JPS59119225A - Light applied sensor - Google Patents

Light applied sensor

Info

Publication number
JPS59119225A
JPS59119225A JP22658682A JP22658682A JPS59119225A JP S59119225 A JPS59119225 A JP S59119225A JP 22658682 A JP22658682 A JP 22658682A JP 22658682 A JP22658682 A JP 22658682A JP S59119225 A JPS59119225 A JP S59119225A
Authority
JP
Japan
Prior art keywords
light
light source
emission
measurement
semiconductor material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22658682A
Other languages
Japanese (ja)
Other versions
JPH0337695B2 (en
Inventor
Yukio Sai
行雄 佐井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22658682A priority Critical patent/JPS59119225A/en
Publication of JPS59119225A publication Critical patent/JPS59119225A/en
Publication of JPH0337695B2 publication Critical patent/JPH0337695B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To improve a measurement range and linearity by generating a series of light emission spectra by such plural light sources for measurements that center wavelengths of light emission are different from one another and light emission spectra overlap one another successively. CONSTITUTION:For example, light from the light sources 12-14 for measurement such as LEDs and semiconductor laser, etc. are received by fibers 15a-15c. The light from the respective light sources including a reference light source 2 is guided to a single input fiber 5. The light sources 12, 13, and 14 have different center wavelengths lambda1, lambda2, and lambda3 of light emission and then their light emission spectrum distribution overlap one another successively. Further, lambda1<lambda2<lambda3. Consequently, when the transition of an absorption terminal occurs from the center wavelength lambda1 of light emission to the lambda3, the quantity of photodetection by a photodetecting element 9 is nearly linear to temperature variation.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、温度或いは圧力等の物理量変化に応じて光学
的吸収端が変化する半導体材料を用いた光応用センサに
関し、例えば温度測定などに利用することができる。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an optical sensor using a semiconductor material whose optical absorption edge changes in response to changes in physical quantities such as temperature or pressure, and which is used, for example, in temperature measurement. can do.

[発明の技術的背景] 第1図はこの種の原理に基づ〈従来の温度センサの一構
成図を示す。
[Technical Background of the Invention] FIG. 1 shows a configuration diagram of a conventional temperature sensor based on this kind of principle.

図において、1は発光中心波長がλの発光スペクトルを
有する測定用光源、2は発光中心波長がλ0の発光スペ
クトルを有する基準用光源、3a及び3bは各光源1,
2の光を受は入れるファイバ、4は各ファイバ3a 、
3bの導波光を単一の入力用ファイバ5に導く光結合器
、6は温度変化に応じて光学的吸収端が変化する半導体
材料7を備え入力用ファイバ5の導波光を半導体材料7
を介して出力用ファイバ8に与えるセンサ本体、9は出
力用ファイバ8の導波光を受ける受光素子である。セン
サ本体6は、入力用ファイバ5と出力用ファイバ8とが
半導体材料7をはさんで対向するように両ファイバを保
持するサポータ10と、半導体材料7を保持する熱伝導
の良好なホルダー11を有する。
In the figure, 1 is a measuring light source having an emission spectrum with an emission center wavelength of λ, 2 is a reference light source having an emission spectrum with an emission center wavelength of λ0, 3a and 3b are each light source 1,
2 is a fiber that receives and enters light, 4 is each fiber 3a,
3b is an optical coupler that guides the guided light from the input fiber 5 to a single input fiber 5; 6 includes a semiconductor material 7 whose optical absorption edge changes according to temperature changes;
9 is a light-receiving element that receives guided light from the output fiber 8 . The sensor body 6 includes a supporter 10 that holds the input fiber 5 and the output fiber 8 so that they face each other with the semiconductor material 7 in between, and a holder 11 with good thermal conductivity that holds the semiconductor material 7. have

各光源1及び2の発光スペクトルと半導体材料7の光学
的吸収端く以下吸収端という)との関係を第2図に示す
。第2図において、(イ)は測定用光源1の発光スペク
トル、(ロ)は基準用光源の発光スペクトル、(α)、
(β)、(γ)は温度変化に伴なう半導体材料7の吸収
端特性を示す。
The relationship between the emission spectrum of each of the light sources 1 and 2 and the optical absorption edge (hereinafter referred to as absorption edge) of the semiconductor material 7 is shown in FIG. In Figure 2, (a) is the emission spectrum of the measurement light source 1, (b) is the emission spectrum of the reference light source, (α),
(β) and (γ) indicate the absorption edge characteristics of the semiconductor material 7 as the temperature changes.

測定用光源1の発光スペクトル(イ)は半導体材料7の
温度変化に伴なう吸収端の推移と重なり合う波長を有し
、一方、基準用光源2の発光スペクトル(ロ)は温度変
化に伴なう吸収端の変化による影響を受けない波長を有
している。半導体材料7の吸収端は、温度上昇に伴なっ
て(α)→(β)→(γ)へと長波長側に推移する。こ
れは、温度上昇に伴なって半導体材料のエネルギ・ギャ
ップ(Eg)が減少し、これと密接な関係にある吸収端
波長(λ0=2πh/Eo、hニブランク定数)が長く
なるためである。半導体材料7の透過光量は、発光スペ
クトル(イ)と吸収端とにより囲まれる部分に相当する
光量に比例し、温度の上昇で発光スペクトル(イ)の分
布幅外の長波長側に吸収端が推移することにより零とな
り、温度の低下で945幅外の短波長側に吸収端が推移
することにより最大となる。
The emission spectrum (a) of the measurement light source 1 has a wavelength that overlaps with the transition of the absorption edge as the temperature changes in the semiconductor material 7, while the emission spectrum (b) of the reference light source 2 has a wavelength that overlaps with the transition of the absorption edge as the temperature changes. It has a wavelength that is not affected by changes in the absorption edge. The absorption edge of the semiconductor material 7 shifts toward longer wavelengths from (α) to (β) to (γ) as the temperature increases. This is because the energy gap (Eg) of the semiconductor material decreases as the temperature rises, and the absorption edge wavelength (λ0=2πh/Eo, h Niblank constant), which is closely related to this, increases. The amount of light transmitted through the semiconductor material 7 is proportional to the amount of light corresponding to the portion surrounded by the emission spectrum (a) and the absorption edge, and as the temperature rises, the absorption edge will appear on the longer wavelength side outside the distribution width of the emission spectrum (a). As the temperature shifts, it becomes zero, and as the temperature decreases, the absorption edge shifts to the shorter wavelength side outside the 945 width, and becomes the maximum.

次に上記構成の温度センサによる温度測定を説明する。Next, temperature measurement using the temperature sensor having the above configuration will be explained.

まず、基準用光源2を発光させ、受光素子9による受光
量をΔ/D変換した後ホールドしておく。次に、測定用
光源1を発光させ、半導体材料7を介して得られる受光
量をA/D変換した後、前記ホールドしておいた基準光
の受光量で割算し、その商を温度情報として出力する。
First, the reference light source 2 is caused to emit light, and the amount of light received by the light receiving element 9 is subjected to Δ/D conversion and then held. Next, the measuring light source 1 is caused to emit light, and the amount of light received through the semiconductor material 7 is A/D converted, and then divided by the amount of received light of the held reference light, and the quotient is used as temperature information. Output as .

測定光の受光量は前述したように温度変化に伴なう半導
体材料7の吸収端の変化にしたがうので、受光量の変化
によって温度測定を行なうことができる。
As described above, the amount of measurement light received follows the change in the absorption edge of the semiconductor material 7 due to temperature change, so temperature can be measured based on the change in the amount of received light.

なお、基準光の受光量で割算覆るのはファイバの損失変
化等の影響を補償するためである。
Note that the reason why the amount is divided by the amount of received reference light is to compensate for effects such as changes in fiber loss.

[背景技術の問題点] 上記構成の温度センサは次のような欠点を有する。[Problems with background technology] The temperature sensor having the above configuration has the following drawbacks.

(+)  L E D 等の半導体光源の発光スペクト
ルは発光波長領域が狭いので、半導体材料の吸収端との
重なり範囲が狭く、したがって測定範囲が狭い。
Since the emission spectrum of a semiconductor light source such as (+) LED has a narrow emission wavelength range, the overlapping range with the absorption edge of the semiconductor material is narrow, and therefore the measurement range is narrow.

(2)LED等の発光スペクトルは発光中心波長からず
れると急激に光量が減少するので、第3図に示すように
、温度変化に対する受光素子9の受光量がある温度から
のわずかの温度変化で大幅に変動し、リニアリティの悪
い特性となり、この結果、受光側においては非常に大ぎ
なダイナミックレンジを有する増幅器を必要とする。
(2) Since the emission spectrum of LEDs, etc., deviates from the emission center wavelength, the amount of light decreases rapidly, so as shown in Figure 3, the amount of light received by the light receiving element 9 with respect to temperature changes is determined by a slight temperature change from a certain temperature. This results in large fluctuations and poor linearity, and as a result, an amplifier with a very large dynamic range is required on the light receiving side.

このような問題点は、温度測定に限らず、半導体月利の
光の吸収端からその他の物理量変化を検出する場合にも
同様に生ずる。
Such problems occur not only in temperature measurement but also in detecting changes in other physical quantities from the light absorption edge of a semiconductor.

「発明の目的」 本発明は従来の技術の上記問題点を改善するもので、そ
の目的は、広い測定範囲を有すると共に、被測定物理量
の変化に対する受光量の変化が急激でなくしかも受光量
の変化率をほぼ一様にするすなわちリニアリティを改善
することが可能な光応用センサを提供することにある。
``Object of the Invention'' The present invention is intended to improve the above-mentioned problems of the conventional technology.The purpose of the present invention is to have a wide measurement range, prevent sudden changes in the amount of received light with respect to changes in the physical quantity to be measured, and further reduce the amount of received light. An object of the present invention is to provide an optical sensor capable of making the rate of change substantially uniform, that is, improving linearity.

[発明の概要] 上記目的を達成するための本発明の特徴は、発光波長が
ほぼ単一の発光スペクトルを有する光源と、物理量の変
化に応じて光学的吸収端波長が変化する半導体材料を備
えたセンサ本体と、前記光源の光をセンサ本体の半導体
材料を介して導波する光ファイバと、該ファイバの導波
光を受ける受光素子とを有する光応用センサにおいて、
前記光源を複数個もう(プ、各光源は各々の発光中心波
長が異なりかつ発光スペクトルが順次に一部重なり合う
ように構成すると共に、当該各光源による一連の発光ス
ペクトルに前記半導体材料の光学的吸収端が重なるよう
に構成づるごとき光応用センサにある。更に、望ましく
は、上記特徴に加えで、各光源の各々の発光中心波長を
、各発光スペクトルの和が各発光中心波長のうちの最大
のものと最小のものとの間でほぼ平坦なスペクトルを与
えるように、選定するごとき上記光応用センサにある。
[Summary of the Invention] A feature of the present invention for achieving the above object is that the present invention includes a light source having an emission spectrum with an almost uniform emission wavelength, and a semiconductor material whose optical absorption edge wavelength changes in accordance with changes in physical quantities. An optical application sensor having a sensor body, an optical fiber that guides the light from the light source through a semiconductor material of the sensor body, and a light receiving element that receives the guided light of the fiber,
A plurality of the light sources are configured so that each light source has a different emission center wavelength and their emission spectra partially overlap one another, and the optical absorption of the semiconductor material is added to the series of emission spectra from each light source. In addition to the above-mentioned characteristics, it is preferable that the emission center wavelength of each light source is such that the sum of each emission spectrum is the maximum of the emission center wavelengths. The above-mentioned optical sensor is selected so as to give a substantially flat spectrum between the maximum and the minimum.

[発明の実施例] 第4図は本発明の一実施例を示す温度センサの構成図で
ある。図において、12,13及び14は発光中心波長
がほぼ単一の発光スペクトルを有する例えばLEDや半
導体レーザ等の測定用光源、15a、15b及び15c
は各光源の光を受は入れるファイバ、16は基準用光源
2を含めた各光源からの光を単一の入力用ファイバ5に
導く光結合器で、その他のものは第1図のそれと同一で
ある。
[Embodiment of the Invention] FIG. 4 is a configuration diagram of a temperature sensor showing an embodiment of the present invention. In the figure, reference numerals 12, 13, and 14 indicate measurement light sources such as LEDs or semiconductor lasers, whose emission center wavelengths have substantially the same emission spectrum, and 15a, 15b, and 15c.
16 is a fiber that receives and receives the light from each light source, 16 is an optical coupler that guides the light from each light source including the reference light source 2 to a single input fiber 5, and the other components are the same as those in FIG. It is.

各測定用光源12.13.14の発光スペクトル相互の
関係及びこれら光源の発光スペク1−ルと半導体材料7
の吸収端との関係を第5図に示す。
The relationship between the emission spectra of each measurement light source 12, 13, and 14, and the emission spectra of these light sources and the semiconductor material 7
The relationship between the absorption edge and the absorption edge is shown in FIG.

第5図において、(ハ)は発光中心波長λ1を右する第
1の測定用光源12の発光スペクトル、(ニ)は発光中
心波長λ2を有する第2の測定用光源13の発光スペク
トル、(ホ)は発光中心波長λ3を右する第3の測定用
光源14の発光スペクトルひある。なお、第2図で述べ
たように、(ロ)は基準用光源の発光スペクトル、(α
)。
In FIG. 5, (c) is the emission spectrum of the first measurement light source 12 having the emission center wavelength λ1, (d) is the emission spectrum of the second measurement light source 13 having the emission center wavelength λ2, and (d) is the emission spectrum of the second measurement light source 13 having the emission center wavelength λ2. ) is the emission spectrum of the third measuring light source 14 that corresponds to the emission center wavelength λ3. As mentioned in Figure 2, (b) is the emission spectrum of the reference light source, (α
).

(β)、(γ)は半導体材料7の吸収端特性である。(β) and (γ) are absorption edge characteristics of the semiconductor material 7.

各測定用光源12,13.14は、第5図に示すように
、各々の発光中心波長λ1 、λ2 、λ3が異なり、
しかも各発光スペクトル分布が順次に一部重なり合う関
係にある。発光中心波長λ1 。
As shown in FIG. 5, the measurement light sources 12, 13, and 14 have different emission center wavelengths λ1, λ2, and λ3.
Furthermore, the respective emission spectrum distributions are in a relationship in which they partially overlap in sequence. Emission center wavelength λ1.

λ2 、λ3相互の関係はλ1〈λ2〈λ3である。The relationship between λ2 and λ3 is λ1<λ2<λ3.

これら発光中心波長λ1 、λ2 、λ3は、第6図に
示すように、各発光スペクトルの和が各発光中心波長の
うちの最大のもの〈λ3)と最小のもの(λ1)との間
でほぼ平11なスペクトルを与えるように、選定するこ
とが望ましい。これにより、発光中心波長λ1から23
の間で吸収端が推移する場合、受光素子9による受光量
は、第7図に実線で示すように、温度変化に対しほぼリ
ニアな特性になる。なお、第7図の破線は第3図の特性
を示す。第5図に戻り、上記関係を有する各測定用光源
12.13.14と半導体材料7の吸収端との関係は、
当該各光源による一連の発光スペクトル(ハ)、(ニ)
、(ホ)に温度変化に伴なう吸収端の推移範囲が重なる
ように構成する。この結果、発光スペクトル(ハ)の最
短発光波長から発光スペクトル(ホ)の最長発光波長の
範囲で温度測定が可能になる。
As shown in Fig. 6, these emission center wavelengths λ1, λ2, and λ3 are such that the sum of each emission spectrum is approximately between the maximum (λ3) and minimum (λ1) of the respective emission center wavelengths. It is desirable to select such that it gives a flat-11 spectrum. As a result, from the emission center wavelength λ1 to 23
When the absorption edge changes between 1 and 2, the amount of light received by the light receiving element 9 has a characteristic that is almost linear with respect to temperature changes, as shown by the solid line in FIG. Note that the broken line in FIG. 7 indicates the characteristics in FIG. 3. Returning to FIG. 5, the relationship between each measurement light source 12, 13, 14 having the above relationship and the absorption edge of the semiconductor material 7 is as follows:
A series of emission spectra (c) and (d) from each light source
, (e) are constructed so that the transition ranges of the absorption edge due to temperature changes overlap. As a result, temperature measurement becomes possible in the range from the shortest emission wavelength of the emission spectrum (c) to the longest emission wavelength of the emission spectrum (e).

崖導体材料7としては、Cd Te  (300°にの
吸収端波長0.85 flm> 、 Ga As  (
300” Kの吸収端波長o、911m) 、  T 
n P (300°にの吸収端波長1.00 tim)
 、 Si  (300’ Kの吸収端波長1.127
1m) 、 Ge  (300°にの吸収端波長1.8
7μm)などが利用可能である。半導体材料7として、
例えばCdTe又はGaASを用いることと覆れば、測
定用光源12.13.14としては例えばGaAst−
XPX系又は/及びAQxGa+−xAS系のIFDを
用いることができる。QaAsh−XPX系はそのXの
値の選定で0.65〜0.9μmの発光中心波長をもつ
光を得ることができ、またA α×Ga I−XAS系
は0.75〜0.9μm(7)発光中心波長をもつ光を
得ることができるので、第5図を満足する半導体材料及
び測定用光源を突環することができる。
As the cliff conductor material 7, Cd Te (absorption edge wavelength at 300° 0.85 flm>), Ga As (
300”K absorption edge wavelength o, 911m), T
n P (absorption edge wavelength at 300° 1.00 tim)
, Si (300'K absorption edge wavelength 1.127
1m), Ge (absorption edge wavelength at 300° 1.8
7 μm) etc. are available. As the semiconductor material 7,
For example, instead of using CdTe or GaAS, for example GaAst-
XPX-based and/or AQxGa+-xAS-based IFDs can be used. The QaAsh-XPX system can obtain light with an emission center wavelength of 0.65 to 0.9 μm by selecting the value of 7) Since light having a central emission wavelength can be obtained, a semiconductor material and a measurement light source that satisfy the conditions shown in FIG. 5 can be used.

次に、上記構成の温度センサによる測定を第8図及び第
9図を用い°U iR明する。
Next, measurements by the temperature sensor having the above configuration will be explained using FIGS. 8 and 9.

第8図は上記センサを用いた測定系の一構成図を示すも
ので、20は第4図で説明した温度センサ、21は基準
用光源2及び各測定用光源12゜13.14を駆動する
駆動系、22は受光素子9の受光量を測定する光パワー
メータ、23は光パワーメータ22の測定光量をデジイ
タル量に変換するA/D’]ンバータ、24は処理系で
、当該処理系24は、基準用光源2及び各測定用光源1
2゜1’3.14の駆動タイミングを5える機能と、当
該駆動タイミングにあわせて受光量をホールドする機能
、及び各測定光の受光量を加算し当該加算値をM単光の
受光量で割算した商を温度情報に換弾出力する機能を有
する。
FIG. 8 shows a configuration diagram of a measurement system using the above-mentioned sensor, where 20 is the temperature sensor explained in FIG. 22 is an optical power meter that measures the amount of light received by the light receiving element 9; 23 is an A/D' converter that converts the amount of light measured by the optical power meter 22 into a digital amount; 24 is a processing system; is the reference light source 2 and each measurement light source 1
2゜1'3.14 has a function to increase the drive timing by 5, a function to hold the received light amount according to the drive timing, and a function to add the received light amount of each measurement light and use the added value as the received light amount of M single light. It has a function to convert the divided quotient into temperature information and output it.

第9図は基準用光源2及び各測定用光源12゜13.1
/Iの駆動タイミノグチ1シートを示すもので、<a>
は基準用光源2の駆動時間、(b)は第1の測定用光源
12の駆動時間、(C)は第2の測定用光源13の駆動
時間、(d)は第3の測定用光源14の駆動時間、(e
)は各光源の駆動に対応する受光素子の受光量を示す。
Figure 9 shows the reference light source 2 and each measurement light source 12°13.1
/I shows one sheet of drive timing groove, <a>
is the drive time of the reference light source 2, (b) is the drive time of the first measurement light source 12, (C) is the drive time of the second measurement light source 13, and (d) is the drive time of the third measurement light source 14. driving time, (e
) indicates the amount of light received by the light receiving element corresponding to the driving of each light source.

温度測定は基準用光源2の駆動で開始する。基準用光源
2は、前述したように、半導体材料7による光吸収の影
響を受けない波長の発光スペクトルを右している。基準
用光源2は時間t1〜t2の間発光駆!11ザる。
Temperature measurement is started by driving the reference light source 2. As described above, the reference light source 2 has an emission spectrum of a wavelength that is not affected by light absorption by the semiconductor material 7. The reference light source 2 is activated to emit light from time t1 to t2! 11.

受光側では、当該基準光の受光量Pλ0を受光素子9で
受光し、光パワーメータ22で光格測定した後AID変
換しホールドする。基準用光源2の発光、時間の終了に
続いて、時間12〜1°3の間に第1の測定用光源12
の発光、時間t3〜t4の間に第2の測定用光源13の
発光、時間t4・〜t5の間に第3の測定用光源14の
発光が順次に行なわれる。各測定光の受光@Pλ1 。
On the light receiving side, the received light amount Pλ0 of the reference light is received by the light receiving element 9, measured by the optical power meter 22, converted into AID, and held. Following the emission of the reference light source 2 and the end of the time, the first measurement light source 12 is emitted during the time period 12 to 1°3.
The second measurement light source 13 emits light between times t3 and t4, and the third measurement light source 14 emits light between times t4 and t5. Reception of each measurement light @Pλ1.

Pλ2  、Pλ3は、基準光の場合と同様に、ホール
ドされる。各測定光のホールド終了で、処理系24は、
各測定光の受光量の加算、Pλ1+Pλ2+Pλ3.を
行ない、当該加算値を基準光の受光量で割算、(Pλ+
 +Pλ2+Pλ3)/PλO,L/フフイバの損失変
化等の影響を補償した後、温度情報に換算出力する。
Pλ2 and Pλ3 are held as in the case of the reference light. At the end of holding each measurement light, the processing system 24
Addition of the received light amount of each measurement light, Pλ1+Pλ2+Pλ3. and divide the added value by the amount of received reference light, (Pλ+
+Pλ2+Pλ3)/PλO, L/After compensating for the influence of fiber loss changes, etc., the temperature information is converted and output.

なお、第8図の測定系においては基準光及び各測定光の
受光量をA/D変換し各測定光の受光量について和を求
めることとしたが、積分回路をもうけ、各測定光の受光
量を積分するようにしても良い。
Note that in the measurement system shown in Figure 8, the amount of received light of the reference light and each measurement light is A/D converted and the sum of the amounts of each measurement light is calculated. It is also possible to integrate the quantity.

第10図、第11図及び第12図は各々本発明の他の実
施例を示ず温度センサの構成図で、第4図と同−符丹は
同一構成部分を示ず。
FIGS. 10, 11, and 12 are configuration diagrams of a temperature sensor without showing other embodiments of the present invention, and the same reference numerals as in FIG. 4 do not indicate the same constituent parts.

第10図に示す実施例において、25は方向性結合器を
示し、該方向性結合器は、光結合器16からファイバ2
6を介して導波される基準光及び各測定光を入力しその
大部分の光を測定用ファイバ27に導き一部の光をモニ
タ用ファイバ28にりえるど共に、後述するように測定
用ファイバ27を介して導波されて来る反射光を出力用
ファイバ29に導く。測定用ファイバ27はセンサ本体
30と結合する。センサ本体3oは、出力用ファイバ2
7の端面と対向する半導体材料7と、半導体材料7をは
さんでファイバ27の端面と対向する反射ミラー31と
、ファイバ27を保持するサポータ32と、半導体材料
7及び反射ミラー31を保持する熱伝導の良好なホルダ
ー33を有し、測定用ファイバ27の光源からの導波光
を半導体材料7を通過させた後ミラー31で反射し再び
半導体材料7を通過させて測定用ファイバ27に送り出
す。測定用ファイバ27の反射導波光は、方向性結合器
25を介して出力用ファイバ29に導かれ受光素子9に
至る。モニタ用ファイバ28にはモニタ用の受光素子3
4があり、光源の発光状態をモニタする当該素子の出カ
イ5号を利用して発光状態の安定化を図ることが可能で
ある。このような構成のセンサによる温度測定は、先の
実施例と同様に、第8図及び第9図にしたがって行なわ
れる。
In the embodiment shown in FIG. 10, 25 indicates a directional coupler, which connects the optical coupler 16 to the fiber 2.
6, the reference light and each measurement light are inputted, most of the light is guided to the measurement fiber 27, and a part of the light is sent to the monitoring fiber 28. The reflected light guided through the fiber 27 is guided to the output fiber 29. The measuring fiber 27 is coupled to the sensor body 30. The sensor body 3o has an output fiber 2
a semiconductor material 7 facing the end face of the fiber 27 , a reflective mirror 31 facing the end face of the fiber 27 across the semiconductor material 7 , a supporter 32 that holds the fiber 27 , and a heat source that holds the semiconductor material 7 and the reflective mirror 31 . It has a holder 33 with good conduction, and the guided light from the light source of the measuring fiber 27 passes through the semiconductor material 7, is reflected by the mirror 31, passes through the semiconductor material 7 again, and is sent out to the measuring fiber 27. The reflected waveguide light from the measurement fiber 27 is guided to the output fiber 29 via the directional coupler 25 and reaches the light receiving element 9 . The monitor fiber 28 has a monitor light receiving element 3.
4, and it is possible to stabilize the light emitting state by using output No. 5 of the element that monitors the light emitting state of the light source. Temperature measurement using the sensor having such a configuration is carried out in accordance with FIGS. 8 and 9, as in the previous embodiment.

第11図に示す実施例において、35は基準用光源2に
もうけられた専用の入力用ファイバ、35a 、35b
及び35cは各測定用光源12.13.14に夫々もう
けられた専用の入力用ファイバ、37はセンサ本体、3
8は単一かつ大口径の出力用ファイバである。各入力用
ファイバ35゜36a 、36b 、36cはファイバ
束39にして、レンサ本体37内で半導体材料7をはさ
んで出力用ファイバ38と端面対向するようにもうける
In the embodiment shown in FIG. 11, 35 is a dedicated input fiber provided in the reference light source 2, 35a, 35b.
and 35c are dedicated input fibers provided for each measurement light source 12, 13, and 14, respectively; 37 is the sensor body; 3
8 is a single, large diameter output fiber. Each of the input fibers 35.degree. 36a, 36b, and 36c is formed into a fiber bundle 39 and arranged so as to face the output fiber 38 with the semiconductor material 7 sandwiched therebetween within the sensor body 37.

出力用ファイバ38は、各入力用ファイバの射出光を半
導体材料7を介して受は入れることの可能な口径を有す
る。なお、センサ本体37において、40は入力用フフ
ァイバ束39を保持するサポータ、41は出力用ファイ
バ38を保持するサポータ、42は半導体材料7を保持
する熱伝導の良好なホルダーである。このような構成の
センサによる湿度測定も、先の実施例と同様に、第8図
及び第9図に従って行なわれる。なお、本実施例の構成
は、センサを光結合器を用いずに構成できるので製造コ
ストが低く量産性に富む。
The output fiber 38 has an aperture capable of receiving the emitted light from each input fiber through the semiconductor material 7. In the sensor body 37, 40 is a supporter that holds the input fiber bundle 39, 41 is a supporter that holds the output fiber 38, and 42 is a holder with good heat conduction that holds the semiconductor material 7. Humidity measurement using a sensor having such a configuration is also carried out in accordance with FIGS. 8 and 9, as in the previous embodiment. Note that the configuration of this embodiment allows the sensor to be configured without using an optical coupler, resulting in low manufacturing costs and high mass productivity.

第12図に示す実施例においては、第11図の構成にお
ける出力用ファイバを入力用ファイバ35.36a 、
36b 、36Cと同様に各光源2゜12; 13.1
4に対応する各々専用のファイバ45.46a 、46
b 、46Cで構成し、各出力ファイバ毎に受光素子4
7.48.49.5oをもうけたものである。各出力用
のファイバ45゜46a 、46b 、46cは、入力
用のものと同様にフッフィバ束44にして、センサ本体
43内で半導体材料7をはさんで入力用のものと出力用
のものとが各々1:1に対応するようにもうけられる。
In the embodiment shown in FIG. 12, the output fiber in the configuration of FIG. 11 is replaced by the input fiber 35, 36a,
36b, 36C, each light source 2°12; 13.1
4 respectively dedicated fibers 45, 46a, 46 corresponding to
b, 46C, with 4 light receiving elements for each output fiber.
7.48.49.5o. Each output fiber 45° 46a, 46b, 46c is made into a fiber bundle 44 in the same way as the input fiber, and the semiconductor material 7 is sandwiched between the input and output fibers in the sensor body 43. They are provided in a 1:1 ratio.

、ファイバ東39.44のサポータ及び半導体材料7の
ホルダーについては第11図の場合と同様である。なお
、本実施例の構成は、第11図の構成に比較して大口径
ファイバを用いないので、光の伝送ロスが少なく、光を
長距離伝送−なければならない場合に右利である。
, the supports for the fiber east 39, 44 and the holder for the semiconductor material 7 are the same as in the case of FIG. The configuration of this embodiment does not use a large-diameter fiber compared to the configuration shown in FIG. 11, so there is less light transmission loss, which is advantageous when light must be transmitted over a long distance.

第13図は基準用光源及び各測定用光源の第9図とは別
の駆動タイミングチャートを示すもので、(a)は基準
用光源2の駆動時間、(b)は第1の測定用光源12の
駆動時間、<C>は第2の測定用光源13の駆動時間、
(d>は第3の測定用光源14の駆動時間、(e) l
;l;受光素子の受光量を示遵−0温磨測定に際し−C
1まず、基準用光源2が時間t1〜t2の開発光駆動さ
れることについては第9図の場合と同様である。しかし
、これに続く各測定用光源12. −13.14につい
ては、第9図の場合と異なり、時間12〜(3の間に各
測定用光源を同時に発光駆動させる。この結果、受光素
子で得られる光量は各測定光の受光量の和、Pλ+ +
Pλ2十Pλ3.となるので、〜加算の必要がなく、ま
た時間t1〜t3を1サイクルとして温度測定ができる
ので、第9図の場合に比較して測定時間を短がくするこ
とができる。
FIG. 13 shows a driving timing chart of the reference light source and each measurement light source, which is different from FIG. 12 drive time, <C> is the drive time of the second measurement light source 13,
(d> is the driving time of the third measurement light source 14, (e) l
;l; When measuring the amount of light received by the light receiving element -0 -C
1. First, the reference light source 2 is driven with the development light from time t1 to t2, as in the case of FIG. 9. However, each subsequent measurement light source 12. Regarding -13.14, unlike the case in Figure 9, each measurement light source is driven to emit light at the same time between times 12 and 3. As a result, the amount of light obtained by the light receiving element is equal to the amount of light received by each measurement light. sum, Pλ+ +
Pλ20 Pλ3. Therefore, there is no need for addition, and the temperature can be measured using the time t1 to t3 as one cycle, so the measurement time can be shortened compared to the case of FIG. 9.

以上の各実施例においては測定用光源が3個の場合につ
いて説明したが、各光源に要求される前述の条件を満足
するように更に多くの光源を組合せることも可能であり
、これによりより広い測定範囲を有するセンサを実現す
ることができる。
In each of the above embodiments, the case where there are three light sources for measurement has been described, but it is also possible to combine more light sources so as to satisfy the above-mentioned conditions required for each light source, and this allows for even more light sources to be used. A sensor with a wide measurement range can be realized.

[発明の効果コ 以上説明したように本発明によれば、各々の発光中心波
長が異なりかつ発光スペクトルが順次に一部重なり合う
複数の測定用光源をもうけ、当該各光源により一連の発
光スペクトルを形成するようにしたので、従来のセンサ
に比較して広い測定範囲を有するセンサを提供すること
ができ、また、従来例に比ベリニアリティを改善するこ
とが可能で、この結果、受光側のダイナミックレンジを
大とする必要がなく、しかも高いS/N比で物理量変化
の測定を行なうことが可能となる。
[Effects of the Invention] As explained above, according to the present invention, a plurality of measurement light sources are provided, each having a different emission center wavelength and whose emission spectra partially overlap in sequence, and each light source forms a series of emission spectra. As a result, it is possible to provide a sensor with a wider measurement range compared to conventional sensors, and it is also possible to improve linearity compared to conventional sensors, resulting in a wider dynamic range on the light receiving side. It is not necessary to make the signal large, and it is possible to measure changes in physical quantities with a high S/N ratio.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光応用センサの構成図、第2図は第1図
のセンサの動作説明図、第3図は第1図のセンサの湿度
と受光量との関係説明図、第4図は本発明の一実施例を
示す温度センサの構成図、第5図及び第6図tよ第4図
のセンサの動作説明図、第7図は第4図のセンサの温度
と受光量との関係の一例を示す関係説明図、第8図は測
定系の一構成図、第9図は各光源の駆動タイミングチャ
ート、第10図、第11図及び第12図は各々本発明の
他の実施例を示す温度センサの構成図、第13図は各光
源の別の駆動タイミングチャートである。 12.13,14:測定用光源 6.30.37.43 :センサ本体 7:半導体材料 5、8.15a 、15b 、15c 、3b 、26
゜27.29,35.36a 、36b 、36C,3
8,45,46a 、46b 、46c :ファイバ9
.47,48.49,50:受光素子第1図 第2図 第3vA 第4図 第5図
Fig. 1 is a configuration diagram of a conventional optical sensor, Fig. 2 is an explanatory diagram of the operation of the sensor in Fig. 1, Fig. 3 is an explanatory diagram of the relationship between humidity and the amount of light received by the sensor in Fig. 1, and Fig. 4 5 and 6 are diagrams illustrating the operation of the sensor in FIG. 4, and FIG. 7 is a diagram showing the relationship between the temperature and the amount of light received by the sensor in FIG. 8 is a configuration diagram of a measurement system, FIG. 9 is a drive timing chart of each light source, and FIGS. 10, 11, and 12 are diagrams showing other embodiments of the present invention. FIG. 13 is a configuration diagram of a temperature sensor showing an example, and is another drive timing chart of each light source. 12.13, 14: Measurement light source 6.30.37.43: Sensor body 7: Semiconductor material 5, 8.15a, 15b, 15c, 3b, 26
゜27.29, 35.36a, 36b, 36C, 3
8, 45, 46a, 46b, 46c: Fiber 9
.. 47, 48. 49, 50: Light receiving element Figure 1 Figure 2 Figure 3vA Figure 4 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)発光波長がほぼ単一の発光スペクトルを有する光
源と、物理量の変化に応じて光学的吸収端波長が変化す
る半導体材料を備えたセンサ本体と、前記光源の光をセ
ンサ本体の半導体材料を介して導波する光ファイバと、
該光ファイバの導波光を受ける受光素子とを有する光応
用センサにおいて、前記光源を複数個もう(プ、各光源
は各々の発光中心波長が異なりかつ発光スペクトルが順
次に一部重なり合うように構成すると共に、当該各光源
による一連の発光スペクトルに前記半導体材料の光学的
吸収端が重なるように構成することを特徴とする光応用
センサ。
(1) A sensor body including a light source having an emission spectrum with a substantially single emission wavelength, a semiconductor material whose optical absorption edge wavelength changes according to changes in physical quantities, and a semiconductor material of the sensor body that uses the light from the light source to an optical fiber that guides the wave through the
In the optical sensor having a light-receiving element that receives the guided light of the optical fiber, a plurality of the light sources are arranged so that each light source has a different emission center wavelength and the emission spectra sequentially partially overlap each other. Additionally, an optical sensor is configured such that an optical absorption edge of the semiconductor material overlaps a series of emission spectra from each of the light sources.
(2)前記各光源の各々の発光中心波長を、各発光スペ
クトルの和が各発光中心波長のうちの最大のものと最小
のものどの間でほぼ平坦なスペクトルを与えるように、
選定するごとぎ特許請求の範囲第1項記載の光応用セン
サ。
(2) Set the emission center wavelength of each of the light sources so that the sum of each emission spectrum gives a substantially flat spectrum between the maximum and minimum emission center wavelengths,
An optical application sensor according to claim 1.
JP22658682A 1982-12-27 1982-12-27 Light applied sensor Granted JPS59119225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22658682A JPS59119225A (en) 1982-12-27 1982-12-27 Light applied sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22658682A JPS59119225A (en) 1982-12-27 1982-12-27 Light applied sensor

Publications (2)

Publication Number Publication Date
JPS59119225A true JPS59119225A (en) 1984-07-10
JPH0337695B2 JPH0337695B2 (en) 1991-06-06

Family

ID=16847493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22658682A Granted JPS59119225A (en) 1982-12-27 1982-12-27 Light applied sensor

Country Status (1)

Country Link
JP (1) JPS59119225A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61212736A (en) * 1985-03-18 1986-09-20 Fujikura Ltd Reflection type temperature sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5526494A (en) * 1978-06-26 1980-02-25 Asea Ab Optical fiber thermodetector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5526494A (en) * 1978-06-26 1980-02-25 Asea Ab Optical fiber thermodetector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61212736A (en) * 1985-03-18 1986-09-20 Fujikura Ltd Reflection type temperature sensor

Also Published As

Publication number Publication date
JPH0337695B2 (en) 1991-06-06

Similar Documents

Publication Publication Date Title
EP0111853B1 (en) Temperature measuring apparatus
JPS6298218A (en) Fiber optical detecting system
JPS59119225A (en) Light applied sensor
CN111381199A (en) Pulse high-intensity magnetic field optical measurement system and method
JPS602615B2 (en) Energy compensated spectrofluorometer
JPH0354292B2 (en)
JPH077212A (en) Apparatus for controlling wavelength of light emitted from laser diode
JPS5814021A (en) Optical thermometer
JPS58132637A (en) Pressure measuring device employing optical fiber
US6838658B2 (en) Simple and compact laser wavelength locker
JPS58139038A (en) Temperature measuring device using optical fiber
JPS6217621A (en) Optical power meter
JPH07270254A (en) Optical fiber type device for measuring temperature
JPS599526A (en) Temperature measuring device
JPS587530A (en) Optical temperature measuring device
JPS59222730A (en) Optical temperature measuring device
JPH05172657A (en) Optical fiber distributed temperature sensor
JPS59160725A (en) Optical thermometer
JPH0429969B2 (en)
JPS625605Y2 (en)
JP2000046655A (en) Radiation thermometer having light receiving loss compensation function and temperature measuring method therefor
JPS6035234A (en) Pressure measuring device
RU1827554C (en) Light guide to color pyrometer for measuring temperature of products of explosion conversion in closed space
JPH056126B2 (en)
JPS5885578A (en) Light signal converter