Since this vibration is absorbed by the mechanism between the motor from the arm tip, the servo driver that obtains the feedback signal via the motor cannot detect the vibration. However, in this machine, since the arm tip works, vibration of the arm tip becomes a problem. In this case, as shown in FIG. 4, it is necessary to use the vibration suppression control set for the vibration frequency in a certain arm state in the first servo driver that drives the first axis.
Further, the prior art disclosed in Patent Document 1 discloses a method for issuing a command that is difficult to generate arm vibration, instead of a normal trapezoidal command or a triangular wave command. In FIG. 7, the top is a speed command signal, and the acceleration is maximized at 75% of the acceleration time. Further, the acceleration of deceleration is maximized at a time of 25% of the deceleration time. That is, in the acceleration time from the start of acceleration of the arm, that is, starting to the end of acceleration, that is, reaching the predetermined speed, the acceleration peak is reached when 75% or about 75% of the acceleration time has elapsed from the acceleration start time. Command to the arm drive means so that Further, in the deceleration time from the start of deceleration of the arm to the end of deceleration, that is, the stop, a negative acceleration peak occurs at the time when 25% or about 25% of the deceleration time has elapsed from the deceleration start time. As described above, a deceleration command is issued to the arm driving means.
In the machine as shown in FIG. 5, for example, when the arm extends from 1000 mm to 1500 mm, the vibration frequency changes about 20 times from 20 Hz to 11 Hz. The conventional vibration suppression control by the servo driver damps vibration with respect to a set specific frequency. The allowable deviation of the vibration frequency is only about 10% to 20%.

特開2000−79583号公報JP 2000-79583 A

しかしながら、従来の振動抑制制御はもっとも振幅が大きい状態に対してのみ振動抑制を考慮しているため、図5のように振動周波数が変化する機械に対しては、常には制振効果を得ることができない。
また特許文献1のように指令を変形して振動抑制効果を得る方法でも、図5のように振動周波数が変化する機械に対しては、常には制振効果を得ることができない。
本発明は、上記問題を解決するためになされたものであり、従来技術では、サーボドライバのみで実行していた振動抑制制御の設定を、コントローラと連携することにより、振動周波数が変化する機械に対しても常に制振効果を得ることを目的とする。
However, since the conventional vibration suppression control considers vibration suppression only for the state with the largest amplitude, a vibration suppression effect is always obtained for a machine whose vibration frequency changes as shown in FIG. I can't.
Further, even with a method of obtaining a vibration suppression effect by modifying a command as in Patent Document 1, it is not always possible to obtain a vibration suppression effect for a machine whose vibration frequency changes as shown in FIG.
The present invention has been made to solve the above-described problem. In the prior art, the vibration suppression control setting executed only by the servo driver is linked with the controller to change the vibration frequency of the machine. The aim is always to obtain a vibration control effect.

請求項1記載の本発明は、第1軸を駆動する第1モータと、第1モータに取り付けられた第1エンコーダの位置信号をフィードバックし第1モータを制御する第1位置制御手段と振動抑制制御手段とからなる第1サーボドライバと、第2軸を駆動する第2モータと、第2モータに取り付けられた第2エンコーダの位置信号をフィードバックし第2モータを制御する第2位置制御手段からなる第2サーボドライバと、モーション指令解読手段で計算した第1軸と第2軸の移動量をそれぞれ第1移動指令演算手段と第2移動指令演算手段に出力し、第1移動指令出力手段と第2移動指令出力手段はそれぞれ第1サーボドライバと第2サーボドライバへ移動指令を出力するコントローラとで構成され、コントローラは第2移動指令手段の出力にもとづき、第1軸の振動周波数を逐次演算し、第1サーボドライバの振動抑制手段に出力するように構成したので状態により振動周波数が変化する機械に対しても常に制振効果を得ることができる。
請求項2記載の本発明は、請求項1記載の振動抑制制御装置において、請求項1の振動抑制制御手段を第1サーボドライバからコントローラに移設し、コントローラの振動周波数抑制手段は第2軸の移動指令をもとに第1軸の振動周波数パラメータを演算し振動抑制制御手段に設定するように構成したので状態により振動周波数が変化する機械に対しても常に制振効果を得ることができる。
請求項3記載の本発明は、請求項1記載の振動抑制制御装置において、請求項1の振動周波数演算手段をコントローラから第1サーボドライバへ移設し、第2軸の位置情報を通信手段により第1サーボドライバの周波数演算手段に伝送し、振動周波数演算手段は第2軸の位置情報をもとに第1軸の振動周波数を演算し、振動抑制制御手段に振動周波数パラメータとして逐次設定するように構成したので状態により振動周波数が変化する機械に対しても常に制振効果を得ることができる。
請求項4記載の本発明は、請求項1記載の振動抑制制御装置において、第2サーボドライバに設けた複数の出力接点と第1サーボドライバに設けた複数の入力接点とを接続し、出力接点は第2軸の位置情報に基づいてON,OFF情報を出力し、第1サーボドライバは、ON,OFF情報から、第2サーボドライバの第2軸の位置情報をある接点間に特定し、特定した位置情報に従って、第1軸の振動周波数を演算し、振動抑制手段の振動周波数パラメータとして逐次設定するように構成したので状態により振動周波数が変化する機械に対しても常に制振効果を得ることができる。
請求項5記載の本発明は、請求項1記載の振動抑制制御装置において、振動周波数演算を関数で行うように構成したので状態により振動周波数が変化する機械に対しても常に制振効果を得ることができる。
請求項6記載の本発明は、請求項5記載の振動抑制制御装置において、関数を近似式により構成したので状態により振動周波数が変化する機械に対しても常に制振効果を得ることができる。
請求項7記載の本発明は、請求項6記載の振動抑制制御装置において、近似式を最大次数2として、誤差が大きい場合、近似式の各係数に補正係数をかけて誤差の調整を行う請ように構成したので状態により振動周波数が変化する機械に対しても常に制振効果を得ることができる。
According to the first aspect of the present invention, the first motor for driving the first shaft, the first position control means for controlling the first motor by feeding back the position signal of the first encoder attached to the first motor, and vibration suppression A first servo driver comprising a control means, a second motor for driving the second shaft, and a second position control means for controlling the second motor by feeding back a position signal of a second encoder attached to the second motor. The movement amounts of the first axis and the second axis calculated by the second servo driver and the motion command decoding means are output to the first movement command calculation means and the second movement command calculation means, respectively, and the first movement command output means, The second movement command output means is composed of a controller that outputs a movement command to the first servo driver and the second servo driver, respectively, and the controller is based on the output of the second movement command means. The vibration frequency of the first axis is sequentially calculated and output to the vibration suppression means of the first servo driver, so that a damping effect can always be obtained even for a machine whose vibration frequency changes depending on the state. .
According to a second aspect of the present invention, in the vibration suppression control device according to the first aspect, the vibration suppression control means of the first aspect is moved from the first servo driver to the controller, and the vibration frequency suppression means of the controller is provided on the second axis. Since the vibration frequency parameter of the first axis is calculated on the basis of the movement command and set in the vibration suppression control means, a vibration damping effect can always be obtained even for a machine whose vibration frequency changes depending on the state.
According to a third aspect of the present invention, in the vibration suppression control apparatus according to the first aspect, the vibration frequency calculation means of the first aspect is moved from the controller to the first servo driver, and the position information of the second axis is transmitted by the communication means. 1 is transmitted to the frequency calculation means of the servo driver, and the vibration frequency calculation means calculates the vibration frequency of the first axis based on the position information of the second axis, and sequentially sets it as the vibration frequency parameter in the vibration suppression control means. Since it is configured, a damping effect can always be obtained even for a machine whose vibration frequency changes depending on the state.
According to a fourth aspect of the present invention, there is provided the vibration suppression control apparatus according to the first aspect, wherein a plurality of output contacts provided in the second servo driver and a plurality of input contacts provided in the first servo driver are connected to each other. Outputs ON / OFF information based on the position information of the second axis, and the first servo driver specifies the position information of the second axis of the second servo driver between the contacts based on the ON / OFF information. According to the positional information, the vibration frequency of the first axis is calculated, and is sequentially set as the vibration frequency parameter of the vibration suppressing means, so that a vibration suppression effect can be always obtained even for a machine whose vibration frequency changes depending on the state. Can do.
According to the fifth aspect of the present invention, in the vibration suppression control apparatus according to the first aspect, since the vibration frequency calculation is performed as a function, a vibration damping effect is always obtained even for a machine whose vibration frequency changes depending on the state. be able to.
According to the sixth aspect of the present invention, in the vibration suppression control apparatus according to the fifth aspect, since the function is constituted by an approximate expression, a damping effect can always be obtained even for a machine whose vibration frequency changes depending on the state.
According to a seventh aspect of the present invention, in the vibration suppression control apparatus according to the sixth aspect, when the approximate expression is the maximum degree 2 and the error is large, the error is adjusted by applying a correction coefficient to each coefficient of the approximate expression. Since it comprised in this way, the damping effect can always be acquired also with respect to the machine from which a vibration frequency changes with states.

本発明は、振動抑制制御の設定を、コントローラと連携することにより、振動周波数が変化する機械に対しても常に制振効果を得られる効果がある。   The present invention has an effect that a vibration suppression effect can always be obtained even for a machine whose vibration frequency changes by linking the setting of vibration suppression control with a controller.

以下、本発明の実施例を図を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は実施例1の構成図である。図1において、1は第1サーボドライバ、2は第2サーボドライバ、3はコントローラ、4は第1モータ、5は第2モータ、6は第1エンコータ、7は第2エンコーダである。また、31はモーション指令解読演算手段、32は第1移動指令演算手段、33は第2移動指令演算手段である。さらに、11は振動抑制制御手段、12は第1位置制御手段、22は第2位置制御手段である。次に動作について説明する。
コントローラの第1軸の第1移動指令演算手段32と第2軸の第2移動指令演算手段33は、モーション指令解読手段31で計算した第1軸と第2軸への移動量をもとに第1サーボドライバおよび第2サーボドライバへの移動指令を出力する。
ここで、図5に示すロボットアームでは、第1軸方向の振動の周波数はアーム長で変わることが分かっており、アーム長は第2軸の位置によって一意に決まるので、第2軸の位置に応じて、アームの振動周波数を出力する振動周波数演算手段34を新たにモーションコントローラ内に追加する。振動周波数演算手段34が出力する振動周波数パラメータ値を第1サーボドライバの振動抑制制御手段11に入力する。コントローラと第1サーボドライバ間をシリアル通信等のデータ伝送手段で接続する場合は、シリアル通信での通常のパラメータ伝送方式にて、容易に振動周波数を振動抑制制御手段11に設定することができる。また、パルス列信号により移動距離を伝送する場合は、信号伝送路とは別にサーボドライバの外部接点信号をコントローラから駆動してサーボ内部の振動周波数パラメータを変更することにより実現できる。また、振動周波数演算手段11は、例えば、第2軸の移動量とアームの振動周波数との関係をあらかじめ計測してテーブルを作成し、入力した第2軸の移動量からメモリテーブルを引いて周波数を出力する方式で構成する。モーション指令解読手段31が移動指令演算手段33へ出力した第2軸の移動指令をもとに振動周波数演算手段34が第1軸方向の振動周波数を振動抑制制御手段11の振動周波数パラメータとして設定するので、アーム長が変化しても、振動抑制制御手段11が常に最適な動作をするため、常にアームの軸1方向への振動を抑制できる。
FIG. 1 is a configuration diagram of the first embodiment. In FIG. 1, 1 is a first servo driver, 2 is a second servo driver, 3 is a controller, 4 is a first motor, 5 is a second motor, 6 is a first encoder, and 7 is a second encoder. Further, 31 is a motion command decoding calculation means, 32 is a first movement command calculation means, and 33 is a second movement command calculation means. Further, 11 is a vibration suppression control means, 12 is a first position control means, and 22 is a second position control means. Next, the operation will be described.
The first movement command calculation means 32 for the first axis and the second movement command calculation means 33 for the second axis of the controller are based on the movement amounts to the first axis and the second axis calculated by the motion command decoding means 31. A movement command to the first servo driver and the second servo driver is output.
Here, in the robot arm shown in FIG. 5, it is known that the frequency of vibration in the first axis direction varies with the arm length, and the arm length is uniquely determined by the position of the second axis. In response, vibration frequency calculation means 34 for outputting the vibration frequency of the arm is newly added in the motion controller. The vibration frequency parameter value output by the vibration frequency calculation means 34 is input to the vibration suppression control means 11 of the first servo driver. When the controller and the first servo driver are connected by data transmission means such as serial communication, the vibration frequency can be easily set in the vibration suppression control means 11 by a normal parameter transmission method using serial communication. Further, when the moving distance is transmitted by the pulse train signal, it can be realized by driving the external contact signal of the servo driver from the controller separately from the signal transmission path and changing the vibration frequency parameter in the servo. The vibration frequency calculation means 11 creates a table by measuring in advance the relationship between the movement amount of the second axis and the vibration frequency of the arm, for example, and subtracts the memory table from the input movement amount of the second axis to obtain the frequency. Is configured to output. Based on the movement command of the second axis output from the motion command decoding means 31 to the movement command calculation means 33, the vibration frequency calculation means 34 sets the vibration frequency in the first axis direction as the vibration frequency parameter of the vibration suppression control means 11. Therefore, even if the arm length changes, the vibration suppression control means 11 always operates optimally, so that the vibration of the arm in the axis 1 direction can always be suppressed.

次に本発明の実施例2について説明する。実施例2を図2で示す。図1との相違点は、図1では、第1サーボドライバのなかで構成した振動抑制制御11をコントローラで実現している点である。コントローラのなかでモーション指令解読手段31が移動指令演算手段33へ出力した第2軸の移動指令をもとに振動周波数演算手段34が第1軸方向の振動周波数を振動抑制制御手段11の振動周波数パラメータとして設定するので、アーム長が変化しても、振動抑制制御手段11が常に最適動作ができることになるため、常にアームの第1軸方向の振動を抑制できる。また、振動抑制制御手段11をコントローラ内で構成しているので、振動周波数パラメータを第1軸へ伝送する必要がなく、第1サーボドライバは第2サーボドライバと同様な通常のサーボドライバでよいという効果がある。   Next, a second embodiment of the present invention will be described. Example 2 is shown in FIG. The difference from FIG. 1 is that, in FIG. 1, the vibration suppression control 11 configured in the first servo driver is realized by a controller. Based on the movement command of the second axis output from the motion command decoding means 31 to the movement command calculation means 33 in the controller, the vibration frequency calculation means 34 converts the vibration frequency in the first axis direction to the vibration frequency of the vibration suppression control means 11. Since it is set as a parameter, even if the arm length changes, the vibration suppression control means 11 can always perform the optimum operation, so that it is possible to always suppress the vibration of the arm in the first axis direction. Further, since the vibration suppression control means 11 is configured in the controller, it is not necessary to transmit the vibration frequency parameter to the first axis, and the first servo driver may be a normal servo driver similar to the second servo driver. effective.

次に本発明の実施例3について説明する。実施例3を図3に示す。図1との相違点は、図1では、コントローラ内に構成した振動周波数演算手段34を第1サーボドライバ内で実現している点と第2サーボドライバの位置情報を第1サーボドライバへ通信手段41にて伝送している点である。第1サーボドライバ内では、前記通信手段41にて伝送された第2軸の位置情報を振動周波数演算手段34に入力して、第1軸の振動周波数を演算し、前記振動周波数演算手段11の振動周波数パラメータとして逐次設定する。なお、通信手段41はシリアル通信で実現できるし、パラレル信号で伝送することもできる。また、第2サーボドライバの出力接点と第1サーボドライバの入力接点とを接続し、第2サーボドライバ内の第2軸の位置情報に従った接点のON,OFF情報を出力する。第1サーボドライバは、ON,OFF情報から、第2サーボドライバ内の第2軸の位置情報を復元することができる。復元した位置情報に従って、第1軸の振動周波数を演算し、振動周波数演算手段11の振動周波数パラメータとして逐次設定することもできる。   Next, a third embodiment of the present invention will be described. Example 3 is shown in FIG. The difference from FIG. 1 is that, in FIG. 1, the vibration frequency calculation means 34 configured in the controller is realized in the first servo driver, and the position information of the second servo driver is communicated to the first servo driver. 41 is transmitted. In the first servo driver, the position information of the second axis transmitted by the communication means 41 is input to the vibration frequency calculating means 34 to calculate the vibration frequency of the first axis, and the vibration frequency calculating means 11 Set sequentially as vibration frequency parameters. The communication means 41 can be realized by serial communication or can be transmitted by a parallel signal. Also, the output contact of the second servo driver and the input contact of the first servo driver are connected, and contact ON / OFF information according to the position information of the second axis in the second servo driver is output. The first servo driver can restore the position information of the second axis in the second servo driver from the ON / OFF information. According to the restored position information, the vibration frequency of the first axis can be calculated and sequentially set as the vibration frequency parameter of the vibration frequency calculation means 11.

次に、本発明の実施例4を説明する。本発明の第1〜3の実施例では、振動周波数演算手段11のテーブルを作成するために実際の機械で取得すべきデータ点数が多く、作業量が増えてしまう。この作業量を軽減するため、第4の実施例では関数演算にて振動周波数演算手段11を構成する。なお、前記第1〜3の実施例ではすべて、振動周波数演算手段34を用いるので、下記の他の周波数演算方法はすべて前記第1〜3の実施例の制御系の構成にあてはまるので、以下第1の実施例の構成で代表して説明する。
下記のように、第1軸および第2軸の機械モデルを作成する。図5のような機械系を考える。このとき、第2軸の動作によってアーム長が変化し、第1軸の動作によってアーム先端が振動する。このとき、アーム先端の振動をモデル化した機械モデルは、図6のようになる。この機械モデルによって、第2軸に対する移動指令から、第1軸の振動周波数を計算する関数式を作成する。このとき、アームの振動周波数は式(1)から計算することができる。
Next, a fourth embodiment of the present invention will be described. In the first to third embodiments of the present invention, the number of data to be acquired by an actual machine in order to create the table of the vibration frequency calculation means 11 is large, and the amount of work increases. In order to reduce this amount of work, in the fourth embodiment, the vibration frequency calculation means 11 is configured by function calculation. In all of the first to third embodiments, since the vibration frequency calculation means 34 is used, all the other frequency calculation methods described below apply to the configuration of the control system of the first to third embodiments. The configuration of the first embodiment will be described as a representative.
Create machine models for the first and second axes as follows. Consider the mechanical system shown in Fig. 5. At this time, the arm length changes due to the movement of the second axis, and the tip of the arm vibrates due to the movement of the first axis. At this time, a mechanical model in which the vibration of the arm tip is modeled is as shown in FIG. Using this machine model, a function equation for calculating the vibration frequency of the first axis is created from the movement command for the second axis. At this time, the vibration frequency of the arm can be calculated from Equation (1).

f=(1/2π)√(3EI/Ml) ・・・(1)
ここで、
f アームの振動周波数
E アームのヤング率(材質から決定する)
I 断面2次モーメント(アームの断面形状から決定する)
M アーム先端に換算した総質量
l アーム長
Mは、レーリー法より式(2)から求めることができる。
M=m+33m/140 ・・・(2)
式(1)、式(2)より、アームの振動周波数は式(3)で求めることができる。
f=(1/2π)√(3EI/(m+33m/140)l) ・・・(3)
f = (1 / 2π) √ (3EI / Ml 3 ) (1)
here,
f Vibration frequency of arm E Young's modulus of arm (determined from material)
I Sectional moment of inertia (determined from the sectional shape of the arm)
M Total mass converted to the arm tip l The arm length M can be obtained from equation (2) by the Rayleigh method.
M = m + 33 m b / 140 (2)
From equations (1) and (2), the vibration frequency of the arm can be obtained by equation (3).
f = (1 / 2π) √ (3EI / (m + 33m b / 140) l 3) ··· (3)

図5の機械系では、振動周波数の変化の原因としてアーム長lの変化が考えられる。初期状態のアーム長lからΔlだけアーム長が変化すると考えると、アーム長の振動周波数は式(4)または式(5)で求めることができる。
f=(1/2π)√(3EI/((m+33m/140)(l+Δl)))・・(4)
f=(1/2π)√(3EI/(m+33m/140)l
×√(l/(l+Δl)
=f√(1/(1+(Δl/l))) ・・・(5)
ここで、以下のような系を仮定する。
基本周波数
=(1/2π)√(3EI/(m+33m/140)l) ・・・(6)
アーム基本長 l
ヤング率 E=206×10 (Pa)
アームの断面2次モーメント I=3.50×10 (m
アーム先端の基本質量 m=5 (kg)
アームの質量 m=30 (kg)
In the mechanical system of FIG. 5, a change in the arm length l can be considered as a cause of the change in the vibration frequency. Considering the arm length l 0 in the initial state and only the arm length changes .DELTA.l, the vibration frequency of the arm length can be determined by formula (4) or (5).
f = (1 / 2π) √ (3EI / ((m + 33 m b / 140) (l 0 + Δl) 3 )) (4)
f = (1 / 2π) √ (3EI / (m + 33m b / 140) l 3)
× √ (l 3 / (l + Δl) 3 )
= F 0 √ (1 / (1+ (Δl / l)) 3 ) (5)
Here, the following system is assumed.
Fundamental frequency
f 0 = (1 / 2π) √ (3EI / (m + 33m b / 140) l 3) ··· (6)
Basic arm length l
Young's modulus E = 206 × 10 9 (Pa)
Second moment of inertia of arm cross section I = 3.50 × 10 7 (m 4 )
Basic mass of arm tip m = 5 (kg)
Mass of arm m b = 30 (kg)

第1軸に対しては、通常の移動指令の他に作成した関数式によって計算した第1軸の振動周波数から振動抑制制御に必要なパラメータを出力する。すなわち、第1〜3の実施例と同様にモーション指令解読手段31が移動指令演算手段33へ出力した軸2の移動指令をもとに振動周波数演算手段34が第1軸方向の振動周波数を振動抑制制御手段11の振動周波数パラメータとして設定する。
振動周波数演算手段11を関数式(3)を用いて構成する本発明の実施例2によれば、数点の実際の機械でのデータのみで関数式のパラメータが決まり振動周波数を計算できるため、実施例1と比べ、実際の機械で取得するデータが少なく、手間がかからない効果がある。
For the first axis, parameters necessary for vibration suppression control are output from the vibration frequency of the first axis calculated by a function equation created in addition to the normal movement command. That is, as in the first to third embodiments, the vibration frequency calculation means 34 vibrates the vibration frequency in the first axis direction based on the movement command of the shaft 2 output from the motion command decoding means 31 to the movement command calculation means 33. It is set as a vibration frequency parameter of the suppression control means 11.
According to the second embodiment of the present invention in which the vibration frequency calculation means 11 is configured using the function equation (3), the parameters of the function equation are determined only by data of several actual machines, and the vibration frequency can be calculated. Compared to the first embodiment, there is an effect that less data is acquired by an actual machine and less labor is required.

第5の実施例では、解析的に導出された関数が複雑な場合、演算時間の増大やCPU内のレジスタ容量の増加等、コントローラ内での関数計算に負担がかかる。その場合は、以下のように、関数式の近似式を作成することで、計算の負担を軽減できる。
振動周波数を求める式(5)の√(1/(l+Δl))をマクローリン展開すると式(7)になる。
f=f(1−(3Δl/2l)+(15Δl/8l)−(35Δl/16l)+・・)
・・・(7)
このとき、アーム長が0.5〜1.5(m)の間で変化するものとし、式(5)に対する式(5)に対する式(7)の誤差が最小になるようにアーム基本長lを選択すると、l=1(m)の時に、誤差が最小になる。式(5)を1〜3次式で近似したものを式(8)、式(9)、式(10)に示す。
In the fifth embodiment, when an analytically derived function is complicated, a load is imposed on the function calculation in the controller, such as an increase in calculation time and an increase in register capacity in the CPU. In this case, the calculation burden can be reduced by creating an approximate expression of a function expression as follows.
When √ (1 / (l + Δl) 3 ) in Equation (5) for obtaining the vibration frequency is expanded by Macrolin's, Equation (7) is obtained.
f = f 0 (1− (3Δl / 2l) + (15Δl 2 / 8l 2 ) − (35Δl 3 / 16l 3 ) + ..)
... (7)
At this time, it is assumed that the arm length varies between 0.5 and 1.5 (m), and the basic arm length l is set so that the error of the equation (7) with respect to the equation (5) with respect to the equation (5) is minimized. Is selected, the error is minimized when l = 1 (m). Expressions (8), (9), and (10) are obtained by approximating Expression (5) with a first to third order expression.

1次近似
f=f(1−3Δl/2l ) ・・・(8)
2次近似
f=f(1−(3Δl/2l)+(15Δl/8l)) ・・・(9)

3次近似
f=f(1−(3Δl/2l)+(15Δl/8l)−(35Δl/16l))
・・・(10)
First order approximation
f = f 0 (1-3Δl / 2l) (8)
Second order approximation f = f 0 (1- (3Δl / 2l) + (15Δl 2 / 8l 2 )) (9)

Third order approximation f = f 0 (1− (3Δl / 2l) + (15Δl 2 / 8l 2 ) − (35Δl 3 / 16l 3 ))
... (10)

発明の実施例2に関する図2の構成によれば、実施例1〜3と同様にモーション指令解読手段31が移動指令演算手段33へ出力した軸2の移動指令をもとに振動周波数演算手段34が第1軸方向の振動周波数を振動抑制制御手段11の振動周波数パラメータとして設定するので、アーム長が変化しても、振動抑制制御手段11が常に最適動作ができることになるため、常にアームの第1軸方向への振動を抑制できる事に加えて、振動抑制制御の演算をコントローラが行うため、サーボドライバの演算の負担を軽減することができる。   According to the configuration of FIG. 2 relating to the second embodiment of the invention, as in the first to third embodiments, the vibration frequency calculating means 34 based on the movement command of the shaft 2 output to the movement command calculating means 33 by the motion command decoding means 31. Sets the vibration frequency in the first axis direction as the vibration frequency parameter of the vibration suppression control means 11, so that even if the arm length changes, the vibration suppression control means 11 can always perform the optimum operation. In addition to being able to suppress vibration in one axis direction, the controller performs vibration suppression control calculation, so the burden of calculation of the servo driver can be reduced.

実施例5で近似式の次数が2以下と低すぎると、計算の負担は小さくなる反面、本来の関数式からの誤差は大きくなってしまう。実施例6では、近似式の各係数に補正係数をかけて誤差の調整を行うことにより、この課題の解決できる。
式(7),(8)に誤差が小さくなるように補正係数βをかけると次式のようになる。
If the order of the approximate expression in Example 5 is as low as 2 or less, the calculation burden becomes small, but the error from the original function expression becomes large. In the sixth embodiment, this problem can be solved by adjusting the error by multiplying each coefficient of the approximate expression by a correction coefficient.
When the correction coefficient β is applied to Equations (7) and (8) so as to reduce the error, the following equation is obtained.

1次近似
f=βf(1−3Δl/2l ) ・・・(11)
2次近似
f=f(1−β×(3Δl/2l)+(15Δl/8l)) ・・・(12)
このとき、補正係数はパラメータの変動範囲を考慮した値にとればよい。例えば、lが0.5〜1.5(m)まで変動するとき、補正係数の値を下記とした場合、最大誤差は下記のように小さくなる。
1次近似の場合β=1.3とすると、54[%]→40[%]
2次近似の場合β=1.25とすると、32[%]→15[%]
第6の実施例によると、1〜2次の近似式で、関数の計算ができるので、通常の手段で求めれる関数式をそのまま使用する場合に比べて、平方根演算が不要となるため、計算負荷が非常に低減される。
First order approximation f = βf 0 (1-3Δl / 2l) (11)
Second order approximation f = f 0 (1−β × (3Δl / 2l) + (15Δl 2 / 8l 2 )) (12)
At this time, the correction coefficient may be a value that takes into account the parameter fluctuation range. For example, when l fluctuates from 0.5 to 1.5 (m), the maximum error becomes smaller as follows when the value of the correction coefficient is as follows.
In case of first order approximation, β = 1.3, 54 [%] → 40 [%]
In case of quadratic approximation, if β = 1.25, 32 [%] → 15 [%]
According to the sixth embodiment, since the function can be calculated with the first and second order approximate expressions, the square root operation is not necessary as compared with the case where the function expression obtained by the usual means is used as it is. The load is greatly reduced.

本発明はロボットが小形化、軽量化されるに伴いアームの剛性が低下するなかでスループットは向上させなければならない市場の要求に対してなされたものであり、姿勢によりアーム先端の振動周波数が変化しても振動をおさえながら高速動作をさせようとしたものである。従ってロボットだけではなく低剛性機械すべてに適用することができる。   The present invention was made in response to the market demand that the throughput must be improved while the rigidity of the arm decreases as the robot becomes smaller and lighter, and the vibration frequency of the arm tip changes depending on the posture. Even so, it tried to operate at high speed while suppressing vibration. Therefore, it can be applied not only to robots but also to all low-rigidity machines.

本発明の第1の実施例を示した図The figure which showed the 1st Example of this invention 本発明の第2の実施例を示した図The figure which showed the 2nd Example of this invention 本発明の第3の実施例を示した図The figure which showed the 3rd Example of this invention 従来例を示した図Figure showing a conventional example 例示している機械システムの概念図Conceptual diagram of an example mechanical system 例示している機械システムのアーム部分のモデル図Model diagram of arm part of illustrated mechanical system 従来例の指令信号Command signal of conventional example

符号の説明Explanation of symbols

1 第1サーボドライバ
2 第2サーボドライバ
3 コントローラ
4 第1モータ
5 第2モータ
6 第1エンコーダ
7 第2エンコーダ
11 振動抑制制御手段
12,22 位置制御手段
31 モーション指令解読手段
32,33 移動指令演算手段
34 振動周波数演算手段
DESCRIPTION OF SYMBOLS 1 1st servo driver 2 2nd servo driver 3 Controller 4 1st motor 5 2nd motor 6 1st encoder 7 2nd encoder 11 Vibration suppression control means 12, 22 Position control means 31 Motion command decoding means 32, 33 Movement command calculation Means 34 Vibration frequency calculation means

Claims (7)

第1軸を駆動する第1モータと、前記第1モータに取り付けられた第1エンコーダの位置信号をフィードバックし前記第1モータを制御する第1位置制御手段と振動抑制制御手段とからなる第1サーボドライバと、
第2軸を駆動する第2モータと、前記第2モータに取り付けられた第2エンコーダの位置信号をフィードバックし前記第2モータを制御する第2位置制御手段からなる第2サーボドライバと、
モーション指令解読手段で計算した前記第1軸と前記第2軸の移動量をそれぞれ第1移動指令演算手段と第2移動指令演算手段に出力し、前記第1移動指令出力手段と前記第2移動指令出力手段はそれぞれ前記第1サーボドライバと前記第2サーボドライバへ移動指令を出力するコントローラとで構成され、
前記コントローラは前記第2移動指令手段の出力に基づき、振動周波数演算手段により前記第1軸の振動周波数を逐次演算し、前記第1サーボドライバの前記振動抑制手段に出力することを特徴とする振動抑制制御装置。
A first motor comprising a first motor for driving the first shaft, a first position control means for feeding back a position signal of a first encoder attached to the first motor and controlling the first motor, and a vibration suppression control means. A servo driver,
A second servo driver comprising a second motor for driving the second shaft, and second position control means for feeding back a position signal of a second encoder attached to the second motor and controlling the second motor;
The movement amounts of the first axis and the second axis calculated by the motion command decoding unit are output to the first movement command calculation unit and the second movement command calculation unit, respectively, and the first movement command output unit and the second movement are output. The command output means includes a controller that outputs a movement command to each of the first servo driver and the second servo driver,
The controller is configured to sequentially calculate a vibration frequency of the first axis by a vibration frequency calculation unit based on an output of the second movement command unit, and output the vibration frequency to the vibration suppression unit of the first servo driver. Suppression control device.
前記振動抑制制御手段を前記第1サーボドライバから前記コントローラに移設し、前記コントローラの前記振動周波数抑制手段は前記第2軸の移動指令を基に第1軸の振動周波数パラメータを演算し、前記振動抑制制御手段に設定することを特徴とする請求項1記載の振動抑制制御装置。   The vibration suppression control means is moved from the first servo driver to the controller, and the vibration frequency suppression means of the controller calculates a vibration frequency parameter of the first axis based on a movement command of the second axis, and the vibration The vibration suppression control device according to claim 1, wherein the vibration suppression control device is set in a suppression control means. 前記振動周波数演算手段を前記コントローラから前記第1サーボドライバへ移設し、第2軸の位置情報を通信手段により前記第1サーボドライバの前記周波数演算手段に伝送し、前記振動周波数演算手段は前記第2軸の位置情報を基に前記第1軸の振動周波数を演算し、前記振動抑制制御手段に振動周波数パラメータとして逐次設定することを特徴とした請求項1記載の振動抑制制御装置。   The vibration frequency calculation means is moved from the controller to the first servo driver, and position information of the second axis is transmitted to the frequency calculation means of the first servo driver by communication means, and the vibration frequency calculation means is the first 2. The vibration suppression control apparatus according to claim 1, wherein a vibration frequency of the first axis is calculated based on position information of two axes, and is sequentially set as a vibration frequency parameter in the vibration suppression control means. 第2サーボドライバに設けた複数の出力接点と第1サーボドライバに設けた複数の入力接点とを接続し、前記出力接点は第2軸の位置情報に基づいてON,OFF情報を出力し、前記第1サーボドライバは、前記ON,OFF情報から、前記第2サーボドライバの第2軸の位置情報を接点間範囲内として特定し、特定した位置情報に従って、第1軸の振動周波数を演算し、前記振動抑制手段の前記振動周波数パラメータとして逐次設定することを特徴とする請求項1記載の振動抑制制御装置。   A plurality of output contacts provided on the second servo driver are connected to a plurality of input contacts provided on the first servo driver, and the output contacts output ON / OFF information based on position information of the second axis, The first servo driver specifies the position information of the second axis of the second servo driver as the range between the contacts from the ON / OFF information, calculates the vibration frequency of the first axis according to the specified position information, The vibration suppression control apparatus according to claim 1, wherein the vibration frequency parameter of the vibration suppression unit is sequentially set. 振動周波数演算を関数で行うことを特徴とする請求項1乃至3記載の振動抑制制御装置。   4. The vibration suppression control device according to claim 1, wherein the vibration frequency calculation is performed as a function. 前記関数を近似式により構成した請求項5記載の振動抑制制御装置。   The vibration suppression control apparatus according to claim 5, wherein the function is configured by an approximate expression. 前記近似式を最大次数2として、誤差が大きい場合、近似式の各係数に補正係数をかけて誤差の調整を行う請求項6記載の振動抑制制御装置。   The vibration suppression control apparatus according to claim 6, wherein the approximation formula is set to a maximum degree of 2 and the error is adjusted by applying a correction coefficient to each coefficient of the approximation formula when the error is large.
JP2003344087A 2003-10-02 2003-10-02 Control device Expired - Fee Related JP4415631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003344087A JP4415631B2 (en) 2003-10-02 2003-10-02 Control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003344087A JP4415631B2 (en) 2003-10-02 2003-10-02 Control device

Publications (3)

Publication Number Publication Date
JP2005103739A true JP2005103739A (en) 2005-04-21
JP2005103739A5 JP2005103739A5 (en) 2006-10-12
JP4415631B2 JP4415631B2 (en) 2010-02-17

Family

ID=34537825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003344087A Expired - Fee Related JP4415631B2 (en) 2003-10-02 2003-10-02 Control device

Country Status (1)

Country Link
JP (1) JP4415631B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006337148A (en) * 2005-06-01 2006-12-14 Jtekt Corp On-machine shape-measuring apparatus and working machine
JP2007307663A (en) * 2006-05-19 2007-11-29 Matsushita Electric Ind Co Ltd Three-axis tool unit and machining device
JP2010123018A (en) * 2008-11-21 2010-06-03 Mitsubishi Heavy Ind Ltd Servo control apparatus
JP2013004037A (en) * 2011-06-21 2013-01-07 Mitsubishi Electric Corp Vibration suppression method
JP2019159860A (en) * 2018-03-14 2019-09-19 ファナック株式会社 Correction quantity acquisition device, feeding mechanism control device, correction amount acquisition method and feeding mechanism control method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126402A (en) * 1985-11-27 1987-06-08 Omron Tateisi Electronics Co Xy stage control device
JPH01304511A (en) * 1988-06-02 1989-12-08 Seiko Instr Inc Servo controller
JPH02131887A (en) * 1988-11-11 1990-05-21 Sankyo Seiki Mfg Co Ltd Control unit for horizontal revolving arm robot
JPH0535334A (en) * 1991-05-10 1993-02-12 Hitachi Constr Mach Co Ltd Driving method for piezoelectric element
JPH07261853A (en) * 1994-03-23 1995-10-13 Komatsu Ltd Vibration reduction device for robot
JP2000079583A (en) * 1998-08-31 2000-03-21 Tietech Co Ltd Residual vibration suppressing method for arm
JP2003148914A (en) * 2001-11-08 2003-05-21 Fanuc Ltd Position detector and taking-out device using position detection

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126402A (en) * 1985-11-27 1987-06-08 Omron Tateisi Electronics Co Xy stage control device
JPH01304511A (en) * 1988-06-02 1989-12-08 Seiko Instr Inc Servo controller
JPH02131887A (en) * 1988-11-11 1990-05-21 Sankyo Seiki Mfg Co Ltd Control unit for horizontal revolving arm robot
JPH0535334A (en) * 1991-05-10 1993-02-12 Hitachi Constr Mach Co Ltd Driving method for piezoelectric element
JPH07261853A (en) * 1994-03-23 1995-10-13 Komatsu Ltd Vibration reduction device for robot
JP2000079583A (en) * 1998-08-31 2000-03-21 Tietech Co Ltd Residual vibration suppressing method for arm
JP2003148914A (en) * 2001-11-08 2003-05-21 Fanuc Ltd Position detector and taking-out device using position detection

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006337148A (en) * 2005-06-01 2006-12-14 Jtekt Corp On-machine shape-measuring apparatus and working machine
JP4622683B2 (en) * 2005-06-01 2011-02-02 株式会社ジェイテクト Processing machine
JP2007307663A (en) * 2006-05-19 2007-11-29 Matsushita Electric Ind Co Ltd Three-axis tool unit and machining device
JP2010123018A (en) * 2008-11-21 2010-06-03 Mitsubishi Heavy Ind Ltd Servo control apparatus
JP2013004037A (en) * 2011-06-21 2013-01-07 Mitsubishi Electric Corp Vibration suppression method
JP2019159860A (en) * 2018-03-14 2019-09-19 ファナック株式会社 Correction quantity acquisition device, feeding mechanism control device, correction amount acquisition method and feeding mechanism control method
TWI703008B (en) * 2018-03-14 2020-09-01 日商發那科股份有限公司 Compensation quantity acquisition device, feed mechanism control device, compensation quantity acquiring method and feed mechanism control method
US10775766B2 (en) 2018-03-14 2020-09-15 Fanuc Corporation Compensation quantity acquisition device, feed mechanism control device, compensation quantity acquiring method and feed mechanism control method

Also Published As

Publication number Publication date
JP4415631B2 (en) 2010-02-17

Similar Documents

Publication Publication Date Title
CN101542411B (en) Seismic isolation control system
JP6664138B2 (en) Control method and robot device
JP5417161B2 (en) Robot vibration control method and robot control apparatus
JP4944806B2 (en) Position control device
US20090160389A1 (en) Method and device for guiding the movement of a moveable machine element of a machine
CN108958036B (en) Flexible operating arm elastic vibration suppression method based on frequency characteristic recognition
CN109562518B (en) Control device of parallel link mechanism
JP2006215807A (en) Robot control device and control method
JP2005349555A (en) Controller for flexible joint robot arm
JP5642214B2 (en) Elastic deformation compensation controller for articulated robot
JP4415631B2 (en) Control device
JP4639417B2 (en) Robot control device
JP2007272597A (en) Method for generating robot acceleration and deceleration pattern
JP2006035325A (en) Robot
TW525045B (en) Servo control method
JP2005103739A5 (en)
JP4020726B2 (en) Machine position control device and machine position control system
JP5092831B2 (en) Positioning control device
JP2008015610A (en) Controller
JP2003208230A (en) Method and device for controlling vibration damping of machine and vibration damping type machine
JP4367041B2 (en) Machine control device
KR101355948B1 (en) Machine control device
WO2022202850A1 (en) Servo control device
JP4104409B2 (en) Servo mechanism
JP4840987B2 (en) Positioning control device for equipment related to electronic component mounting

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060828

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141204

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees