JPH04372804A - Optical system for measuring linear motion - Google Patents

Optical system for measuring linear motion

Info

Publication number
JPH04372804A
JPH04372804A JP14904191A JP14904191A JPH04372804A JP H04372804 A JPH04372804 A JP H04372804A JP 14904191 A JP14904191 A JP 14904191A JP 14904191 A JP14904191 A JP 14904191A JP H04372804 A JPH04372804 A JP H04372804A
Authority
JP
Japan
Prior art keywords
beam splitter
polarizing beam
light
light beam
polarizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14904191A
Other languages
Japanese (ja)
Other versions
JP3045567B2 (en
Inventor
Takumi Mori
工 毛利
Arinori Tokuhashi
有紀 徳橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP3149041A priority Critical patent/JP3045567B2/en
Publication of JPH04372804A publication Critical patent/JPH04372804A/en
Application granted granted Critical
Publication of JP3045567B2 publication Critical patent/JP3045567B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a measuring optical system having the compact constitution for controlling the linear motion of a moving body such as a stage in high accuracy. CONSTITUTION:Two polarizing beam splitters 22 and 34 whose beam-split faces are intersected at a right angle are provided in parallel in the incident direction of the light beams. Al/2 plate 38 is arranged between the beam splitters. At the part between the polarizing beam splitters 22 and 34 and a reflecting surface 26a of a moving body 26, lambda/4 plates 24 and 36 are provided. At the opposite side of the plates, a lens 28 for refracting the light beams from the polarizing beam splitters 22 and 34 is arranged. A half mirror 30a and a total reflection mirror 30b are provided at the edge of a polarizing beam splitter 30 which is located at the focal plane.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、工作機械や光学機械や
測定機械などのように、直線運動をするテーブル機器の
位置を制御するステージ装置において、特にレーザーを
利用して被測定物の位置を測定する装置に関するもので
ある。
[Industrial Application Field] The present invention is particularly applicable to a stage device that controls the position of a table device that moves linearly, such as a machine tool, an optical machine, or a measuring machine. The present invention relates to a device for measuring .

【0002】0002

【従来の技術とその課題】図4に示すように、直線運動
をするステージ上の移動体Mが例えばx軸に沿って移動
した場合、x軸方向の位置決め誤差exの他に、y軸方
向の動きに伴うy軸変位誤差ey、z軸方向の動きに伴
うezの3成分からなる変位誤差と、x軸回りのローリ
ングによるローリング誤差α、y軸回りのピッチングに
よるピッチング誤差β、z軸回りによるヨーイングによ
るヨーイング誤差γからなる3成分の角度誤差との6成
分の誤差が発生することが知られている。
[Prior Art and its Problems] As shown in FIG. 4, when a movable body M on a stage that moves linearly moves along the x-axis, in addition to the positioning error ex in the x-axis direction, Displacement error consisting of three components: y-axis displacement error ey due to movement, ez due to movement in the z-axis direction, rolling error α due to rolling around the x-axis, pitching error β due to pitching around the y-axis, and displacement error around the z-axis. It is known that a six-component error occurs, including a three-component angle error consisting of a yawing error γ due to yawing.

【0003】従来の測定器としては、例えば特開昭62
−22360号に開示されるレーザー干渉測長器が知ら
れている。この測長器では、測長の場合に被測定物体に
二枚の反射鏡が必要となる。また傾き成分(ヨーイング
、ピッチング)の測定には二枚のバイプリズムが必要で
ある上に、同時に二成分を測定することができない。 また、上記の三成分を一つの測定器で同時に測ることが
できない。
[0003] As a conventional measuring instrument, for example, Japanese Patent Laid-Open No. 62
A laser interferometer length measuring device disclosed in Japanese Patent No. 22360 is known. This length measuring device requires two reflecting mirrors on the object to be measured when measuring the length. Furthermore, two biprisms are required to measure tilt components (yawing, pitching), and two components cannot be measured at the same time. Furthermore, the three components mentioned above cannot be measured simultaneously with one measuring device.

【0004】一般に直線運動をする機器にはxステージ
、xyステージ、xyzステージが用いられているが、
これら移動ステージの直線運動精度を高精度に測定する
には軸変位の測定にはレーザー干渉測長システム、角度
変位にはオートコリメータが普及している。
[0004]Generally, x stage, xy stage, and xyz stage are used for linear motion equipment, but
To accurately measure the linear motion accuracy of these moving stages, laser interferometric length measurement systems are widely used to measure axial displacements, and autocollimators are widely used to measure angular displacements.

【0005】例えば、xy平面内を移動するxyステー
ジ等においては、図5に示すように、二つのレーザー測
長器100,102と二つのオートコリメータ104,
106と直交ミラー108を用いて、レーザー干渉測長
器102を用いてx変位を、レーザー干渉測長器104
を用いてy変位を測定し、これと同時にオートコリメー
タ104を用いて角度誤差αとγを、オートコリメータ
106を用いて角度誤差βとγを測定する構成が知られ
ている。この構成では、二個のレーザー干渉測長器10
0,102と二個のオートコリメータ104,106を
用いて5成分の変位を同時に測定することができる。
For example, in an xy stage that moves within the xy plane, two laser length measuring devices 100, 102, two autocollimators 104,
106 and the orthogonal mirror 108, the x displacement is measured using the laser interferometric length measuring device 102, and the x displacement is measured using the laser interferometric length measuring device 104.
A known configuration is known in which the y displacement is measured using an autocollimator 104, and the angular errors β and γ are simultaneously measured using an autocollimator 106. In this configuration, two laser interferometers 10
Using two autocollimators 104 and 106, the displacement of five components can be measured simultaneously.

【0006】しかし、このような測定システムは構成が
複雑になる上に、その測定に必要なスペースも大きくな
る。逆に、同一サイズのステージでは、測定系にスペー
スが取られ過ぎて動作範囲が小さくなる。また測定点も
多くなり、測定誤差の要因にもなる。
However, such a measurement system has a complicated configuration and also requires a large space for measurement. Conversely, stages of the same size will take up too much space in the measurement system and the operating range will become smaller. Furthermore, the number of measurement points increases, which may cause measurement errors.

【0007】本発明は、ステージなどの移動体の直線運
動を高精度に制御するためのコンパクトな構成の測定光
学系を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a measurement optical system with a compact configuration for controlling the linear motion of a moving body such as a stage with high precision.

【0008】[0008]

【課題を解決するための手段】反射面を有する移動体の
位置を測定する本発明の測定光学系は、光ビームを発射
する手段と、この光ビームの進行方向に並び、互いのビ
ームスプリット面が直交する二個の偏光ビームスプリッ
ターと、それらの間に配置された1/2波長板と、偏光
ビームスプリッターと移動体の反射面との間に設けられ
た1/4波長板とを有し、前記光ビームを二本の光ビー
ムに分離するビームスプリット手段とを備え、第一の偏
光ビームスプリッターは一方の光ビームを移動体の反射
面に向けて射出し、そこからの反射光ビームを通過させ
、第二の偏光ビームスプリッターはその反対側に他方の
光ビームを射出し、偏光ビームスプリッターからの光ビ
ームを屈折させるレンズ手段と、レンズ手段の焦平面に
配置された反射手段とを有する光学手段であって、第一
の偏光ビームスプリッターからの光ビームを第二の偏光
ビームスプリッターへ、第二の偏光ビームスプリッター
からの光ビームを第一の偏光ビームスプリッターへ入射
させる光学手段を更に備え、第二の偏光ビームスプリッ
ターは光学手段からの光ビームを通過させて移動体の反
射面に向けて射出し、そこからの反射光ビームを反射し
てビームスプリット手段から射出し、第一の偏光ビーム
スプリッターは光学手段からの光ビームを反射してビー
ムスプリット手段から射出し、ビームスプリット手段か
ら射出された二本の光ビームを受けて、移動体の位置を
検出する手段を更に備えている。
[Means for Solving the Problems] A measuring optical system of the present invention for measuring the position of a moving body having a reflective surface includes means for emitting a light beam, and beam splitting surfaces arranged in the traveling direction of the light beam and each other. It has two polarizing beam splitters whose polarizing beam splitters are perpendicular to each other, a 1/2 wavelength plate disposed between them, and a 1/4 wavelength plate disposed between the polarizing beam splitter and the reflective surface of the moving body. , beam splitting means for separating the light beam into two light beams, the first polarizing beam splitter emits one of the light beams toward the reflective surface of the moving object, and splits the reflected light beam from there. the second polarizing beam splitter emits the other light beam on its opposite side, the second polarizing beam splitter having lens means for refracting the light beam from the polarizing beam splitter and reflecting means disposed in the focal plane of the lens means. The optical means further comprises an optical means for making the light beam from the first polarizing beam splitter enter the second polarizing beam splitter and making the light beam from the second polarizing beam splitter enter the first polarizing beam splitter. , the second polarizing beam splitter passes the light beam from the optical means and emits it toward the reflective surface of the moving body, reflects the reflected light beam therefrom and outputs it from the beam splitting means, and the second polarized beam splitter passes the light beam from the optical means and emits it toward the reflective surface of the moving body, and reflects the reflected light beam from there and outputs it from the beam splitting means, so that the first polarized light The beam splitter further includes means for reflecting the light beam from the optical means and emitting it from the beam splitting means, receiving the two light beams emitted from the beam splitting means, and detecting the position of the moving body.

【0009】[0009]

【作用】ビームスプリット手段に入射した光ビームは二
本に分けられ、一方の光ビームは第一の偏光ビームスプ
リッターから移動体の反射面に向けて射出される。反射
面からの反射光は第一の偏光ビームスプリッターを通過
して光学手段に入射し、第二の偏光ビームスプリッター
を通過して再び移動体の反射面に達する。この反射面で
再度反射された光は第二の偏光ビームスプリッターで反
射され、移動体の位置を検出する手段に入射する。
[Operation] The light beam incident on the beam splitting means is divided into two, and one of the light beams is emitted from the first polarizing beam splitter toward the reflective surface of the moving body. The reflected light from the reflective surface passes through the first polarizing beam splitter, enters the optical means, passes through the second polarizing beam splitter, and reaches the reflective surface of the moving body again. The light reflected again by this reflective surface is reflected by the second polarizing beam splitter and enters the means for detecting the position of the moving body.

【0010】ビームスプリット手段で分けられた他方の
光ビームは第二の偏光ビームスプリッターから射出され
、光学手段を介して、第一の偏光ビームスプリッターに
入射し、そこで反射され、移動体の位置を検出する手段
に入射する。
The other light beam separated by the beam splitting means is emitted from the second polarizing beam splitter, enters the first polarizing beam splitter via the optical means, is reflected there, and determines the position of the moving object. incident on the means for detection.

【0011】移動体の位置を検出する手段は、入射され
る二本の光ビームから移動体の位置を検出する。
The means for detecting the position of the moving body detects the position of the moving body from the two incident light beams.

【0012】0012

【実施例】本発明の測定光学系の実施例を図1に示す。 光源12はレーザーダイオード14とコリメートレンズ
16を含み、レーザーダイオード14から射出されたレ
ーザー光はコリメートレンズ16で平行ビームに整形さ
れて光源12から射出される。光源12から射出された
平行ビームはアイソレータ18を通過し、紙面に対して
45度傾いた直線偏光となり、ミラー20で反射された
後に、偏光ビームスプリッター22に入射する。偏光ビ
ームスプリッター22は紙面に平行な偏光成分を通過さ
せ、紙面に垂直な偏光成分を反射する。
[Embodiment] An embodiment of the measurement optical system of the present invention is shown in FIG. The light source 12 includes a laser diode 14 and a collimating lens 16 , and the laser beam emitted from the laser diode 14 is shaped into a parallel beam by the collimating lens 16 and emitted from the light source 12 . The parallel beam emitted from the light source 12 passes through the isolator 18, becomes linearly polarized light inclined at 45 degrees with respect to the plane of the paper, is reflected by the mirror 20, and then enters the polarizing beam splitter 22. The polarizing beam splitter 22 passes polarized light components parallel to the plane of the paper and reflects polarized light components perpendicular to the plane of the paper.

【0013】偏光ビームスプリッター22で反射された
光ビーム(物体光)は、λ/4板24を通過して、移動
体26の平面ミラー26aに達する。ここで光ビームは
反射され、λ/4板24を再度通過し、紙面に平行な直
線偏光となり、偏光ビームスプリッター22を通過して
、レンズ28に入射する。レンズ28に入射した光ビー
ムは集束されつつ、偏光ビームスプリッター30に入射
する。偏光ビームスプリッター30は左面にハーフミラ
ー30aが、下面に全反射ミラー30bが設けられてい
て、これらはレンズ28の焦平面に位置している。偏光
ビームスプリッター30に入射した光はハーフミラー3
0a上で集束し、その一部はハーフミラー30aを透過
して二次元位置検出素子32に入射し、残りの光はハー
フミラー30aで反射される。ハーフミラー30aで反
射された光はレンズ28に入射して平行ビームとなり、
偏光ビームスプリッター34とλ/4板36を通過して
、移動体26の平面ミラー26aに到達し反射される。 平面ミラー26aで反射された光ビームは再びλ/4板
36を通過して紙面に垂直な直線偏光となり、偏光ビー
ムスプリッター34で反射され、λ/4板40に入射す
る。
The light beam (object light) reflected by the polarizing beam splitter 22 passes through the λ/4 plate 24 and reaches the plane mirror 26a of the moving body 26. Here, the light beam is reflected, passes through the λ/4 plate 24 again, becomes linearly polarized light parallel to the plane of the paper, passes through the polarizing beam splitter 22, and enters the lens 28. The light beam incident on the lens 28 is focused and incident on the polarizing beam splitter 30. The polarizing beam splitter 30 is provided with a half mirror 30a on the left surface and a total reflection mirror 30b on the lower surface, and these are located on the focal plane of the lens 28. The light incident on the polarizing beam splitter 30 passes through the half mirror 3
The light is focused on 0a, a part of which passes through the half mirror 30a and enters the two-dimensional position detection element 32, and the remaining light is reflected by the half mirror 30a. The light reflected by the half mirror 30a enters the lens 28 and becomes a parallel beam,
The light passes through the polarizing beam splitter 34 and the λ/4 plate 36, reaches the plane mirror 26a of the moving body 26, and is reflected. The light beam reflected by the plane mirror 26a passes through the λ/4 plate 36 again to become linearly polarized light perpendicular to the paper plane, is reflected by the polarizing beam splitter 34, and enters the λ/4 plate 40.

【0014】一方、偏光ビームスプリッター22を透過
した紙面に平行な直線偏光の光ビーム(参照光)は、λ
/2板38を通過して紙面に垂直な直線偏光となり、偏
光ビームスプリッター34で反射される。偏光ビームス
プリッター34で反射された光ビームは、レンズ28に
入射して集束されつつ、偏光ビームスプリッター30に
入射する。偏光ビームスプリッター30に入射した光は
ビームスプリット面30cで反射され、全反射ミラー3
0b上に集束し反射される。全反射ミラー30bで反射
された光はビームスプリット面30cで反射され、レン
ズ28に入射して平行ビームとなり、偏光ビームスプリ
ッター22に入射し反射される。偏光ビームスプリッタ
ー22で反射された光ビームはλ/2板38を通過する
際に紙面に平行な直線偏光となり、偏光ビームスプリッ
ター34を通過し、λ/4板40に入射する。
On the other hand, the linearly polarized light beam (reference light) parallel to the plane of the paper that has passed through the polarization beam splitter 22 has a wavelength of λ
The light passes through the /2 plate 38, becomes linearly polarized light perpendicular to the plane of the paper, and is reflected by the polarizing beam splitter 34. The light beam reflected by the polarizing beam splitter 34 enters the lens 28 and is focused, and then enters the polarizing beam splitter 30. The light incident on the polarizing beam splitter 30 is reflected by the beam splitting surface 30c, and is reflected by the total reflection mirror 3.
It is focused on 0b and reflected. The light reflected by the total reflection mirror 30b is reflected by the beam splitting surface 30c, enters the lens 28, becomes a parallel beam, enters the polarizing beam splitter 22, and is reflected. When the light beam reflected by the polarizing beam splitter 22 passes through the λ/2 plate 38, it becomes linearly polarized light parallel to the plane of the paper, passes through the polarizing beam splitter 34, and enters the λ/4 plate 40.

【0015】λ/4板40を通過した二本の光ビームは
共に円偏光となるとともに合成された後、偏光ビームス
プリッター42で二本のビームに分けられる。偏光ビー
ムスプリッター42を通過したビームは、λ/4板44
を通過して偏光ビームスプリッター46に入射して更に
二本のビームに分割され、偏光ビームスプリッター46
を通過したビームはフォトダイオードPD1に入射し、
偏光ビームスプリッター46で反射されたビームはフォ
トダイオードPD3に入射する。偏光ビームスプリッタ
ー42で反射されたビームはλ/4板48を通過して偏
光ビームスプリッター50に入射し、更に二本のビーム
に分割され、偏光ビームスプリッター50で反射された
ビームはフォトダイオードPD2に入射し、偏光ビーム
スプリッター50を透過したビームはフォトダイオード
PD4に入射する。
The two light beams that have passed through the λ/4 plate 40 are both circularly polarized and combined, and are then split into two beams by a polarizing beam splitter 42. The beam that has passed through the polarizing beam splitter 42 is transferred to a λ/4 plate 44.
The beam passes through the polarizing beam splitter 46 and is further split into two beams.
The beam that has passed through enters the photodiode PD1,
The beam reflected by the polarizing beam splitter 46 enters the photodiode PD3. The beam reflected by the polarizing beam splitter 42 passes through the λ/4 plate 48 and enters the polarizing beam splitter 50, where it is further split into two beams, and the beam reflected by the polarizing beam splitter 50 enters the photodiode PD2. The incident beam passes through the polarizing beam splitter 50 and enters the photodiode PD4.

【0016】フォトダイオードPD1〜PD4で検出さ
れる干渉信号の強度S1〜S4はそれぞれ次のようにな
る。
The intensities S1 to S4 of the interference signals detected by the photodiodes PD1 to PD4 are as follows.

【0017】 PD1:  S1=a1+b1cos(2π/λ・n・
ΔL) PD2:  S2=a2+b2sin(2π/λ・n・
ΔL) PD3:  S3=a3+b3cos(2π/λ・n・
ΔL) PD4:  S4=a4+b4sin(2π/λ・n・
ΔL) ここに、ΔLは物体光と参照光の光路差、λはレーザー
光の波長である。差動増幅器52から出力されるS1−
S2がcos信号、差動増幅器54から出力されるS2
−S4がsin信号となる。差動増幅器52と54の出
力はそれぞれプリアンプで位相補正とオフセット調整が
行なわれ、計数器へ送られて干渉信号が計数され、平面
ミラー26aの変位が計測される。このとき、物体光は
移動体までの光路を二往復するため、移動体の動きに対
して二倍の光路差が生じるので測定感度が二倍になる。 しかも、物体光と参照光がほぼ同じ光路を通るので温度
環境等の変動なども強い。
PD1: S1=a1+b1cos(2π/λ・n・
ΔL) PD2: S2=a2+b2sin(2π/λ・n・
ΔL) PD3: S3=a3+b3cos(2π/λ・n・
ΔL) PD4: S4=a4+b4sin(2π/λ・n・
ΔL) Here, ΔL is the optical path difference between the object light and the reference light, and λ is the wavelength of the laser light. S1- output from the differential amplifier 52
S2 is a cos signal, and S2 output from the differential amplifier 54
-S4 becomes a sin signal. The outputs of the differential amplifiers 52 and 54 are each subjected to phase correction and offset adjustment by a preamplifier, and are sent to a counter where interference signals are counted and the displacement of the plane mirror 26a is measured. At this time, since the object light travels twice along the optical path to the moving object, the optical path difference is twice as large with respect to the movement of the moving object, so the measurement sensitivity is doubled. Moreover, since the object light and the reference light pass through almost the same optical path, fluctuations in the temperature environment, etc., are strong.

【0018】次に移動体26の平面ミラー26aが傾い
たときの様子を図2に示す。図中、移動体が傾いていな
いときの光路を破線で示してある。移動体26がθ傾く
と、平面ミラー26aに入射した光ビームは、入射光に
対して2θの角度を持って反射され、レンズ28に入射
する。レンズ28を通過した光ビームは、ハーフミラー
30aで反射され、再びレンズ28に入射する。レンズ
28から射出される光ビームは、レンズ28へ入射した
光ビームに平行に射出される。この光ビームは移動体2
6の平面ミラー26aで反射され、偏光ビームスプリッ
ター34で反射される。偏光ビームスプリッター34か
ら射出されるビームは、偏光ビームスプリッター22に
入射するビームに平行に射出されるが、その光路は平面
ミラー26aが傾いていないときの光路からは僅かにず
れている。偏光ビームスプリッター34から射出された
光ビームは、上述したように、その干渉信号から移動体
26の位置が検出される。
Next, FIG. 2 shows the situation when the plane mirror 26a of the movable body 26 is tilted. In the figure, the optical path when the moving body is not tilted is shown by a broken line. When the moving body 26 is tilted by θ, the light beam incident on the plane mirror 26a is reflected at an angle of 2θ with respect to the incident light, and is incident on the lens 28. The light beam that has passed through the lens 28 is reflected by the half mirror 30a and enters the lens 28 again. The light beam emitted from the lens 28 is emitted parallel to the light beam incident on the lens 28. This light beam
6 is reflected by the plane mirror 26a, and then reflected by the polarizing beam splitter 34. The beam emitted from the polarizing beam splitter 34 is emitted parallel to the beam incident on the polarizing beam splitter 22, but its optical path is slightly deviated from the optical path when the plane mirror 26a is not tilted. As described above, the position of the moving object 26 is detected from the interference signal of the light beam emitted from the polarizing beam splitter 34.

【0019】一方、ハーフミラー30aを通過した光は
、二次元位置検出素子32に入射する。ハーフミラー3
0a上において、平面ミラー26aが傾いていないとき
の反射光の照射位置と、平面ミラー26aがθ傾いてい
るときの反射光の照射位置とのずれdは、
On the other hand, the light that has passed through the half mirror 30a is incident on the two-dimensional position detection element 32. half mirror 3
On 0a, the deviation d between the irradiation position of the reflected light when the plane mirror 26a is not tilted and the irradiation position of the reflected light when the plane mirror 26a is tilted by θ is:

【0020】[0020]

【数1】[Math 1]

【0021】で表される。ここにfはレンズ28の焦点
距離である。従って、変位dより傾き角θを導き出すこ
とができる。この特性は、図1において、移動体26の
平面ミラー26aが紙面に平行な軸を中心として傾いた
場合も同様である。これにより、移動体26の平面ミラ
ー26aの2方向の角度成分を同時に検出できる。
It is expressed as follows. Here, f is the focal length of the lens 28. Therefore, the tilt angle θ can be derived from the displacement d. This characteristic is the same even when the plane mirror 26a of the movable body 26 is tilted about an axis parallel to the plane of the paper in FIG. Thereby, angular components in two directions of the plane mirror 26a of the moving body 26 can be detected simultaneously.

【0022】本発明は上述に実施例に限定されるもので
はなく、発明の要旨を逸脱しない範囲で種々多くの変形
が可能である。例えば、図1に示した偏光ビームスプリ
ッターの代わりに、図3に示す偏光ビームスプリッター
を用いることもできる。またλ/4板は二枚である必要
はなく、図3のようにλ/4板は一枚で済ませることも
できる。
The present invention is not limited to the embodiments described above, but can be modified in many ways without departing from the gist of the invention. For example, instead of the polarizing beam splitter shown in FIG. 1, a polarizing beam splitter shown in FIG. 3 may be used. Further, it is not necessary to use two λ/4 plates, and it is also possible to use only one λ/4 plate as shown in FIG.

【0023】[0023]

【発明の効果】本発明の測定光学系によれば、測長と角
度変位(ヨーイングとピッチング)を同時に同一箇所を
測定して行なえるため、ステージなどの移動体の直線運
動を高精度に制御するためのコンパクトな構成の測定光
学系が提供される。
[Effects of the Invention] According to the measurement optical system of the present invention, length measurement and angular displacement (yawing and pitching) can be simultaneously measured at the same location, so the linear motion of a moving object such as a stage can be controlled with high precision. A measurement optical system with a compact configuration is provided for.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の測定光学系の実施例を示す。FIG. 1 shows an embodiment of the measurement optical system of the present invention.

【図2】移動体が傾いたときの物体光の光路を示す。FIG. 2 shows the optical path of object light when the moving body is tilted.

【図3】図1の測定光学系の変形例を示す。FIG. 3 shows a modification of the measurement optical system in FIG. 1.

【図4】移動体に発生する6つの誤差を示す。FIG. 4 shows six errors occurring in a moving body.

【図5】従来例に係る移動体の測定装置の構成を示す。FIG. 5 shows the configuration of a measuring device for a moving object according to a conventional example.

【符号の説明】[Explanation of symbols]

12…光源、22,34,30…偏光ビームスプリッタ
ー、24,36…λ/4板、26…移動体、26a…平
面ミラー、28…レンズ、30a…ハーフミラー、30
b…全反射ミラー、38…λ/2板。
12... Light source, 22, 34, 30... Polarizing beam splitter, 24, 36... λ/4 plate, 26... Moving body, 26a... Plane mirror, 28... Lens, 30a... Half mirror, 30
b...Total reflection mirror, 38...λ/2 plate.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  反射面を有する移動体の位置を測定す
るための光学系であって、光ビームを発射する手段と、
この光ビームの進行方向に並び、互いのビームスプリッ
ト面が直交する二個の偏光ビームスプリッターと、それ
らの間に配置された1/2波長板と、偏光ビームスプリ
ッターと移動体の反射面との間に設けられた1/4波長
板とを有し、前記光ビームを二本の光ビームに分離する
ビームスプリット手段とを備え、第一の偏光ビームスプ
リッターは一方の光ビームを移動体の反射面に向けて射
出し、そこからの反射光ビームを通過させ、第二の偏光
ビームスプリッターはその反対側に他方の光ビームを射
出し、偏光ビームスプリッターからの光ビームを屈折さ
せるレンズ手段と、レンズ手段の焦平面に配置された反
射手段とを有する光学手段であって、第一の偏光ビーム
スプリッターからの光ビームを第二の偏光ビームスプリ
ッターへ、第二の偏光ビームスプリッターからの光ビー
ムを第一の偏光ビームスプリッターへ入射させる光学手
段を更に備え、第二の偏光ビームスプリッターは光学手
段からの光ビームを通過させて移動体の反射面に向けて
射出し、そこからの反射光ビームを反射してビームスプ
リット手段から射出し、第一の偏光ビームスプリッター
は光学手段からの光ビームを反射してビームスプリット
手段から射出し、ビームスプリット手段から射出された
二本の光ビームを受けて、移動体の位置を検出する手段
を更に備えている直線運動測定光学系。
1. An optical system for measuring the position of a moving body having a reflective surface, comprising means for emitting a light beam;
Two polarizing beam splitters lined up in the traveling direction of this light beam and whose beam splitting planes are perpendicular to each other, a 1/2 wavelength plate placed between them, and a reflecting surface of the moving object between the polarizing beam splitter and the moving object. a 1/4 wavelength plate provided between the two, and beam splitting means for separating the light beam into two light beams, the first polarizing beam splitter splitting one of the light beams into lens means for refracting the light beam from the polarizing beam splitter, with the second polarizing beam splitter projecting the other light beam on the opposite side thereof; reflecting means disposed in the focal plane of the lens means, the optical means comprising: directing the light beam from the first polarizing beam splitter to the second polarizing beam splitter and directing the light beam from the second polarizing beam splitter; The second polarizing beam splitter passes the light beam from the optical means and emits the light beam toward the reflective surface of the moving body, and the second polarizing beam splitter allows the light beam to be reflected from the moving body. The first polarizing beam splitter reflects the light beam from the optical means and exits from the beam splitting means, and receives the two light beams emitted from the beam splitting means. A linear motion measurement optical system further comprising means for detecting the position of a moving object.
【請求項2】  前記光学手段は、第一の偏光ビームス
プリッターからの光ビームと第二の偏光ビームスプリッ
ターからの光ビームとを分離する第三の偏光ビームスプ
リッターを含み、前記反射手段は、第二の偏光ビームス
プリッターからの光ビームが照射される第三の偏光ビー
ムスプリッターの端面に設けられた全反射ミラーと、第
一の偏光ビームスプリッターからの光ビームが照射され
る第三の偏光ビームスプリッターの端面に設けられたハ
ーフミラーとを有し、ハーフミラーを通過した光を受け
て、ハーフミラーに照射された光ビームの位置から移動
体の反射面の傾きを検出する手段を更に備えている請求
項1記載の直線運動測定光学系。
2. The optical means includes a third polarizing beam splitter that separates a light beam from the first polarizing beam splitter and a light beam from the second polarizing beam splitter, and the reflecting means includes a third polarizing beam splitter that separates a light beam from the first polarizing beam splitter. A total reflection mirror provided on the end face of a third polarizing beam splitter that is irradiated with the light beam from the second polarizing beam splitter, and a third polarizing beam splitter that is irradiated with the light beam from the first polarizing beam splitter. and a half mirror provided on the end face of the movable body, and further includes means for receiving the light passing through the half mirror and detecting the inclination of the reflecting surface of the moving object from the position of the light beam irradiated to the half mirror. A linear motion measuring optical system according to claim 1.
JP3149041A 1991-06-21 1991-06-21 Moving object position measurement device Expired - Fee Related JP3045567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3149041A JP3045567B2 (en) 1991-06-21 1991-06-21 Moving object position measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3149041A JP3045567B2 (en) 1991-06-21 1991-06-21 Moving object position measurement device

Publications (2)

Publication Number Publication Date
JPH04372804A true JPH04372804A (en) 1992-12-25
JP3045567B2 JP3045567B2 (en) 2000-05-29

Family

ID=15466362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3149041A Expired - Fee Related JP3045567B2 (en) 1991-06-21 1991-06-21 Moving object position measurement device

Country Status (1)

Country Link
JP (1) JP3045567B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH095060A (en) * 1995-06-16 1997-01-10 Sokkia Co Ltd Straightness interferometer
CN116086361A (en) * 2023-04-11 2023-05-09 季华实验室 Straightness measuring device for large-stroke guide rail and error obtaining method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH095060A (en) * 1995-06-16 1997-01-10 Sokkia Co Ltd Straightness interferometer
CN116086361A (en) * 2023-04-11 2023-05-09 季华实验室 Straightness measuring device for large-stroke guide rail and error obtaining method

Also Published As

Publication number Publication date
JP3045567B2 (en) 2000-05-29

Similar Documents

Publication Publication Date Title
KR100554886B1 (en) Inter- ferometer system with two wavelengths, and lithographic apparatus provided with such a system
US6084673A (en) Lithographic apparatus for step-and-scan imaging of mask pattern with interferometer mirrors on the mask and wafer holders
US5067817A (en) Method and device for noncontacting self-referencing measurement of surface curvature and profile
KR100542832B1 (en) Interferometer system and lithographic apparatus comprising such a system
US7864336B2 (en) Compact Littrow encoder
US5064289A (en) Linear-and-angular measuring plane mirror interferometer
US7355719B2 (en) Interferometer for measuring perpendicular translations
JP2755757B2 (en) Measuring method of displacement and angle
EP0208276B1 (en) Optical measuring device
US3622244A (en) Dual axes interferometer
US7362447B2 (en) Low walk-off interferometer
JP2001165616A (en) Laser length measuring device and laser length measuring method
EP0397289B1 (en) Straightness interferometer system
JP3045567B2 (en) Moving object position measurement device
JPH07120220A (en) Straight-advance accuracy measuring instrument for traveling body
TWI712773B (en) Laser interferometer positioning system
US7072048B2 (en) Interferometric plural-dimensional displacement measuring system
JP2592254B2 (en) Measuring device for displacement and displacement speed
US4023906A (en) Compact three-beam interferometer
JPS635208A (en) Apparatus for measuring surface shape
JP3053135B2 (en) High precision coordinate measuring instrument
JP2990308B2 (en) Differential laser interferometer
JPH0376843B2 (en)
JP3218570B2 (en) Interferometer
JPH0575323B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees