JPS5840247A - Precision positioning device - Google Patents
Precision positioning deviceInfo
- Publication number
- JPS5840247A JPS5840247A JP13698181A JP13698181A JPS5840247A JP S5840247 A JPS5840247 A JP S5840247A JP 13698181 A JP13698181 A JP 13698181A JP 13698181 A JP13698181 A JP 13698181A JP S5840247 A JPS5840247 A JP S5840247A
- Authority
- JP
- Japan
- Prior art keywords
- tool
- workpiece
- positioning device
- plane mirror
- precision positioning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23D—PLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
- B23D59/00—Accessories specially designed for sawing machines or sawing devices
- B23D59/001—Measuring or control devices, e.g. for automatic control of work feed pressure on band saw blade
- B23D59/002—Measuring or control devices, e.g. for automatic control of work feed pressure on band saw blade for the position of the saw blade
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B27—WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
- B27B—SAWS FOR WOOD OR SIMILAR MATERIAL; COMPONENTS OR ACCESSORIES THEREFOR
- B27B5/00—Sawing machines working with circular or cylindrical saw blades; Components or equipment therefor
- B27B5/29—Details; Component parts; Accessories
- B27B5/30—Details; Component parts; Accessories for mounting or securing saw blades or saw spindles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28D—WORKING STONE OR STONE-LIKE MATERIALS
- B28D5/00—Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
- B28D5/02—Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by rotary tools, e.g. drills
- B28D5/022—Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by rotary tools, e.g. drills by cutting with discs or wheels
- B28D5/024—Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by rotary tools, e.g. drills by cutting with discs or wheels with the stock carried by a movable support for feeding stock into engagement with the cutting blade, e.g. stock carried by a pivoted arm or a carriage
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/19—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
- G05B19/21—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device
- G05B19/23—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control
- G05B19/231—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control the positional error is used to control continuously the servomotor according to its magnitude
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/37—Measurements
- G05B2219/37275—Laser, interferometer
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/49—Nc machine tool, till multiple
- G05B2219/49169—Compensation for temperature, bending of tool
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Forests & Forestry (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Automatic Control Of Machine Tools (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は切断機、研削盤およびフライス盤などの工作機
械において、工具と被加工物との位置決めを高精度に行
う装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for positioning a tool and a workpiece with high precision in machine tools such as cutting machines, grinding machines, and milling machines.
切断機における従来技術によ6−位置決め装置の例を第
1図に示す。図において、被加工物1を任意の間隔で溝
入れあるいは切断する場合、送りねじ8を回転させるこ
とによるX−Yテーブル2のピッチ割出し方向(以下、
X方向゛と記す)への移動量、あるいは工具34がフラ
ンジ36により取り付けられている主軸61を具備する
コラム(図示せず)の前記X方向への移動量を、レーザ
発振器41、’10インターフーイス42、干渉器51
、反射鏡52、レシーバ56、カウンタ54および演算
処理装置9などで構成されるレーザ測長システム等の測
長器によって測定し、測定結果をモータ駆動装置72に
フィードバックして精密位置決めを行っていた。ところ
が、上述の方法では、周囲温度の変化によって、主軸3
1およびX−Yテーブル2が伸縮し、加工精度(割出し
精度−)を決定する工具34と前記X−Yテーブル2と
のX方向の相対距離を正確に設定することが困難であり
、サブミクロン・オーダの高精度位置決めは困難である
。An example of a prior art 6-positioning device in a cutting machine is shown in FIG. In the figure, when grooving or cutting the workpiece 1 at arbitrary intervals, the pitch indexing direction of the X-Y table 2 (hereinafter referred to as
The laser oscillator 41 and the '10 interface determine the amount of movement in the Fuis 42, interferer 51
, a reflector 52, a receiver 56, a counter 54, an arithmetic processing device 9, etc., are measured by a length measuring device such as a laser length measuring system, and the measurement results are fed back to the motor drive device 72 for precise positioning. . However, in the above method, due to changes in ambient temperature, the spindle 3
1 and the X-Y table 2 expand and contract, making it difficult to accurately set the relative distance in the X direction between the tool 34 that determines machining accuracy (indexing accuracy) and the X-Y table 2. High precision positioning on the micron order is difficult.
本発明の目的は、上記した従来技術の欠点を排除し、製
品の歩留りの向上と生産工程の自動化とを考慮した高精
度の位置決め装置を提供するにある。前記目的を達成す
るため、本発明は、X−Yテーブルおよび工具を具備し
た主軸それぞれの端面にX方向への位置の測定を行うだ
めの反射鏡を設けてレーザ測長システムを構成すること
により環境(温度変化)の影響による誤差をなくして、
前記X−Yテーブルと工具との相対距離を正確に設定す
るようにしたことを要点とするものである。SUMMARY OF THE INVENTION An object of the present invention is to provide a highly accurate positioning device that eliminates the drawbacks of the prior art described above and takes into account improvement in product yield and automation of the production process. In order to achieve the above object, the present invention configures a laser length measurement system by providing a reflector for measuring the position in the X direction on the end face of each of the spindles equipped with an X-Y table and a tool. Eliminating errors due to the influence of the environment (temperature changes),
The key point is to accurately set the relative distance between the XY table and the tool.
以下、図面に従って本発明による精密位置決め装置の実
施例を説明する。第2図および第6図は第1の実施例を
示す図で、第2図は該実施例の装置を装備した切断機の
概略を示すものであり、第6図は割出し補正時のX−Y
テーブルの動きを説明するための説明図である。第2図
において、被加工物1は適切な方法でX−Yテーブル2
に搭載されており、該XtYテーブル2には、これをX
方向(ピッチ割出し方向)に移動せしめる送りねじ8が
連結されており、さらに該送りねじ8には、直接または
減速機(図示せず)を介して送り用モータ71が連結さ
れており、該送り用モータ71はモータ駆動装置72を
介して演算処理装置9に接続されている。演算処理装置
9は、マイクロコンビーータあるいはミニコンビーータ
などとすることが望ましく、レーザ測長システムの /
nインターフーイス42からのデータ読増りに一チンの
ほか、割出し量の補正ルーチンおよび記憶回路を備え、
前記X−Yテーブル2と工具34との各々の位置を読み
取り、所望の割出し量に対する補正値の演算処理を行う
。レーザ測長システムは、レーザ発振器41と、該レー
ザ発振器41がら出されたレーザ光44を2つのレーザ
光55a165aに分配するための分配器43と、分配
されたレーザ光55a、65aと該レーザ光がそれぞれ
反射鏡52.62に反射した後のレーザ光55C165
Cとをそれぞれ干渉させるように適切な位置に固定され
た干渉器51.61と、該干渉器51.61から出力さ
れたレーザ光55d、65dをそれぞれ受けて、結果を
パルスに変換するためのレシーバ53.63と、該レシ
ーバ56.63から出力されるパルスをそれぞれ加減算
するためのカウンタ54,64と、該カウンタ54.6
4と前記演算処理装置9とを接続するためのI/nイン
ターフェイス42とから構成されている。Embodiments of the precision positioning device according to the present invention will be described below with reference to the drawings. 2 and 6 are diagrams showing the first embodiment, and FIG. 2 shows an outline of a cutting machine equipped with the device of the embodiment, and FIG. 6 shows the X during index correction. -Y
It is an explanatory view for explaining movement of a table. In FIG. 2, the workpiece 1 is placed on the X-Y table 2 in a suitable manner.
This is mounted on the XtY table 2.
A feed screw 8 is connected to the feed screw 8 for movement in the direction (pitch indexing direction), and a feed motor 71 is connected directly or via a reducer (not shown) to the feed screw 8. The feed motor 71 is connected to the arithmetic processing unit 9 via a motor drive device 72. The arithmetic processing unit 9 is preferably a microconbeater or a miniconbeater, and is used as the / of the laser length measurement system.
In addition to a function for reading additional data from the n-interface 42, it is equipped with an indexing amount correction routine and a storage circuit.
The positions of the XY table 2 and the tool 34 are read, and a correction value for a desired indexing amount is calculated. The laser length measurement system includes a laser oscillator 41, a distributor 43 for distributing the laser beam 44 emitted from the laser oscillator 41 into two laser beams 55a and 165a, and the distributed laser beams 55a and 65a and the laser beam. The laser beams 55C165 after being reflected by the reflecting mirrors 52 and 62, respectively
An interferometer 51.61 is fixed at an appropriate position so as to interfere with C, and an interferometer 51.61 receives the laser beams 55d and 65d output from the interferometer 51.61 and converts the results into pulses. A receiver 53.63, counters 54 and 64 for respectively adding and subtracting pulses output from the receiver 56.63, and the counter 54.6.
4 and an I/N interface 42 for connecting the arithmetic processing unit 9.
主軸31の変位を測定するために取り付けられた反射鏡
62は、回転振れによる測定誤差をなくすため、取付は
調整が可能々治具(図示せず)に固定されるのが望まし
い。The reflecting mirror 62 attached to measure the displacement of the main shaft 31 is preferably fixed to an adjustable jig (not shown) in order to eliminate measurement errors due to rotational vibration.
次に、動作に゛つぃて説明する。第6図に示すように、
X−Yテーブル2に搭載された被加工物1の任意の位置
X を工具34により溝入れ加工しま
た後、次の目標位置X2に前記工具34の中央を位置決
めさせるため、送シ用モータ71を適切な方向に回転さ
せることによりX−Yテーブル2を移動させ、該X−Y
テーブル2の変位を測定させるレーザ測長システム(符
号51〜54)により測定した移動量が、所望のピッチ
Pあるいは原点0からの距離りに一致した時点で前記送
り用モータ710回転を中止し、X−Yテーブル2の移
動を停止させる。さらに、前記X−Yテーブル2をピッ
チPあるいは距離りだけ移動させる間に、室温変化等に
より主軸31が変位し、工具64が位置X3に位置決め
され、目標値に対しΔPだけ誤差が生じる。この誤差Δ
、Pを、主軸31の変位を測定するレーザ測長システム
(符号61〜64)により測定し、演算、処理装置9か
らの指茗により再び送り用モータ71を、前記誤差ΔP
に応じ適切な方向に回転させ、工具34の中央を位置X
2に補正、制御する。演算処理装置9は、常時X −Y
テーブル2および主軸31の変位を測定し、がつX−Y
テーブル2の移動前後の前記測定値や、溝入れピッチP
あるいは原点からの距離1・等の加工情報を記憶する記
憶回路を有し、位置決め誤差ΔPを算出し、補正のため
所望の出方を与えるものである。Next, the operation will be explained. As shown in Figure 6,
After grooving an arbitrary position X of the workpiece 1 mounted on the X-Y table 2 with the tool 34, the feed motor 71 is used to position the center of the tool 34 at the next target position X2. Move the X-Y table 2 by rotating the
When the amount of movement measured by a laser length measuring system (numerals 51 to 54) that measures the displacement of the table 2 matches the desired pitch P or the distance from the origin 0, the rotation of the feed motor 710 is stopped; Stop the movement of the X-Y table 2. Furthermore, while the XY table 2 is moved by the pitch P or distance, the main shaft 31 is displaced due to a change in room temperature, etc., and the tool 64 is positioned at the position X3, resulting in an error of ΔP with respect to the target value. This error Δ
.
Rotate the tool 34 in the appropriate direction to position the center of the tool 34 at position
Correct and control to 2. The arithmetic processing unit 9 always performs
Measure the displacement of the table 2 and the main shaft 31, and
The measurement values before and after the movement of the table 2 and the grooving pitch P
Alternatively, it has a memory circuit that stores processing information such as distance 1 from the origin, calculates the positioning error ΔP, and provides a desired output for correction.
第4図は本発明の第2の実施例における主軸31の、工
具34が固定されている側とは反対側軸端部を示したも
のである。本実施例のごとく、反射面が非常に高精度(
平坦度0.06μm以下)に仕上げられた反射鏡62を
レーザ光65bと垂直に々るように主軸g1の端面に接
着し、該端面の変位を測定することにより工具34の変
位糾問接的に測定しても、前記第1の実施例と同様の効
果を得ることができる。この場合、主軸51、軸受62
および両者を支持する玉軸受(図示せず)の6者の構成
から決定される熱変位上の基準点をあらかじめ求めてお
き、該基準点から工具34の中央までの距離11 と、
前記基準点から反射鏡62までの距離12との比12/
l を演算処理装置9に記憶させておき、主軸31の端
面の変位Δlを測定することにより、工具34の変位Δ
X(第3図のΔPにも相当する値)に近似する。すなわ
ち、前記工具34の変位ΔXは、
ij X # u 、□、。FIG. 4 shows the end of the main shaft 31 opposite to the side to which the tool 34 is fixed in a second embodiment of the present invention. As in this example, the reflective surface has extremely high precision (
A reflective mirror 62 finished with a flatness of 0.06 μm or less is glued to the end face of the main shaft g1 so as to be perpendicular to the laser beam 65b, and the displacement of the tool 34 can be investigated by measuring the displacement of the end face. Even when measured, the same effects as in the first embodiment can be obtained. In this case, the main shaft 51, the bearing 62
A reference point on thermal displacement is determined in advance from the configuration of the six components of ball bearings (not shown) that support both, and the distance 11 from the reference point to the center of the tool 34,
The ratio of the distance 12 from the reference point to the reflecting mirror 62 is 12/
By storing Δl in the arithmetic processing unit 9 and measuring the displacement Δl of the end face of the spindle 31, the displacement Δl of the tool 34 can be calculated.
It is approximated to X (a value which also corresponds to ΔP in FIG. 3). That is, the displacement ΔX of the tool 34 is ij X # u , □.
、1 °°°°°°(1)(ここで、
αは熱膨張係数)
で表わされ、前記演算処理装置9により算出する。, 1 °°°°°° (1) (where,
α is a coefficient of thermal expansion) and is calculated by the arithmetic processing unit 9.
第5図および第6図はいずれも本発明の第6の実施例に
おける工具54側の主軸31の軸端部を示しだものであ
る。第5図の例においては、反射鏡62と、レーザ光6
5b、65Cを覆うがごとく中空状の防水筒65とが、
主軸61に固定されている。このように反射鏡62およ
びレーザ光65b、65Cを外部と遮断することにより
、研削液および不均一な密度分布のため生じる干渉器6
1と反射鏡62との間の測長誤差をなくすことができ、
正確な測定ができる。また、第6図の例においては、前
記防水筒65の代りに、主軸61を軸心方向に中空穴を
有する中空状に形成し、かつ該主軸と同様に軸心方向に
形成された中空穴の端面に反射鏡62が接着された反射
鏡取付具66を、前記反射鏡62がほぼ工具54直下の
主軸軸心位置に配置されるように取り付ける。このよう
にすることにより、第5図の例と同様に測定誤差をなく
すことができる。5 and 6 both show the shaft end of the main shaft 31 on the tool 54 side in a sixth embodiment of the present invention. In the example of FIG. 5, the reflecting mirror 62 and the laser beam 6
A hollow waterproof tube 65 covers 5b and 65C,
It is fixed to the main shaft 61. By blocking the reflecting mirror 62 and the laser beams 65b and 65C from the outside in this way, the interference device 6 that is generated due to the grinding fluid and uneven density distribution is
1 and the reflecting mirror 62 can be eliminated,
Accurate measurements can be made. In the example shown in FIG. 6, instead of the waterproof cylinder 65, the main shaft 61 is formed into a hollow shape having a hollow hole in the axial direction, and the hollow hole is formed in the axial direction similarly to the main shaft. A reflector mount 66 having a reflector 62 bonded to the end face thereof is attached so that the reflector 62 is located approximately at the center of the spindle directly below the tool 54. By doing so, measurement errors can be eliminated as in the example shown in FIG.
第7図は本発明を旋盤に適用した場合の本発明の第4の
実施例を示したものである。本実施例では、第2図に示
した第1の実施例における工具の代りに被加工物1を主
軸(図示せず)の先端にチャック37を介して取り付け
、該チャック37の主軸軸心上の端面位置に反射鏡62
が配置されるように取り付ける。また、被加工物の代り
に工具54を工具取付台68を介し一7x−yテーブル
2に取り付ける。このような構成で、被加工物1を回転
させ、該被加工物1の変位誤差(伸縮量)を送り用モー
タ71にフィードバックし、X−Yテーブル2に載架し
た工具64の切込み量を補正するようにし、被加工物1
を平面、球面あるいは複雑な形状の面に加工することが
できる。FIG. 7 shows a fourth embodiment of the present invention in which the present invention is applied to a lathe. In this embodiment, instead of the tool in the first embodiment shown in FIG. 2, the workpiece 1 is attached to the tip of a spindle (not shown) via a chuck 37, A reflecting mirror 62 is placed at the end face position of
Attach so that the Further, instead of the workpiece, a tool 54 is attached to the 17xy table 2 via a tool mount 68. With this configuration, the workpiece 1 is rotated, the displacement error (expansion/contraction amount) of the workpiece 1 is fed back to the feed motor 71, and the depth of cut of the tool 64 mounted on the X-Y table 2 is calculated. Workpiece 1
can be processed into flat, spherical, or complexly shaped surfaces.
第8図は主軸51が水平面に対しθなる傾きで取り付け
られた工作機械の場合の本発明の第5の実施例を示した
ものである。第8図において、主軸61の変位を測定す
るだめの反射鏡62が、主 ′軸軸心上の工具34側
と反対側の主軸端面に取り付けられている。主軸軸心方
向の主軸31の変位をX。とじたとき、水平方向および
垂直方向の変位Xおよびyは、
x = xθ、cosθ °曲゛(2
)y = xθ・sinθ ・・・・
・・(6)で表わされ、上式を演算処理装置9で演算し
、主軸31または軸受62をX、方向に、X−Yテーブ
ル2をX方向に移iせしめることにより、切込み量l(
およびピッチ割出し量Pを期待に位置決めすることがで
きる。FIG. 8 shows a fifth embodiment of the present invention in the case of a machine tool in which the main shaft 51 is mounted at an angle of θ with respect to the horizontal plane. In FIG. 8, a reflector 62 for measuring the displacement of the main shaft 61 is attached to the end surface of the main shaft on the opposite side to the tool 34 side on the axis of the main shaft. The displacement of the main shaft 31 in the direction of the main shaft axis is X. When closed, the displacements X and y in the horizontal and vertical directions are x = xθ, cosθ °(2
)y = xθ・sinθ...
...(6), the above equation is calculated by the arithmetic processing unit 9, and by moving the main shaft 31 or the bearing 62 in the X direction and the X-Y table 2 in the X direction, the depth of cut l is calculated. (
and pitch indexing amount P can be used for positioning as expected.
以上説明したように、本発明によれば、温度変化等によ
るX−Yテーブルあるいは主軸の変位(伸縮量)をそれ
ぞれレーザ測長器により測定し、発生した誤差を補正、
制御するようにしたことにより、正確に位置決めができ
、製品の歩留りも向上できる。As explained above, according to the present invention, the displacement (expansion/contraction amount) of the X-Y table or the main axis due to temperature changes, etc. is measured by a laser length measuring device, and the generated error is corrected.
This control allows accurate positioning and improves product yield.
第1図は従来技術による位置決め装置を装備した切断機
の構成図、第2図は本発明による位置決め装置の一実施
例(第1の実施例)を装備した切断機の構成図、第5図
は該実施例における割出し補正時のX−Yテーブルの動
きを説明するだめの説明図、第4図ないし第8図は本発
明の他の実施例(第2〜第5の実施例)の説明図である
。
符号の説明
1・・・被加工物 2・・・X−Yテーブル8
・・・送りねじ 9・・・演算処理装置31・
・・主軸 32・・・軸受63・・・フラン
ジ 64・・・工具35・・・防水筒
67・・・チャック38・・・工具取付台 41・
・・レーザ発振器42・・・I 7=インターフエイス
46・−7分配器 51.61・・・干渉器5
2.62・・・反射鏡 55.65・・・レシーバ5
4.64・・・カウンタ 66・・・反射鏡取付具71
・・・送り用モータ 72・・・モータ駆動装置代理
人弁理士 中村純之助
第3図
才4図
2
第5図Fig. 1 is a block diagram of a cutting machine equipped with a positioning device according to the prior art, Fig. 2 is a block diagram of a cutting machine equipped with an embodiment (first embodiment) of a positioning device according to the present invention, and Fig. 5 is an explanatory diagram for explaining the movement of the X-Y table during index correction in this embodiment, and FIGS. 4 to 8 are illustrations of other embodiments (second to fifth embodiments) of the present invention. It is an explanatory diagram. Explanation of symbols 1... Workpiece 2... X-Y table 8
...Feed screw 9...Arithmetic processing device 31.
... Main shaft 32 ... Bearing 63 ... Flange 64 ... Tool 35 ... Waterproof tube
67... Chuck 38... Tool mounting stand 41.
... Laser oscillator 42 ... I 7 = Interface 46 -7 distributor 51.61 ... Interferer 5
2.62...Reflector 55.65...Receiver 5
4.64...Counter 66...Reflector mount 71
...Feeding motor 72...Motor drive device Patent attorney Junnosuke Nakamura Figure 3 Figure 4 Figure 2 Figure 5
Claims (1)
工する工具を具備する機構部とからなり、少なくともど
ちらか一方の機構部が送りねじと送り用モータとを備え
、少なくとも1軸方向に移動IJJ’能な加工機におい
て、被加工物を載架する機構部・と、工具を具備する機
構部との各々の機構部に配置した平面鏡または直角プリ
ズムでのレーザ光の反射を利用して、前記被加工物を載
架した機構部の強制移動あるいは自然変位する方向の位
置を読み取る第1のレーザ測長器を設け、かつ前記工具
を具備した機構部の強制移動あるいは自然変位する方向
の位置を読み取る第2のレーザ測長器を設け、前記第1
および第2のレーザ測長器の測定結果から工具と被加工
物との相対距離を読み取シ、工具と被加工物との位置決
めを行うことを特徴とする精密位置決め装置。、 (2、特許請求の範囲第1項に記載の精密位置決め装置
において、被加工物を、送りねじと送り用モータとを備
え少なくとも割出し方向への移動が可能なテーブルに載
架し、前記被加工物を加工する工具を回転する主軸に具
備し、該主軸のどちらか一方の端面または#1ぼ工具直
下の主軸軸心位置に平面鏡または直角プリズムを配置し
、工具とテーブルとの割出し方向の相対距離を読み取り
、前記送シ用モータを■動し被加工物を移動させて、工
具と被加工物との割出し方向の相対距離を正確に調整す
ることを特徴とする精密位置決め装置。 (3)特許請求の範囲第1項に記載の精密位置決め装置
において、回転する主軸の先端に被加工物を取シ付け、
かつ該被加工物近傍の主軸軸心位置に平面鏡または直角
プリズムを配置し、送りねじと送り用モータとを備え少
なくとも前記主軸軸心方向への移動が可能な工具取付台
上に工具を具備し、かつ主軸軸心と平行方向の測定が可
能なごとく平面鏡または直角プリズムを配置し、被加工
物と工具取付台との主軸軸心方向の相対距離を読み取り
、前記送り用モータを駆動し工具を移動させて工具と被
加工物との主軸軸心方向の相対距離を正確に調整するこ
とを特徴とする精密位置決め装置。 (4)特許請求の範囲第1項に記載の精密位置決め装置
において、被加工物を加工する工具を先端に具備した主
軸を水平面と傾斜を々して取り付け、かつ工具取付は側
とは反対側の前記主軸端面に平面鏡または直角プリズム
を設け、前記工具の水平方向と垂直方向の位置を読み取
り、工具と被加工物との水平方向の位置決めと、工具切
込鷲方向の位置決めとを同時に行うことを特徴とする精
密位置決め装置。 (5)特許請求の範囲第1項に記載の精密位置決め装置
において、第1および第2のレーザ測長器に連結されか
つそれらによって与えられる変位および指定の演算用定
数を記憶し演算して制御信号を出力する演算処理装置を
設け、該演算処理装置が、工具と被加工物との割出し方
向の変位および工具切込み方向の変位を読み取り、前記
工具の変り用モータを制御することを特徴とする精密位
置決め装置。 (6) 特許請求の範囲第1項に記載の精密位置決め
装置において、平面鏡または直角プリズム取付は側の主
軸の軸端面部に、主軸軸心と同軸上に防水筒を設け、前
記平面鏡または直角プリズムと、該平面鏡または直角プ
リズムに入射・反射するレーザ光とを覆うことを特徴と
する精密位置決め装置。 (7)特許請求の範囲第1項に記載の精密位置決着した
反射鏡取付具を、前記平面鏡または直角プリズムがほぼ
工具直下の主軸軸心位置に配置されるように設け、前記
平面鏡または直角プリズムと、該平面鏡または直角プリ
ズムに入射・反射するレーザ光とを覆うことを特徴とす
る精密位置決め装置。[Scope of Claims] (1) Consisting of a mechanism section on which a workpiece is placed and a mechanism section equipped with a tool for processing the workpiece □, at least one of the mechanism sections is equipped with a feed screw and a feed screw. In a processing machine capable of moving in at least one axial direction, a plane mirror or a right-angled A first laser length measuring device is provided for reading the position in the direction of forced movement or natural displacement of the mechanism section on which the workpiece is mounted by using the reflection of the laser beam by the prism, and the tool is equipped with the first laser length measuring device. A second laser length measuring device is provided for reading the position in the direction of forced movement or natural displacement of the mechanical part, and
and a precision positioning device that reads the relative distance between the tool and the workpiece from the measurement results of the second laser length measuring device and positions the tool and the workpiece. , (2. In the precision positioning device according to claim 1, the workpiece is placed on a table that is equipped with a feed screw and a feed motor and is movable at least in the indexing direction, and A tool for processing a workpiece is mounted on a rotating spindle, and a plane mirror or right-angle prism is placed on either end of the spindle or at the center of the spindle directly under the #1 tool, and the tool and table are indexed. A precision positioning device characterized in that the relative distance in the indexing direction between the tool and the workpiece is accurately adjusted by reading the relative distance in the indexing direction and moving the feed motor to move the workpiece. (3) In the precision positioning device according to claim 1, a workpiece is mounted on the tip of the rotating main shaft,
and a plane mirror or a right-angle prism is arranged at a position of the spindle axis near the workpiece, and a tool is provided on a tool mount that is equipped with a feed screw and a feed motor and is movable at least in the direction of the spindle axis. , and a plane mirror or a right-angle prism is arranged so that measurements can be made in a direction parallel to the spindle axis, and the relative distance between the workpiece and the tool mount in the spindle axis direction is read, and the feed motor is driven to move the tool. A precision positioning device that accurately adjusts the relative distance between a tool and a workpiece in the direction of the spindle axis by moving the tool. (4) In the precision positioning device according to claim 1, the main shaft equipped with a tool for machining a workpiece at the tip is mounted at an angle to the horizontal plane, and the tool is mounted on the opposite side. A plane mirror or a right-angle prism is provided on the end face of the main shaft to read the horizontal and vertical positions of the tool, and the horizontal positioning of the tool and the workpiece and the positioning of the tool in the direction of the cutting edge are performed simultaneously. Precision positioning device featuring: (5) In the precision positioning device according to claim 1, the device is connected to the first and second laser length measuring devices, and controls by storing and calculating the displacements and specified calculation constants given by the first and second laser length measuring devices. A processing unit for outputting a signal is provided, and the processing unit reads the displacement between the tool and the workpiece in the indexing direction and the displacement in the tool cutting direction, and controls the tool changing motor. Precision positioning device. (6) In the precision positioning device according to claim 1, the plane mirror or right-angle prism is mounted by providing a waterproof tube on the shaft end face of the main shaft on the side and coaxially with the main shaft axis, and attaching the plane mirror or right-angle prism to the shaft end surface of the main shaft. and a laser beam incident on and reflected by the plane mirror or right-angle prism. (7) A reflective mirror mount having a precisely determined position according to claim 1 is provided so that the plane mirror or right-angle prism is disposed at a position of the spindle axis substantially directly below the tool, and the plane mirror or right-angle prism and a laser beam incident on and reflected by the plane mirror or right-angle prism.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13698181A JPS5840247A (en) | 1981-09-02 | 1981-09-02 | Precision positioning device |
US06/333,632 US4585379A (en) | 1980-12-27 | 1981-12-22 | Precision positioning device |
CH824581A CH645292A5 (en) | 1980-12-27 | 1981-12-23 | PRECISION POSITIONING DEVICE. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13698181A JPS5840247A (en) | 1981-09-02 | 1981-09-02 | Precision positioning device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5840247A true JPS5840247A (en) | 1983-03-09 |
JPS6218312B2 JPS6218312B2 (en) | 1987-04-22 |
Family
ID=15187975
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13698181A Granted JPS5840247A (en) | 1980-12-27 | 1981-09-02 | Precision positioning device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5840247A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2771666A1 (en) * | 1997-12-01 | 1999-06-04 | Zygo Corp | IN SITU METROLOGY SYSTEM AND METHOD |
CN104759944A (en) * | 2014-01-06 | 2015-07-08 | 苏州易昌光电科技有限公司 | Sensing system for zero return of machine tool and control method thereof |
CN111633274A (en) * | 2020-05-25 | 2020-09-08 | 周巧美 | Saw blade quick replacement device for machining |
CN112925264A (en) * | 2021-01-25 | 2021-06-08 | 新代科技(苏州)有限公司 | Method for automatically moving cutter on lathe |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5157081A (en) * | 1974-11-15 | 1976-05-19 | Mitsui Seiki Kogyo Kk | Jidokikainiokeru hikakobutsuto kogutono sotaiichigime hoho |
JPS5371771A (en) * | 1976-12-09 | 1978-06-26 | Fujitsu Ltd | Positioning control system |
-
1981
- 1981-09-02 JP JP13698181A patent/JPS5840247A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5157081A (en) * | 1974-11-15 | 1976-05-19 | Mitsui Seiki Kogyo Kk | Jidokikainiokeru hikakobutsuto kogutono sotaiichigime hoho |
JPS5371771A (en) * | 1976-12-09 | 1978-06-26 | Fujitsu Ltd | Positioning control system |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2771666A1 (en) * | 1997-12-01 | 1999-06-04 | Zygo Corp | IN SITU METROLOGY SYSTEM AND METHOD |
CN104759944A (en) * | 2014-01-06 | 2015-07-08 | 苏州易昌光电科技有限公司 | Sensing system for zero return of machine tool and control method thereof |
CN111633274A (en) * | 2020-05-25 | 2020-09-08 | 周巧美 | Saw blade quick replacement device for machining |
CN111633274B (en) * | 2020-05-25 | 2021-07-06 | 周巧美 | Saw blade quick replacement device for machining |
CN112925264A (en) * | 2021-01-25 | 2021-06-08 | 新代科技(苏州)有限公司 | Method for automatically moving cutter on lathe |
Also Published As
Publication number | Publication date |
---|---|
JPS6218312B2 (en) | 1987-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4974165A (en) | Real time machining control system including in-process part measuring and inspection | |
US4714339A (en) | Three and five axis laser tracking systems | |
US4365301A (en) | Positional reference system for ultraprecision machining | |
JP3192992B2 (en) | Method and system for measuring angle indexing accuracy of machine tool | |
KR20190028339A (en) | Method and apparatus for gear skiving | |
US4417816A (en) | Laser measuring system and method for turning machine | |
JPS5916202B2 (en) | Measuring and positioning device using interference fringes | |
US4585379A (en) | Precision positioning device | |
US6960052B2 (en) | Machine tool and method of adjusting the spindle of a machine tool | |
JP6803043B2 (en) | How to measure geometric error of machine tools | |
JP4571256B2 (en) | Shape accuracy measuring device by sequential two-point method and laser displacement meter interval measuring method for shape accuracy measurement by sequential two-point method | |
JPS5840247A (en) | Precision positioning device | |
JP3394972B2 (en) | Automatic machine tool | |
JPS6350141B2 (en) | ||
JPH07100736A (en) | Spindle position measuring device | |
JPS6288555A (en) | Method of measuring dimension of tool | |
JPH0360597B2 (en) | ||
EP2818949A1 (en) | Computer numerical control machining center with integrated coordinate measuring unit and method for measuring a workpiece in situ | |
JPS6227945B2 (en) | ||
JP2539097B2 (en) | Machining error correction method and machine tool | |
WO1982000514A1 (en) | Laser measuring system and method for turning machine | |
JPH0386443A (en) | Tool position correction device for super-precision working machine | |
JPH0435841A (en) | Machine tool | |
JP2001179621A (en) | Displacement measurement device and grinding attachment | |
JPH0780757A (en) | Position displacement measuring method and device in machine tool |