JPS6218312B2 - - Google Patents

Info

Publication number
JPS6218312B2
JPS6218312B2 JP56136981A JP13698181A JPS6218312B2 JP S6218312 B2 JPS6218312 B2 JP S6218312B2 JP 56136981 A JP56136981 A JP 56136981A JP 13698181 A JP13698181 A JP 13698181A JP S6218312 B2 JPS6218312 B2 JP S6218312B2
Authority
JP
Japan
Prior art keywords
tool
workpiece
plane mirror
angle prism
positioning device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56136981A
Other languages
Japanese (ja)
Other versions
JPS5840247A (en
Inventor
Kazuhiko Nagayama
Masami Masuda
Yukio Maeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13698181A priority Critical patent/JPS5840247A/en
Priority to US06/333,632 priority patent/US4585379A/en
Priority to CH824581A priority patent/CH645292A5/en
Publication of JPS5840247A publication Critical patent/JPS5840247A/en
Publication of JPS6218312B2 publication Critical patent/JPS6218312B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D59/00Accessories specially designed for sawing machines or sawing devices
    • B23D59/001Measuring or control devices, e.g. for automatic control of work feed pressure on band saw blade
    • B23D59/002Measuring or control devices, e.g. for automatic control of work feed pressure on band saw blade for the position of the saw blade
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27BSAWS FOR WOOD OR SIMILAR MATERIAL; COMPONENTS OR ACCESSORIES THEREFOR
    • B27B5/00Sawing machines working with circular or cylindrical saw blades; Components or equipment therefor
    • B27B5/29Details; Component parts; Accessories
    • B27B5/30Details; Component parts; Accessories for mounting or securing saw blades or saw spindles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/02Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by rotary tools, e.g. drills
    • B28D5/022Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by rotary tools, e.g. drills by cutting with discs or wheels
    • B28D5/024Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by rotary tools, e.g. drills by cutting with discs or wheels with the stock carried by a movable support for feeding stock into engagement with the cutting blade, e.g. stock carried by a pivoted arm or a carriage
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/21Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device
    • G05B19/23Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control
    • G05B19/231Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control the positional error is used to control continuously the servomotor according to its magnitude
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37275Laser, interferometer
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49169Compensation for temperature, bending of tool

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Automatic Control Of Machine Tools (AREA)

Description

【発明の詳細な説明】 本発明は切断機、研削盤およびフライス盤など
の工作機械において、工具と被加工物との位置決
めを高精度に行う装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for positioning a tool and a workpiece with high precision in machine tools such as cutting machines, grinding machines, and milling machines.

切断機における従来技術による位置決め装置の
例を第1図に示す。図において、被加工物1を任
意の間隔で溝入れあるいは切断する場合、送りね
じ8を回転させることによるX−Yテーブル2の
ピツチ割出し方向(以下、X方向と記す)への移
動量、あるいは工具34がフランジ33により取
り付けられている主軸31を具備するコラム(図
示せず)の前記X方向への移動量を、レーザ発振
器41、I/インターフエイス42、干渉器5
1、反射鏡52、レシーバ53、カウンタ54お
よび演算処理装置9などで構成されるレーザ測長
システム等の測長器によつて測定し、測定結果を
モータ駆動装置72にフイードバツクして精密位
置決めを行つていた。ところが、上述の方法で
は、周囲温度の変化によつて、主軸31およびX
−Yテーブル2が伸縮し、加工精度(割出し精
度)を決定する工具34と前記X−Yテーブル2
とのX方向の相対距離を正確に設定することが困
難であり、サブミクロン・オーダの高精度位置決
めは困難である。
An example of a prior art positioning device for a cutting machine is shown in FIG. In the figure, when grooving or cutting the workpiece 1 at arbitrary intervals, the amount of movement of the X-Y table 2 in the pitch indexing direction (hereinafter referred to as the X direction) by rotating the feed screw 8, Alternatively, the amount of movement in the X direction of a column (not shown) having the main shaft 31 to which the tool 34 is attached by the flange 33 can be determined by the laser oscillator 41, the I/interface 42, the interferometer 5, etc.
1. Measure with a length measuring device such as a laser length measuring system consisting of a reflecting mirror 52, a receiver 53, a counter 54, an arithmetic processing device 9, etc., and feed back the measurement results to the motor drive device 72 for precise positioning. I was gone. However, in the above method, due to changes in ambient temperature, the main shaft 31 and
- The Y table 2 expands and contracts, and the tool 34 and the X-Y table 2 determine machining accuracy (indexing accuracy).
It is difficult to accurately set the relative distance in the X direction between the two, and high-precision positioning on the order of submicrons is difficult.

本発明の目的は、上記した従来技術の欠点を排
除し、製品の歩留りの向上と生産工程の自動化と
を考慮した高精度の位置決め装置を提供するにあ
る。前記目的を達成するため、本発明は、X−Y
テーブルおよび工具を具備した主軸それぞれの端
面にX方向への位置の測定を行うための反射鏡を
設けてレーザ測長システムを構成することによ
り、環境(温度変化)の影響による誤差をなくし
て、前記X−Yテーブルと工具との相対距離を正
確に設定するようにしたことを要点とするもので
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a highly accurate positioning device that eliminates the drawbacks of the prior art described above and takes into account improvement in product yield and automation of the production process. In order to achieve the above object, the present invention provides
By configuring a laser length measurement system by providing a reflector for measuring the position in the X direction on the end face of each spindle equipped with a table and a tool, errors due to the influence of the environment (temperature change) can be eliminated. The key point is to accurately set the relative distance between the XY table and the tool.

以下、図面に従つて本発明による精密位置決め
装置の実施例を説明する。第2図および第3図は
第1の実施例を示す図で、第2図は該実施例の装
置を装備した切断機の概略を示すものであり、第
3図は割出し補正時のX−Yテーブルの動きを説
明するための説明図である。第2図において、被
加工物1は適切な方法でX−Yテーブル2に搭載
されており、該X−Yテーブル2には、これをX
方向(ピツチ割出し方向)に移動せしめる送りね
じ8が連結されており、さらに該送りねじ8に
は、直接または減速機(図示せず)を介して送り
用モータ71が連結されており、該送り用モータ
71はモータ駆動装置72を介して演算処理装置
9に接続されている。演算処理装置9は、マイク
ロコンピユータあるいはミニコンピユータなどと
することが望ましく、レーザ測長システムのI/
インターフエイス42からのデータ読取りルー
チンのほか、割出し量の補正ルーチンおよび記憶
回路を備え、前記X−Yテーブル2と工具34と
の各々の位置を読み取り、所望の割出し量に対す
る補正値の演算処理を行う。レーザ測長システム
は、レーザ発振器41と、該レーザ発振器41か
ら出されたレーザ光44を2つのレーザ光55
a,65aに分配するための分配器43と、分配
されたレーザ光55a,65aと該レーザ光がそ
れぞれ反射鏡52,62に反射した後のレーザ光
55c,65cとをそれぞれ干渉させるように適
切な位置に固定された干渉器51,61と、該干
渉器51,61から出力されたレーザ光55d,
65dをそれぞれ受けて、結果をパルスに変換す
るためのレシーバ53,63と、該レシーバ5
3,63から出力されるパルスをそれぞれ加減算
するためのカウンタ54,64と、該カウンタ5
4,64と前記演算処理装置9とを接続するため
のI/インターフエイス42とから構成されて
いる。主軸31の変位を測定するために取り付け
られた反射鏡62は、回転振れによる測定誤差を
なくすため、取付け調整が可能な治具(図示せ
ず)に固定されるのが望ましい。
Embodiments of the precision positioning device according to the present invention will be described below with reference to the drawings. Figures 2 and 3 are diagrams showing the first embodiment, Figure 2 shows an outline of a cutting machine equipped with the device of the embodiment, and Figure 3 shows the X during index correction. - It is an explanatory diagram for explaining movement of a Y table. In FIG. 2, a workpiece 1 is mounted in an appropriate manner on an X-Y table 2, on which it is
A feed screw 8 is connected thereto, and a feed motor 71 is connected directly or via a reducer (not shown) to the feed screw 8. The feed motor 71 is connected to the arithmetic processing unit 9 via a motor drive device 72. The arithmetic processing unit 9 is preferably a microcomputer or a minicomputer, and is an I/O of the laser length measurement system.
In addition to the data reading routine from the interface 42, it is equipped with an indexing amount correction routine and a storage circuit, which reads the respective positions of the X-Y table 2 and the tool 34, and calculates a correction value for the desired indexing amount. Perform processing. The laser length measurement system includes a laser oscillator 41 and a laser beam 44 emitted from the laser oscillator 41 into two laser beams 55.
a, 65a, and a distributor 43 suitable for interfering with the distributed laser beams 55a, 65a and the laser beams 55c, 65c after the laser beams are reflected by the reflecting mirrors 52, 62, respectively. interferometers 51 and 61 fixed at the same positions, and laser beams 55d and 55d output from the interferometers 51 and 61, respectively.
receivers 53 and 63 for receiving the signals 65d and converting the results into pulses, and the receiver 5
counters 54 and 64 for adding and subtracting the pulses output from the counters 3 and 63, respectively;
4, 64 and an I/interface 42 for connecting the arithmetic processing unit 9. The reflecting mirror 62 attached to measure the displacement of the main shaft 31 is preferably fixed to a jig (not shown) whose attachment can be adjusted in order to eliminate measurement errors due to rotational shake.

次に、動作について説明する。第3図に示すよ
うに、X−Yテーブル2に搭載された被加工物1
の任意の位置X1を工具34により溝入れ加工し
た後、次の目標位置X2に前記工具34の中央を
位置決めさせるため、送り用モータ71を適切な
方向に回転させることによりX−Yテーブル2を
移動させ、該X−Yテーブル2の変位を測定させ
るレーザ測長システム(符号51〜54)により
測定した移動量が、所望のピツチPあるいは原点
0からの距離Lに一致した時点で前記送り用モー
タ71の回転を中止し、X−Yテーブル2の移動
を停止させる。さらに、前記X−Yテーブル2を
ピツチPあるいは距離Lだけ移動させる間に、室
温変化等により主軸31が変位し、工具34が位
置X3に位置決めされ、目標値に対しΔPだけ誤
差が生じる。この誤差ΔPを、主軸31の変位を
測定するレーザ測長システム(符号61〜64)
により測定し、演算処理装置9からの指令により
再び送り用モータ71を、前記誤差ΔPに応じ適
切な方向に回転させ、工具34の中央を位置X2
に補正、制御する。演算処理装置9は、常時X−
Yテーブル2および主軸31の変位を測定し、か
つX−Yテーブル2の移動前後の前記測定値や、
溝入れピツチPあるいは原点からの距離L等の加
工情報を記憶する記憶回路を有し、位置決め誤差
ΔPを算出し、補正のため所望の出力を与えるも
のである。
Next, the operation will be explained. As shown in FIG. 3, the workpiece 1 mounted on the X-Y table 2
After grooving an arbitrary position X1 with the tool 34, in order to position the center of the tool 34 at the next target position X2 , the X-Y table is rotated in an appropriate direction by rotating the feed motor 71. 2 and the displacement of the X-Y table 2 is measured by a laser length measuring system (numerals 51 to 54). When the amount of movement measured by the laser length measurement system (numerals 51 to 54) matches the desired pitch P or the distance L from the origin 0, the above-mentioned The rotation of the feed motor 71 is stopped, and the movement of the XY table 2 is stopped. Furthermore, while the X-Y table 2 is moved by pitch P or distance L, the spindle 31 is displaced due to a change in room temperature, etc., and the tool 34 is positioned at position X3 , resulting in an error of ΔP with respect to the target value. A laser length measurement system (numerals 61 to 64) that measures this error ΔP and the displacement of the main shaft 31
The feed motor 71 is again rotated in an appropriate direction according to the error ΔP according to a command from the arithmetic processing unit 9, and the center of the tool 34 is moved to the position X 2
Correct and control. The arithmetic processing unit 9 always
Measure the displacement of the Y table 2 and the main shaft 31, and measure the measured values before and after the movement of the X-Y table 2,
It has a memory circuit that stores machining information such as the grooving pitch P or the distance L from the origin, calculates the positioning error ΔP, and provides a desired output for correction.

第4図は本発明の第2の実施例における主軸3
1の、工具34が固定されている側とは反対側軸
端部を示したものである。本実施例のごとく、反
射面が非常に高精度(平坦度0.06μm以下)に仕
上げられた反射鏡62をレーザ光65bと垂直に
なるように主軸31の端面に接着し、該端面の変
位を測定することにより工具34の変位を間接的
に測定しても、前記第1の実施例と同様の効果を
得ることができる。この場合、主軸31、軸受3
2および両者を支持する玉軸受(図示せず)の3
者の構成から決定される熱変位上の基準点をあら
かじめ求めておき、該基準点から工具34の中央
までの距離l1と、前記基準点から反射鏡62まで
の距離l2との比l2/l1を演算処理装置9に記憶さ
せておき、主軸31の端面の変位Δlを測定する
ことにより、工具34の変位Δx(第3図のΔP
にも相当する値)に近似する。すなわち、前記工
具34の変位Δxは、 Δx≒l/l・Δl ………(1) で表わされ、前記演算処理装置9により算出す
る。
FIG. 4 shows the main shaft 3 in the second embodiment of the present invention.
1, the shaft end on the opposite side to the side to which the tool 34 is fixed is shown. As in this embodiment, a reflecting mirror 62 whose reflecting surface has been finished with extremely high precision (flatness of 0.06 μm or less) is glued to the end face of the main shaft 31 so as to be perpendicular to the laser beam 65b, and the displacement of the end face is Even if the displacement of the tool 34 is measured indirectly, the same effect as in the first embodiment can be obtained. In this case, the main shaft 31, the bearing 3
2 and 3 of the ball bearing (not shown) that supports both.
A reference point on the thermal displacement determined from the configuration of the user is determined in advance, and the ratio l of the distance l 1 from the reference point to the center of the tool 34 to the distance l 2 from the reference point to the reflector 62 is calculated. 2 /l 1 is stored in the arithmetic processing unit 9, and by measuring the displacement Δl of the end face of the main shaft 31, the displacement Δx of the tool 34 (ΔP in FIG.
(value corresponding to ). That is, the displacement Δx of the tool 34 is expressed as Δx≒l 2 /l 1 ·Δl (1) and is calculated by the arithmetic processing device 9.

第5図および第6図はいずれも本発明の第3の
実施例における工具34側の主軸31の軸端部を
示したものである。第5図の例においては、反射
鏡62と、レーザ光65b,65cを覆うがごと
く中空状の防水筒35とが、主軸31に固定され
ている。このように反射鏡62およびレーザ光6
5b,65cを外部と遮断することにより、研削
液および不均一な密度分布のため生じる干渉器6
1と反射鏡62との間の測長誤差をなくすことが
でき、正確な測定ができる。また、第6図の例に
おいては、前記防水筒35の代りに、主軸31を
軸心方向に中空穴を有する中空状に形成し、かつ
該主軸と同様に軸心方向に形成された中空穴の端
面に反射鏡62が接着された反射鏡取付具66
を、前記反射鏡62がほぼ工具34直下の主軸軸
心位置に配置されるように取り付ける。このよう
にすることにより、第5図の例と同様に測定誤差
をなくすことができる。
5 and 6 both show the shaft end of the main shaft 31 on the tool 34 side in a third embodiment of the present invention. In the example shown in FIG. 5, a reflecting mirror 62 and a hollow waterproof cylinder 35 that covers the laser beams 65b and 65c are fixed to the main shaft 31. In this way, the reflecting mirror 62 and the laser beam 6
By isolating 5b and 65c from the outside, the interference device 6 caused by the grinding fluid and uneven density distribution is removed.
1 and the reflecting mirror 62 can be eliminated, allowing accurate measurement. In the example shown in FIG. 6, instead of the waterproof cylinder 35, the main shaft 31 is formed into a hollow shape having a hollow hole in the axial direction, and the hollow hole is formed in the axial direction similarly to the main shaft. a reflector mount 66 with a reflector 62 glued to the end face of the reflector mount 66;
is attached so that the reflecting mirror 62 is located approximately at the center of the main shaft directly below the tool 34. By doing so, measurement errors can be eliminated as in the example shown in FIG.

第7図は本発明を旋盤に適用した場合の本発明
の第4の実施例を示したものである。本実施例で
は、第2図に示した第1の実施例における工具の
代りに被加工物1を主軸(図示せず)の先端にチ
ヤツク37を介して取り付け、該チヤツク37の
主軸軸心上の端面位置に反射鏡62が配置される
ように取り付ける。また、被加工物の代りに工具
34を工具取付台38を介してX−Yテーブル2
に取り付ける。このような構成で、被加工物1を
回転させ、該被加工物1の変位誤差(伸縮量)を
送り用モータ71にフイードバツクし、X−Yテ
ーブル2に載架した工具34の切込み量を補正す
るようにし、被加工物1を平面、球面あるいは複
雑な形状の面に加工することができる。
FIG. 7 shows a fourth embodiment of the present invention in which the present invention is applied to a lathe. In this embodiment, instead of the tool in the first embodiment shown in FIG. 2, the workpiece 1 is attached to the tip of a main spindle (not shown) via a chuck 37, and The reflector 62 is attached so that it is located at the end face position of the reflector 62. Also, instead of the workpiece, the tool 34 is attached to the X-Y table 2 via the tool mount 38.
Attach to. With this configuration, the workpiece 1 is rotated, the displacement error (expansion/contraction amount) of the workpiece 1 is fed back to the feed motor 71, and the depth of cut of the tool 34 mounted on the X-Y table 2 is adjusted. By correcting this, the workpiece 1 can be processed into a flat, spherical, or complexly shaped surface.

第8図は主軸31が水平面に対しθなる傾きで
取り付けられた工作機械の場合の本発明の第5の
実施例を示したものである。第8図において、主
軸31の変位を測定するための反射鏡62が、主
軸軸心上の工具34側と反対側の主軸端面に取り
付けられている。主軸軸心方向の主軸31の変位
をx〓としたとき、水平方向および垂直方向の変
位xおよびyは、 x=x〓・cosθ ………(2) y=x〓・sinθ ………(3) で表わされ、上式を演算処理装置9で演算し、主
軸31または軸受32をX〓方向に、X−Yテー
ブル2をX方向に移動せしめることにより、切込
み量Hおよびピツチ割出し量Pを同時に位置決め
することができる。
FIG. 8 shows a fifth embodiment of the present invention in the case of a machine tool in which the main shaft 31 is mounted at an angle of θ with respect to the horizontal plane. In FIG. 8, a reflecting mirror 62 for measuring the displacement of the main shaft 31 is attached to the end surface of the main shaft on the opposite side to the tool 34 side on the main shaft axis. When the displacement of the main shaft 31 in the direction of the main axis axis is x〓, the horizontal and vertical displacements x and y are as follows: x=x〓・cosθ……(2) y=x〓・sinθ……( 3) The above equation is calculated by the processing unit 9, and by moving the main shaft 31 or the bearing 32 in the X direction and the X-Y table 2 in the X direction, the depth of cut H and the pitch index can be calculated. The amount P can be positioned simultaneously.

以上説明したように、本発明によれば、温度変
化等によるX−Yテーブルあるいは主軸の変位
(伸縮量)をそれぞれレーザ測長器により測定
し、発生した誤差を補正、制御するようにしたこ
とにより、正確に位置決めができ、製品の歩留り
も向上できる。
As explained above, according to the present invention, the displacement (expansion/contraction amount) of the X-Y table or the main axis due to temperature changes, etc. is measured using a laser length measuring device, and the errors that occur are corrected and controlled. This enables accurate positioning and improves product yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術による位置決め装置を装備し
た切断機の構成図、第2図は本発明による位置決
め装置の一実施例(第1の実施例)を装備した切
断機の構成図、第3図は該実施例における割出し
補正時のX−Yテーブルの動きを説明するための
説明図、第4図ないし第8図は本発明の他の実施
例(第2〜第5の実施例)の説明図である。 符号の説明、1……被加工物、2……X−Yテ
ーブル、8……送りねじ、9……演算処理装置、
31……主軸、32……軸受、33……フラン
ジ、34……工具、35……防水筒、37……チ
ヤツク、38……工具取付台、41……レーザ発
振器、42……I/インターフエイス、43…
…分配器、51,61……干渉器、52,62…
…反射鏡、53,63……レシーバ、54,64
……カウンタ、66……反射鏡取付具、71……
送り用モータ、72……モータ駆動装置。
FIG. 1 is a block diagram of a cutting machine equipped with a positioning device according to the prior art, FIG. 2 is a block diagram of a cutting machine equipped with an embodiment (first embodiment) of a positioning device according to the present invention, and FIG. is an explanatory diagram for explaining the movement of the X-Y table during index correction in this embodiment, and FIGS. 4 to 8 are illustrations of other embodiments (second to fifth embodiments) of the present invention. It is an explanatory diagram. Explanation of symbols, 1... Workpiece, 2... X-Y table, 8... Feed screw, 9... Arithmetic processing unit,
31...Main shaft, 32...Bearing, 33...Flange, 34...Tool, 35...Waterproof tube, 37...Chuck, 38...Tool mount, 41...Laser oscillator, 42...I/interface Faith, 43...
...Distributor, 51, 61... Interferer, 52, 62...
... Reflector, 53, 63 ... Receiver, 54, 64
...Counter, 66...Reflector mount, 71...
Feeding motor, 72...Motor drive device.

Claims (1)

【特許請求の範囲】 1 被加工物を載架する機構部と、該被加工物を
加工する工具を具備する機構部とからなり、少な
くともどちらか一方の機構部が送りねじと送り用
モータとを備え、少なくとも1軸方向に移動可能
な加工機において、被加工物を載架する機構部
と、工具を具備する機構部との各々の機構部に配
置した平面鏡または直角プリズムでのレーザ光の
反射を利用して、前記被加工物を載架した機構部
の強制移動あるいは自然変位する方向の位置を読
み取る第1のレーザ測長器を設け、かつ前記工具
を具備した機構部の強制移動あるいは自然変位す
る方向の位置を読み取る第2のレーザ測長器を設
け、前記第1および第2のレーザ測長器の測定結
果から工具と被加工物との相対距離を読み取り、
工具と被加工物との位置決めを行うことを特徴と
する精密位置決め装置。 2 特許請求の範囲第1項に記載の精密位置決め
装置において、被加工物を、送りねじと送り用モ
ータとを備え少なくとも割出し方向への移動が可
能なテーブルに載架し、前記被加工物を加工する
工具を回転する主軸に具備し、該主軸のどちらか
一方の端面またはほぼ工具直下の主軸軸心位置に
平面鏡または直角プリズムを配置し、工具とテー
ブルとの割出し方向の相対距離を読み取り、前記
送り用モータを駆動し被加工物を移動させて、工
具と被加工物との割出し方向の相対距離を正確に
調整することを特徴とする精密位置決め装置。 3 特許請求の範囲第1項に記載の精密位置決め
装置において、回転する主軸の先端に被加工物を
取り付け、かつ該被加工物近傍の主軸軸心位置に
平面鏡または直角プリズムを配置し、送りねじと
送り用モータとを備え少なくとも前記主軸軸心方
向への移動が可能な工具取付台上に工具を具備
し、かつ主軸軸心と平行方向の測定が可能なごと
く平面鏡または直角プリズムを配置し、被加工物
と工具取付台との主軸軸心方向の相対距離を読み
取り、前記送り用モータを駆動し工具を移動させ
て工具と被加工物との主軸軸心方向の相対距離を
正確に調整することを特徴とする精密位置決め装
置。 4 特許請求の範囲第1項に記載の精密位置決め
装置において、被加工物を加工する工具を先端に
具備した主軸を水平面と傾斜をなして取り付け、
かつ工具取付け側とは反対側の前記主軸端面に平
面鏡または直角プリズムを設け、前記工具の水平
方向と垂直方向の位置を読み取り、工具と被加工
物との水平方向の位置決めと、工具切込み方向の
位置決めとを同時に行うことを特徴とする精密位
置決め装置。 5 特許請求の範囲第1項に記載の精密位置決め
装置において、第1および第2のレーザ測長器に
連結されかつそれらによつて与えられる変位およ
び指定の演算用定数を記憶し演算して制御信号を
出力する演算処理装置を設け、該演算処理装置
が、工具と被加工物との割出し方向の変位および
工具切込み方向の変位を読み取り、前記工具の変
位に相当した補正制御信号を発してテーブルの送
り用モータを制御することを特徴とする精密位置
決め装置。 6 特許請求の範囲第1項に記載の精密位置決め
装置において、平面鏡または直角プリズム取付け
側の主軸の軸端面部に、主軸軸心と同軸上に防水
筒を設け、前記平面鏡または直角プリズムと、該
平面鏡または直角プリズムに入射・反射するレー
ザ光とを覆うことを特徴とする精密位置決め装
置。 7 特許請求の範囲第1項に記載の精密位置決め
装置において、主軸を軸心方向に中空穴を有する
中空状に形成し、かつ軸心方向に形成された中空
穴の端面に、平面鏡または直角プリズムを接着し
た反射鏡取付具を、前記平面鏡または直角プリズ
ムがほぼ工具直下の主軸軸心位置に配置されるよ
うに設け、前記平面鏡または直角プリズムと、該
平面鏡または直角プリズムに入射・反射するレー
ザ光とを覆うことを特徴とする精密位置決め装
置。
[Scope of Claims] 1. Consisting of a mechanism section on which a workpiece is mounted and a mechanism section equipped with a tool for machining the workpiece, at least one of the mechanism sections is equipped with a feed screw and a feed motor. In a processing machine which is equipped with a machine and is movable in at least one axis direction, a plane mirror or a right-angle prism placed in each of the mechanical part on which the workpiece is mounted and the mechanical part in which the tool is provided is used to emit laser light. A first laser length measuring device is provided which uses reflection to read the position in the direction of forced movement or natural displacement of the mechanical part on which the workpiece is mounted, and the mechanical part equipped with the tool is forced to move or A second laser length measuring device that reads the position in the direction of natural displacement is provided, and the relative distance between the tool and the workpiece is read from the measurement results of the first and second laser length measuring devices,
A precision positioning device characterized by positioning a tool and a workpiece. 2. In the precision positioning device according to claim 1, a workpiece is mounted on a table that is equipped with a feed screw and a feed motor and is movable at least in an indexing direction, and the workpiece is A tool for machining is mounted on a rotating spindle, and a plane mirror or right-angle prism is placed on either end of the spindle or at the center of the spindle almost directly below the tool, and the relative distance between the tool and the table in the indexing direction is measured. A precision positioning device characterized in that the relative distance in the indexing direction between the tool and the workpiece is accurately adjusted by reading the information and driving the feed motor to move the workpiece. 3. In the precision positioning device according to claim 1, a workpiece is attached to the tip of a rotating main shaft, a plane mirror or a right-angle prism is arranged at the center of the main shaft near the workpiece, and a feed screw is provided. and a feeding motor, and a tool is provided on a tool mount that is movable at least in the direction of the spindle axis, and a plane mirror or a right-angle prism is arranged so as to enable measurement in a direction parallel to the spindle axis, The relative distance between the workpiece and the tool mount in the direction of the spindle axis is read, and the feed motor is driven to move the tool to accurately adjust the relative distance between the tool and the workpiece in the direction of the spindle axis. A precision positioning device characterized by: 4. In the precision positioning device according to claim 1, a main shaft equipped with a tool for machining a workpiece at its tip is installed at an angle with a horizontal plane,
A plane mirror or a right-angle prism is installed on the end face of the spindle on the side opposite to the tool mounting side to read the horizontal and vertical positions of the tool, and to determine the horizontal positioning of the tool and workpiece and the cutting direction of the tool. A precision positioning device characterized by simultaneously performing positioning. 5. In the precision positioning device according to claim 1, the device is connected to the first and second laser length measuring devices, and is controlled by storing and calculating the displacements and specified calculation constants given by them. An arithmetic processing device that outputs a signal is provided, and the arithmetic processing device reads the displacement between the tool and the workpiece in the indexing direction and the displacement in the tool cutting direction, and issues a correction control signal corresponding to the displacement of the tool. A precision positioning device characterized by controlling a table feeding motor. 6. In the precision positioning device according to claim 1, a waterproof cylinder is provided on the shaft end surface of the main shaft on the plane mirror or right-angle prism mounting side coaxially with the main shaft axis, and the plane mirror or right-angle prism and the A precision positioning device characterized by covering a plane mirror or a right-angle prism with a laser beam incident on and reflected from the plane mirror or right-angle prism. 7. In the precision positioning device according to claim 1, the main shaft is formed into a hollow shape having a hollow hole in the axial direction, and a plane mirror or a right angle prism is provided on the end face of the hollow hole formed in the axial direction. A reflecting mirror mount to which the plane mirror or right-angle prism is glued is provided so that the plane mirror or right-angle prism is located at the center of the main axis almost directly below the tool, and the plane mirror or right-angle prism is attached to the plane mirror or right-angle prism, and the laser beam incident on and reflected by the plane mirror or right-angle prism is attached. A precision positioning device characterized by covering.
JP13698181A 1980-12-27 1981-09-02 Precision positioning device Granted JPS5840247A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP13698181A JPS5840247A (en) 1981-09-02 1981-09-02 Precision positioning device
US06/333,632 US4585379A (en) 1980-12-27 1981-12-22 Precision positioning device
CH824581A CH645292A5 (en) 1980-12-27 1981-12-23 PRECISION POSITIONING DEVICE.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13698181A JPS5840247A (en) 1981-09-02 1981-09-02 Precision positioning device

Publications (2)

Publication Number Publication Date
JPS5840247A JPS5840247A (en) 1983-03-09
JPS6218312B2 true JPS6218312B2 (en) 1987-04-22

Family

ID=15187975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13698181A Granted JPS5840247A (en) 1980-12-27 1981-09-02 Precision positioning device

Country Status (1)

Country Link
JP (1) JPS5840247A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6301009B1 (en) * 1997-12-01 2001-10-09 Zygo Corporation In-situ metrology system and method
CN104759944A (en) * 2014-01-06 2015-07-08 苏州易昌光电科技有限公司 Sensing system for zero return of machine tool and control method thereof
CN111633274B (en) * 2020-05-25 2021-07-06 周巧美 Saw blade quick replacement device for machining
CN112925264A (en) * 2021-01-25 2021-06-08 新代科技(苏州)有限公司 Method for automatically moving cutter on lathe

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5157081A (en) * 1974-11-15 1976-05-19 Mitsui Seiki Kogyo Kk Jidokikainiokeru hikakobutsuto kogutono sotaiichigime hoho
JPS5371771A (en) * 1976-12-09 1978-06-26 Fujitsu Ltd Positioning control system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5157081A (en) * 1974-11-15 1976-05-19 Mitsui Seiki Kogyo Kk Jidokikainiokeru hikakobutsuto kogutono sotaiichigime hoho
JPS5371771A (en) * 1976-12-09 1978-06-26 Fujitsu Ltd Positioning control system

Also Published As

Publication number Publication date
JPS5840247A (en) 1983-03-09

Similar Documents

Publication Publication Date Title
US4974165A (en) Real time machining control system including in-process part measuring and inspection
US4365301A (en) Positional reference system for ultraprecision machining
JP3192992B2 (en) Method and system for measuring angle indexing accuracy of machine tool
US4417816A (en) Laser measuring system and method for turning machine
JPS5916202B2 (en) Measuring and positioning device using interference fringes
US7612516B2 (en) Measuring method and system for CNC machine
US4585379A (en) Precision positioning device
WO2013080336A1 (en) Error measurement method and machine tool
JP6803043B2 (en) How to measure geometric error of machine tools
JPS61146454A (en) Method of positioning work of nc control machine and nc control machine for executing said method
EP0940737B1 (en) Monitoring method for workpiece and tool carriage movement
KR20060101895A (en) Ground measurement system of cam grinding machine
JPS6218312B2 (en)
JP2007245342A (en) Method and device for measuring position of cutting edge in tool, work machining method, and machine tool
US3698817A (en) Method and apparatus for manufacturing reference scales
JPH1190787A (en) Work shape measuring method and device in machine tool
JPS6350141B2 (en)
JPH08174320A (en) Device and method for machining up to fixed depth
JPH05337787A (en) Boring diameter correcting device of machine tool
JP2539097B2 (en) Machining error correction method and machine tool
JPH0386443A (en) Tool position correction device for super-precision working machine
WO1982000514A1 (en) Laser measuring system and method for turning machine
JPH0780757A (en) Position displacement measuring method and device in machine tool
JP2001179621A (en) Displacement measurement device and grinding attachment
JPS62176739A (en) Straightness correction device for machine tool