JPS6350141B2 - - Google Patents

Info

Publication number
JPS6350141B2
JPS6350141B2 JP55187128A JP18712880A JPS6350141B2 JP S6350141 B2 JPS6350141 B2 JP S6350141B2 JP 55187128 A JP55187128 A JP 55187128A JP 18712880 A JP18712880 A JP 18712880A JP S6350141 B2 JPS6350141 B2 JP S6350141B2
Authority
JP
Japan
Prior art keywords
rotary tool
main shaft
positioning device
hollow hole
precision positioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55187128A
Other languages
Japanese (ja)
Other versions
JPS57114344A (en
Inventor
Kazuhiko Nagayama
Masami Masuda
Yukio Maeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18712880A priority Critical patent/JPS57114344A/en
Priority to US06/333,632 priority patent/US4585379A/en
Priority to CH824581A priority patent/CH645292A5/en
Publication of JPS57114344A publication Critical patent/JPS57114344A/en
Publication of JPS6350141B2 publication Critical patent/JPS6350141B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Automatic Control Of Machine Tools (AREA)

Description

【発明の詳細な説明】 本発明はダイシング、旋盤などの工作機におい
て、工具と被加工物との位置決めを高精度に行う
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for positioning a tool and a workpiece with high precision in a machine tool such as a dicing machine or a lathe.

まず、従来技術について説明する。第1図は従
来法による位置決め装置の一例を示すものであ
る。図において、被加工物1を任意の間隔にて切
断あるいは溝入れ加工する場合、送りねじ8を回
転させることによるX−Yテーブル2のピツチ割
出し方向Xへの移動量、あるいは工具34がフラ
ンジ33により取り付けられている主軸31を具
備するコラム(図示せず)の前記方向への移動量
を、レーザ発振器41、カウンタ・インターフエ
イス42、干渉器51、反射鏡52、レシーバ5
3、カウンタ54、演算処理装置9などで構成さ
れるレーザ測長システム等の測長器により測定
し、測定結果をモータ駆動装置72にフイードバ
ツクした精密位置決めを行つていた。ところが、
上述の方法による位置決め精度は、送りねじ8の
ピツチ精度、送り用モータ71(一般的にはパル
スモータ)の回転精度、および両者間に連結され
る減速機(図示せず)の精度により決まるので、
X−Yテーブル2のピツチ割出し方向(X方向)
の移動量が正確に検出できても、1μm以下の高精
度の位置決めは困難である。また、周囲の温度変
化によつて、主軸31およびX−Yテーブル2が
伸縮し、加工精度(割出し精度)を決定する工具
34とX−Yテーブル2とのX方向の相対距離を
正確に設定することが困難である。そこで、上述
の欠点を排除するため、第2図に示すように、レ
ーザ発振器41のレーザ光を分配器43で分光
し、反射鏡62、レシーバ63、カウンタ64等
を用いて、温度変化等による主軸31およびX−
Yテーブル2の伸縮量を測定する方法が考えられ
るが、該方法においては、工具34まわりの悪影
響、例えば研削液および切粉などがレーザ光65
b,65cを遮断したり反射鏡62に付着するこ
となどにより、測定エラーを生じやすい欠点があ
り、また、工具34交換時の作業性が悪いなどの
問題があつた。
First, the conventional technology will be explained. FIG. 1 shows an example of a conventional positioning device. In the figure, when cutting or grooving the workpiece 1 at arbitrary intervals, the amount of movement of the X-Y table 2 in the pitch indexing direction X by rotating the feed screw 8, or when the tool 34 is The amount of movement in the above direction of the column (not shown) having the main shaft 31 attached by the laser oscillator 41, counter interface 42, interferometer 51, reflector 52, receiver 5
3, a counter 54, an arithmetic processing device 9, and the like, the measurement is performed using a length measuring device such as a laser length measuring system, and the measurement results are fed back to the motor drive device 72 for precise positioning. However,
The positioning accuracy by the above method is determined by the pitch accuracy of the feed screw 8, the rotational accuracy of the feed motor 71 (generally a pulse motor), and the accuracy of the reducer (not shown) connected between the two. ,
Pitch indexing direction of X-Y table 2 (X direction)
Even if the amount of movement can be detected accurately, positioning with a precision of 1 μm or less is difficult. In addition, the spindle 31 and the X-Y table 2 expand and contract due to changes in ambient temperature, and the relative distance in the X direction between the tool 34 and the X-Y table 2, which determines machining accuracy (indexing accuracy), can be adjusted accurately. Difficult to configure. Therefore, in order to eliminate the above-mentioned drawbacks, as shown in FIG. Main shaft 31 and X-
A method of measuring the amount of expansion and contraction of the Y table 2 can be considered, but in this method, harmful effects around the tool 34, such as grinding fluid and chips, are removed by the laser beam 65.
There is a drawback that measurement errors are likely to occur due to blocking the lenses b and 65c or adhesion to the reflecting mirror 62, and there are also problems such as poor workability when replacing the tool 34.

本発明の目的は、上記した従来技術の欠点を排
除し、製品の歩留まりを向上させ、生産工程の自
動化を考慮した位置決め装置を提供するにある。
この目的を達成するため、本発明は、主軸に両面
型の静圧型スラスト軸受を設け、各片面へ供給す
る空気あるいは油の圧力を相対的に変化させるこ
とにより、主軸を微少量変位させ、0.1μmのオー
ダの位置決めを行うようにすると共に、主軸にそ
の軸心方向に適切な径の中空穴を設け、該中空穴
の主軸軸方向工具直下位置に反射鏡を設けてレー
ザ測長システムを構成することにより、環境の影
響による誤差をなくして、主軸の変位を正確に測
定するようにしたものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a positioning device that eliminates the drawbacks of the prior art described above, improves product yield, and takes automation of the production process into consideration.
In order to achieve this objective, the present invention provides a double-sided hydrostatic thrust bearing on the main shaft, and by relatively changing the pressure of air or oil supplied to each side, the main shaft is displaced by a minute amount, 0.1 In addition to positioning on the order of μm, a hollow hole with an appropriate diameter is provided in the spindle in the axial direction, and a reflector is provided in the hollow hole directly below the tool in the axial direction of the spindle to configure a laser length measurement system. By doing so, it is possible to eliminate errors due to the influence of the environment and accurately measure the displacement of the main shaft.

以下、図面に従つて本発明による精密位置決め
装置の一実施例を説明する。第3図は該実施例の
装置を装備した切断機の概略を示す構成図であ
り、第4図は割出し補正時のX−Yテーブルと主
軸の動きを説明するための説明図である。第3図
において、被加工物1は適切な方法でX−Yテー
ブル2に搭載されており、X−Yテーブル2には
これをピツチ割出し方向Xに移動せしめる送りね
じ8が連結されており、さらに該送りねじ8には
直接または減速機(図示せず)を介して送り用モ
ータ71が連結されており、該送り用モータ71
はモータ駆動装置72を介して演算処理装置9に
接続されている。演算処理装置9はマイクロコン
ピユータあるいはミニコンピユータなどとするこ
とが望ましく、レーザ測長システムのカウンタ・
インターフエイス42からのデータ読取りルーチ
ンのほか、割出し量の補正ルーチンおよび記憶回
路を備え、前記X−Yテーブル2の移動量と工具
34の位置を読み取り、所望の割出し量に対する
補正値の演算処理を行う。レーザ測長システムは
レーザ発振器41と、該レーザ発振器41から出
力されたレーザ光44を2つのレーザ光55a,
65aに分配するための分配器43と、分配され
たレーザ光55a,65aと該レーザ光がそれぞ
れ反射鏡52,62に反射した後のレーザ光55
c,65cとを干渉させるように適切な位置に固
定された干渉器51,61と、該干渉器51,6
1から出力されたレーザ光55d,65dをそれ
ぞれ受け、結果をパルスに変換するためのレシー
バ53,63と、該レシーバ53,63から出力
されるパルスを加減算するためのカウンタ54,
64と、該カウンタ54,64と前記演算処理装
置9とを接続するためのカウンタ・インターフエ
イス42とからなる。主軸31は、中心をレーザ
光65b,65cが通過できる程度の径に中ぐり
されて中空穴70が設けられている。主軸31の
変位を測定するために取り付けられた反射鏡62
は反射鏡固定具10に固定されるが、工具34直
下の前記主軸31の中空穴70中に設けるのが望
ましい。工具34を具備したフランジ33を先端
に設けた主軸31にはその外周部のできる限り工
具34に近い位置にスラスト板35を設け、該ス
ラスト板35と軸受32とによりスラスト軸受を
構成するようになつており、同様に前記主軸31
と軸受32とによりジヤーナル軸受を構成するよ
うになつている。軸受32には、空気あるいは油
の供給口B,Cより配管具を介して、前記供給口
B,Cに供給する空気あるいは油の圧力を調整す
るための圧力調整器111が連結されており、該
圧力調整器111は専用の圧力調整器駆動装置1
12を介して前記演算処理装置9に接続されてい
る。
An embodiment of a precision positioning device according to the present invention will be described below with reference to the drawings. FIG. 3 is a schematic configuration diagram of a cutting machine equipped with the apparatus of this embodiment, and FIG. 4 is an explanatory diagram for explaining the movement of the X-Y table and the main shaft during index correction. In FIG. 3, the workpiece 1 is mounted on an X-Y table 2 in an appropriate manner, and a feed screw 8 is connected to the X-Y table 2 to move it in the pitch indexing direction X. Further, a feed motor 71 is connected to the feed screw 8 directly or via a reducer (not shown).
is connected to the arithmetic processing device 9 via a motor drive device 72. The arithmetic processing unit 9 is preferably a microcomputer or a minicomputer, and is suitable for use as a counter of the laser length measurement system.
In addition to the data reading routine from the interface 42, it is equipped with an indexing amount correction routine and a storage circuit, which reads the movement amount of the X-Y table 2 and the position of the tool 34, and calculates a correction value for the desired indexing amount. Perform processing. The laser length measurement system includes a laser oscillator 41 and a laser beam 44 outputted from the laser oscillator 41 into two laser beams 55a,
a distributor 43 for distributing the distributed laser beams 55a, 65a and the laser beams 55 after the laser beams are reflected by the reflecting mirrors 52, 62, respectively;
interferors 51, 61 fixed at appropriate positions so as to interfere with c, 65c;
receivers 53 and 63 for receiving the laser beams 55d and 65d outputted from the laser beams 55d and 65d, respectively, and converting the results into pulses; and a counter 54 for adding and subtracting the pulses outputted from the receivers 53 and 63;
64, and a counter interface 42 for connecting the counters 54, 64 and the arithmetic processing unit 9. The main shaft 31 has a hollow hole 70 bored through its center to a diameter large enough to allow the laser beams 65b and 65c to pass through. Reflector 62 attached to measure the displacement of the main shaft 31
is fixed to the reflector fixture 10, and is preferably provided in the hollow hole 70 of the main shaft 31 directly below the tool 34. The main shaft 31, which has a flange 33 equipped with a tool 34 at its tip, is provided with a thrust plate 35 on its outer periphery at a position as close to the tool 34 as possible, and the thrust plate 35 and the bearing 32 constitute a thrust bearing. Similarly, the main shaft 31
and the bearing 32 constitute a journal bearing. A pressure regulator 111 is connected to the bearing 32 for adjusting the pressure of air or oil supplied from the air or oil supply ports B, C to the supply ports B, C via piping fittings, The pressure regulator 111 is a dedicated pressure regulator drive device 1.
It is connected to the arithmetic processing device 9 via 12.

いま、供給口Aより軸受32と主軸31との隙
間に適切な圧力に保たれた空気あるいは油を、ま
た供給口B,Cより軸受32とスラスト板35と
の隙間に圧力調整器111によりあらかじめ適切
な圧力に調整された空気あるいは油をそれぞれ常
時供給した状態で、主軸31を任意の回転数で回
転させておく。そして、第4図に示すように、X
−Yテーブル2に搭載された被加工物1の任意の
位置X1を、工具34を前記被加工物1の深さ方
向にHだけ切り込ませた状態で溝入れ加工した
後、次の目標位置X2に前記工具34の中央を位
置せしめるため、送り用モータ71を適切な方向
に回転させることによりX−Yテーブル2を移動
させ、該X−Yテーブル2の変位を測定せしめる
レーザ測長システム(符号51〜54)により測
定した移動量が所望ピツチPに一致した時点で前
記送り用モータ71の回転を中止し、X−Yテー
ブル2の移動を停止させる。この場合、X1位置
での溝入れ加工に始まりX2位置への位置決めま
での間の室温変化による主軸31および前記X−
Yテーブル2の変位により、第4図に示すよう
に、工具34がX3位置に位置決めされ、目標値
に対しΔPだけ誤差が生じる。該誤差ΔPが前記X
−Yテーブル2の位置決め精度以下の微少量の場
合は、演算処理装置9からの指令により圧力調整
器111を駆動し、供給口BおよびCより供給さ
れる空気あるいは油の圧力を相対的に変化させる
ことにより主軸31を適切な方向に変位させ、該
主軸31の変位を測定せしめるレーザ測長システ
ム(符号61〜64)により測定した移動量が前
記誤差ΔPと一致した時点で前記圧力調整器11
1の駆動を中止することにより、主軸31を軸心
方向に固定し、最終的な位置決めを行う。また、
前記誤差ΔPがX−Yテーブル2の位置決め精度
以上の場合は、粗調整をX−Yテーブル2の位置
決めにより行い、しかる後上記の微調整を行う。
Now, air or oil maintained at an appropriate pressure is supplied to the gap between the bearing 32 and the main shaft 31 from the supply port A, and the pressure regulator 111 is used to supply the gap between the bearing 32 and the thrust plate 35 from the supply ports B and C. The main shaft 31 is rotated at an arbitrary rotation speed while air or oil adjusted to an appropriate pressure is constantly supplied. Then, as shown in Figure 4,
- After grooving an arbitrary position X 1 of the workpiece 1 mounted on the Y table 2 with the tool 34 cutting a distance H in the depth direction of the workpiece 1, the next target In order to locate the center of the tool 34 at position X2 , the X-Y table 2 is moved by rotating the feed motor 71 in an appropriate direction, and the displacement of the X-Y table 2 is measured. When the amount of movement measured by the system (numerals 51 to 54) matches the desired pitch P, the rotation of the feed motor 71 is stopped, and the movement of the XY table 2 is stopped. In this case, the spindle 31 and the X-
Due to the displacement of the Y table 2, the tool 34 is positioned at the X3 position, as shown in FIG. 4, and an error of ΔP occurs with respect to the target value. The error ΔP is
- If the amount is less than the positioning accuracy of the Y table 2, the pressure regulator 111 is driven by a command from the processing unit 9 to relatively change the pressure of the air or oil supplied from the supply ports B and C. When the amount of movement measured by a laser length measuring system (numerals 61 to 64) that measures the displacement of the main shaft 31 matches the error ΔP, the pressure regulator 11
By stopping the drive of the main shaft 31, the main shaft 31 is fixed in the axial direction and final positioning is performed. Also,
If the error ΔP is greater than the positioning accuracy of the X-Y table 2, coarse adjustment is performed by positioning the X-Y table 2, and then the fine adjustment described above is performed.

次に、上記の構成において、例えば被加工物1
のX1位置における溝入れ加工を行う場合につい
て具体的に説明する。加工前の位置に対し、室温
等の環境変化により加工中に、工具34を具備し
た主軸31がΔxBだけ、またX−Yテーブル2が
ΔxTだけ伸縮したとする。この場合、これらの伸
縮誤差ΔxBおよびΔxTが生じた時点で、演算処理
装置9は送り用モータ71あるいは圧力調整器1
11を駆動する。該送り用モータ71あるいは圧
力調整器111の制御方向および制御量に応じ、
前記誤差を打ち消す方向にX−Yテーブル2ある
いは主軸31を適切量だけ変位させ、常に目標値
に一致した加工(工具)位置が得られる。前記X
−Yテーブル2あるいは主軸31の変位量Δxは、
X−Yテーブル2の伸縮量ΔxTおよび主軸31の
伸縮量ΔxBの総和、すなわち、下式で表わされ
る。
Next, in the above configuration, for example, the workpiece 1
A case in which grooving is performed at the X1 position will be specifically explained. Assume that the main spindle 31 equipped with the tool 34 expands and contracts by Δx B and the X-Y table 2 expands and contracts by Δx T during machining due to environmental changes such as room temperature with respect to the position before machining. In this case, when these expansion/contraction errors Δx B and Δx T occur, the arithmetic processing unit 9 controls the feed motor 71 or the pressure regulator 1.
11. Depending on the control direction and control amount of the feed motor 71 or pressure regulator 111,
By displacing the X-Y table 2 or the main shaft 31 by an appropriate amount in a direction that cancels out the error, a machining (tool) position always matching the target value can be obtained. Said X
-The displacement amount Δx of the Y table 2 or the main shaft 31 is
The sum of the expansion/contraction amount Δx T of the X-Y table 2 and the expansion/contraction amount Δx B of the main shaft 31, that is, is expressed by the following formula.

Δx=ΔxT+ΔxB 演算処理装置9は、常時X−Yテーブル2および
主軸31の変位を測定し、前記伸縮量ΔxT,ΔxB
が生じた場合、総和Δxを算出し、補正のため所
望の出力を与えるものである。
Δx=Δx T +Δx B The arithmetic processing unit 9 constantly measures the displacement of the X-Y table 2 and the main shaft 31, and calculates the expansion/contraction amount Δx T , Δx B
If this occurs, the total sum Δx is calculated and a desired output is given for correction.

第5図は本発明の他の実施例における工具34
が固定されている側とは反対側の主軸31の軸端
部を示したものである。第5図においては、厚さ
方向の平行度が正確に得られている透明ガラス7
6が主軸31の軸端に接着されて気密が保たれる
ようになつており、中空穴70は真空に保たれる
ようになつており、中空穴70は真空に保たれて
いる。このようにレーザ光路を真空とすることに
より、主軸31の高速回転に基づく中空穴70内
の空気の不均一な密度分布のため生じる反射鏡6
2と干渉器61との間の測長誤差をなくすことが
でき、正確な測定ができる。また、中空穴70を
上記のように真空にする代りに、比重の小さな水
素、ヘリウムガスを封入することによつても、同
様に測定誤差を低減することができる。
FIG. 5 shows a tool 34 in another embodiment of the invention.
This figure shows the shaft end of the main shaft 31 on the opposite side to the side on which the main shaft 31 is fixed. In FIG. 5, a transparent glass 7 with accurate parallelism in the thickness direction is shown.
6 is bonded to the shaft end of the main shaft 31 to maintain airtightness, and the hollow hole 70 is kept in a vacuum. By making the laser optical path a vacuum in this way, the reflection mirror 6 that is generated due to the non-uniform density distribution of the air inside the hollow hole 70 due to the high speed rotation of the main shaft 31
2 and the interferometer 61 can be eliminated, allowing accurate measurement. Furthermore, instead of making the hollow hole 70 a vacuum as described above, the measurement error can be similarly reduced by filling it with hydrogen or helium gas having a small specific gravity.

以上のように、本発明によれば、工具と被加工
物との位置決めに際し、所望の切断ピツチ量をX
−Yテーブルにより割出し、1μm以下のX−Yテ
ーブルによる割出し誤差ならびに温度変化等によ
る主軸およびX−Yテーブルの伸縮量をレーザ測
定器により測定し、該測定値分だけ主軸を微少移
動させて補正するようにしたため、迅速かつ正確
に位置決めでき、製品の歩留まりも向上できる。
As described above, according to the present invention, when positioning the tool and the workpiece, the desired cutting pitch amount is
- Index using a Y table, measure the indexing error due to the X-Y table of 1 μm or less and the amount of expansion and contraction of the spindle and X-Y table due to temperature changes, etc. using a laser measuring device, and move the spindle slightly by the measured value. This allows for quick and accurate positioning and improves product yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来技術による位置決め
装置を装備した切断機の構成図、第3図は本発明
による位置決め装置の一実施例を装備した切断機
の構成図、第4図は該実施例における割出し補正
時のX−Yテーブルと主軸の動きを説明するため
の説明図、第5図は本発明の他の実施例の説明図
である。 符号の説明、1……被加工物、2……X−Yテ
ーブル、8……送りねじ、9……演算処理装置、
10……反射鏡固定具、31……主軸、32……
軸受、34……工具、35……スラスト板、41
……レーザ発振器、42……カウンタ・インター
フエイス、43……分配器、51,61……干渉
器、52,62……反射鏡、53,63……レシ
ーバ、54,64……カウンタ、70……中空
穴、71……送り用モータ、72……モータ駆動
装置、76……透明ガラス、111……圧力調整
器、112……圧力調整器駆動装置。
1 and 2 are block diagrams of a cutting machine equipped with a positioning device according to the prior art, FIG. 3 is a block diagram of a cutting machine equipped with an embodiment of the positioning device according to the present invention, and FIG. 4 is a block diagram of a cutting machine equipped with an embodiment of the positioning device according to the present invention. FIG. 5 is an explanatory diagram for explaining the movement of the X-Y table and the main axis during index correction in the example, and FIG. 5 is an explanatory diagram of another embodiment of the present invention. Explanation of symbols, 1... Workpiece, 2... X-Y table, 8... Feed screw, 9... Arithmetic processing unit,
10... Reflector fixture, 31... Main shaft, 32...
Bearing, 34... Tool, 35... Thrust plate, 41
... Laser oscillator, 42 ... Counter interface, 43 ... Distributor, 51, 61 ... Interference device, 52, 62 ... Reflector, 53, 63 ... Receiver, 54, 64 ... Counter, 70 ... Hollow hole, 71 ... Feeding motor, 72 ... Motor drive device, 76 ... Transparent glass, 111 ... Pressure regulator, 112 ... Pressure regulator drive device.

Claims (1)

【特許請求の範囲】 1 送りねじと送り用モータとを備えたX−Yテ
ーブルに載架された被加工物を加工する加工機
の、回転工具と該被加工物との精密位置決めを行
う装置であつて、加工機の回転工具を取り付けて
回転させる主軸を軸心方向に中空穴を有する中空
状に形成し、かつ主軸にスラスト板を設けて、該
主軸とこれを空気または油圧で支持する軸受とか
らなる静圧型軸受を形成し、主軸の前記中空穴の
ほぼ回転工具直下の主軸軸心位置に配置した反射
鏡または直角プリズムでのレーザ光の反射を利用
して上記回転工具の主軸方向の位置を読み取る第
1のレーザ測長器と、上記X−Yテーブルの主軸
と平行な方向の位置を読み取る第2のレーザ測長
器と、前記送り用モータを駆動しX−Yテーブル
と主軸とを相対的に移動させて回転工具と被加工
物との相対位置を粗調整する第1の位置調整手段
と、前記静圧型軸受におけるスラスト板の各片面
と軸受との隙間に供給するそれぞれの圧力を相対
的に変化させ、主軸の位置を微少量変位させて回
転工具と被加工物との相対位置を微調整する第2
の位置調整手段とを設け、前記第1および第2の
レーザ測長器の測定結果から回転工具とX−Yテ
ーブルとの主軸方向の相対位置を読み取り、その
結果に基づいて、まず第1の位置調整手段を動作
させ、次に第2の位置調整手段を動作させること
を特徴とする精密位置決め装置。 2 特許請求の範囲第1項に記載の精密位置決め
装置において、第1および第2のレーザ測長器に
連結されかつそれらによつて与えられる伸縮量に
対応する信号値を記憶して演算して制御信号を出
力する演算処理装置を設け、該演算処理装置が回
転工具とX−Yテーブルとの主軸方向の相対位置
を読み取るとともに、制御信号を発してX−Yテ
ーブルの送り用モータと静圧型軸受用の圧力調整
器とを制御することを特徴とする精密位置決め装
置。 3 特許請求の範囲第1項または第2項に記載の
精密位置決め装置において、主軸の回転工具取付
側と反対側の軸端部に透明板を設けて中空穴を密
封し、該中空穴内部を真空としたことを特徴とす
る精密位置決め装置。 4 特許請求の範囲第1項または第2項に記載の
精密位置決め装置において、主軸の回転工具取付
側と反対側の軸端部に透明板を設けて中空穴を密
封し、該中空穴内部に水素、ヘリウムなどの比重
の小さな気体を封入したことを特徴とする精密位
置決め装置。
[Claims] 1. A device for precisely positioning a rotary tool and a workpiece in a processing machine that processes a workpiece mounted on an X-Y table equipped with a feed screw and a feed motor. The main shaft to which the rotary tool of the processing machine is attached and rotated is formed into a hollow shape with a hollow hole in the axial direction, and the main shaft is provided with a thrust plate, and the main shaft is supported by air or hydraulic pressure. A hydrostatic bearing is formed with a bearing, and the direction of the main axis of the rotary tool is adjusted by using the reflection of laser light from a reflecting mirror or a right-angle prism placed in the hollow hole of the main shaft at the center of the main axis, almost directly below the rotary tool. a first laser length measuring device that reads the position of the X-Y table; a second laser length measuring device that reads the position parallel to the main axis of the X-Y table; a first position adjusting means for coarsely adjusting the relative position of the rotary tool and the workpiece by relatively moving the rotating tool; and a first position adjusting means for roughly adjusting the relative position of the rotating tool and the workpiece; The second step is to finely adjust the relative position between the rotary tool and the workpiece by relatively changing the pressure and slightly displacing the position of the spindle.
The relative position of the rotary tool and the X-Y table in the main axis direction is read from the measurement results of the first and second laser length measuring devices, and based on the result, the first position adjustment means is provided. A precision positioning device characterized by operating a position adjustment means and then operating a second position adjustment means. 2. The precision positioning device according to claim 1, which is connected to the first and second laser length measuring devices and stores and calculates signal values corresponding to the amount of expansion and contraction given by them. A processing unit that outputs a control signal is provided, and the processing unit reads the relative position of the rotary tool and the X-Y table in the main axis direction, and issues a control signal to control the feed motor of the X-Y table and the static pressure type. A precision positioning device characterized by controlling a pressure regulator for a bearing. 3. In the precision positioning device according to claim 1 or 2, a transparent plate is provided at the shaft end of the main shaft on the side opposite to the rotary tool mounting side to seal the hollow hole, and the inside of the hollow hole is sealed. A precision positioning device characterized by a vacuum. 4. In the precision positioning device according to claim 1 or 2, a transparent plate is provided at the shaft end of the spindle on the side opposite to the rotary tool mounting side to seal the hollow hole, and the inside of the hollow hole is sealed. A precision positioning device that is characterized by being filled with a gas with low specific gravity such as hydrogen or helium.
JP18712880A 1980-12-27 1980-12-27 Apparatus for precise positioning Granted JPS57114344A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP18712880A JPS57114344A (en) 1980-12-27 1980-12-27 Apparatus for precise positioning
US06/333,632 US4585379A (en) 1980-12-27 1981-12-22 Precision positioning device
CH824581A CH645292A5 (en) 1980-12-27 1981-12-23 PRECISION POSITIONING DEVICE.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18712880A JPS57114344A (en) 1980-12-27 1980-12-27 Apparatus for precise positioning

Publications (2)

Publication Number Publication Date
JPS57114344A JPS57114344A (en) 1982-07-16
JPS6350141B2 true JPS6350141B2 (en) 1988-10-06

Family

ID=16200601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18712880A Granted JPS57114344A (en) 1980-12-27 1980-12-27 Apparatus for precise positioning

Country Status (1)

Country Link
JP (1) JPS57114344A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0425225U (en) * 1990-06-25 1992-02-28
JPH0438030U (en) * 1990-07-26 1992-03-31

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2530827B2 (en) * 1986-11-19 1996-09-04 株式会社東京精密 Grooving control method for dicing machine
JP2501970B2 (en) * 1991-05-14 1996-05-29 株式会社東京精密 Grooving control device for dicing machine
JP2540745Y2 (en) * 1992-04-28 1997-07-09 株式会社ディスコ Precision cutting equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52278A (en) * 1975-06-19 1977-01-05 Dai Ichi Seiyaku Co Ltd Process for preparing piperidylbenzimidazole derivatives

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52278A (en) * 1975-06-19 1977-01-05 Dai Ichi Seiyaku Co Ltd Process for preparing piperidylbenzimidazole derivatives

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0425225U (en) * 1990-06-25 1992-02-28
JPH0438030U (en) * 1990-07-26 1992-03-31

Also Published As

Publication number Publication date
JPS57114344A (en) 1982-07-16

Similar Documents

Publication Publication Date Title
US4365301A (en) Positional reference system for ultraprecision machining
US4974165A (en) Real time machining control system including in-process part measuring and inspection
KR20190028339A (en) Method and apparatus for gear skiving
US4585379A (en) Precision positioning device
US4417816A (en) Laser measuring system and method for turning machine
US5969817A (en) Precision indexing angle measuring method and system for machine tools
JPH01501298A (en) Workpiece carrying spindle assemblies with magnetic bearings and devices for providing such assemblies for extremely high precision machine tools
JPS5916202B2 (en) Measuring and positioning device using interference fringes
CN102756334A (en) Cutting device
US6960052B2 (en) Machine tool and method of adjusting the spindle of a machine tool
Zheng et al. A high-precision laser method for directly and quickly measuring 21 geometric motion errors of three linear axes of computer numerical control machine tools
CN103389049A (en) Method for adjusting and detecting machine tool cradle-type composite rotary table axis space vertical intersection
CN102692195A (en) Rotation angle measuring device
JPS6090656A (en) Spindle-position correcting appratus for machine tool
JPS6350141B2 (en)
WO2012023335A1 (en) Method for measuring normal vector tracing ultra-precision shape
US3672246A (en) Automatic spindle growth compensation system
GB2255636A (en) High-precision positional control
US3393588A (en) Spindle growth compensating system
Benjamin Diamond turning at a large optical manufacturer
CN115533675A (en) Optical element time-control grinding surface shape measuring system and surface shape measuring method
JPS5840247A (en) Precision positioning device
Lau et al. An advanced 6-degree-of-freedom laser system for quick CNC machine and CMM error mapping and compensation
JPH07100736A (en) Spindle position measuring device
JPS6227945B2 (en)