JP2000046655A - Radiation thermometer having light receiving loss compensation function and temperature measuring method therefor - Google Patents

Radiation thermometer having light receiving loss compensation function and temperature measuring method therefor

Info

Publication number
JP2000046655A
JP2000046655A JP10212169A JP21216998A JP2000046655A JP 2000046655 A JP2000046655 A JP 2000046655A JP 10212169 A JP10212169 A JP 10212169A JP 21216998 A JP21216998 A JP 21216998A JP 2000046655 A JP2000046655 A JP 2000046655A
Authority
JP
Japan
Prior art keywords
light
optical fiber
transmission loss
temperature
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10212169A
Other languages
Japanese (ja)
Other versions
JP3932680B2 (en
Inventor
Takuro Nakajima
卓郎 中島
Kosuke Ebina
康祐 海老名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP21216998A priority Critical patent/JP3932680B2/en
Publication of JP2000046655A publication Critical patent/JP2000046655A/en
Application granted granted Critical
Publication of JP3932680B2 publication Critical patent/JP3932680B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PROBLEM TO BE SOLVED: To compensate for the transmission loss of an optical fiber in a service condition, and thereby provide a transmission loss compensation function capable of continuous measurements over a long time. SOLUTION: A partially reflective coating 2a is preliminarily applied to the reverse side of a condenser lens 2 and the preset light quantity P of pulse light having wavelength reflected due to the coating 2a at the time of using a radiation thermometer is inputted from the outside via an optical fiber for introduction to the condenser lens 2. As a result, light reflected from the reverse side of the condenser lens 2 sustains a transmission loss corresponding to back- and-forth across the optical fiber, and is measured after addition to ordinary measurement light. According to this construction, the light quantity ΔS of reflected light after sustaining the transmission loss corresponding to the back- and-forth of pulse light can be found from the changes S1 and S2 of the light receiving quantity due to the existence and non-existence of the pulse light. The transmission factor Tr of the optical fiber can be calculated from the value of ΔS for making compensation for the transmission loss.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、伝送損失補償機能
を有する放射温度計とその温度計測方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation thermometer having a transmission loss compensating function and a method for measuring the temperature.

【0002】[0002]

【従来の技術】物体温度の変化に応じて放射光(輻射
光)の光量が変化する現象を応用して、物体表面の温度
を非接触で測定する放射温度計が従来から用いられてい
る。例えば、ガスタービン等のタービンブレードの温度
測定では、高温回転している多数のタービンブレードを
非接触で1つのセンサで計測できる等の利点がある。
2. Description of the Related Art Radiation thermometers that measure the temperature of the surface of an object in a non-contact manner by using the phenomenon that the amount of radiation light (radiation light) changes in accordance with a change in the temperature of the object have been used. For example, in temperature measurement of a turbine blade such as a gas turbine, there is an advantage that a large number of turbine blades rotating at a high temperature can be measured by one sensor in a non-contact manner.

【0003】更に、かかる放射温度計と光ファイバとを
組み合わせ、光ファイバで放射光を伝送することによ
り、微小部分の温度を精密測定可能な装置が開発されて
いる。光ファイバを用いたこの放射温度計は、図4に模
式的に示すように、測定箇所1(例えばタービンブレー
ド)の近傍に集光レンズ2を設置し、この集光レンズで
集光した光を光ファイバ3を介して受光素子4に導き、
その出力から温度を演算するようになっている。なお、
この図で、5は受光回路、6は演算回路、7は出力装置
である。
Further, there has been developed an apparatus capable of precisely measuring the temperature of a minute portion by combining such a radiation thermometer with an optical fiber and transmitting the emitted light through the optical fiber. In this radiation thermometer using an optical fiber, as schematically shown in FIG. 4, a condenser lens 2 is installed near a measurement point 1 (for example, a turbine blade), and light collected by the condenser lens is It is led to the light receiving element 4 via the optical fiber 3,
The temperature is calculated from the output. In addition,
In this figure, 5 is a light receiving circuit, 6 is an arithmetic circuit, and 7 is an output device.

【0004】[0004]

【発明が解決しようとする課題】光ファイバを用いた放
射温度計では、温度変化、曲げ及び経時変化によって光
ファイバの伝送損失が変化する。そのため、製作時に精
密にキャリブレーション(更正)を行った放射温度計で
も、温度変化、曲げ及び経時変化を受けた場合には、精
密な計測ができず、再度、分解等してキャリブレーショ
ンしなおす必要があり、長時間の連続計測には適用でき
ない問題点があった。
In a radiation thermometer using an optical fiber, the transmission loss of the optical fiber changes due to a change in temperature, bending and aging. Therefore, even with a radiation thermometer that has been precisely calibrated (corrected) at the time of manufacture, if it undergoes temperature changes, bending, and changes over time, accurate measurements cannot be made, and disassembly or the like is performed again to recalibrate. There is a problem that it is necessary and cannot be applied to long-time continuous measurement.

【0005】本発明は、かかる問題点を解決するために
創案されたものである。すなわち、本発明の目的は、光
ファイバの伝送損失を使用状態で補償することができ、
これにより長時間の連続計測を可能にする伝送損失補償
機能を有する放射温度計とその温度計測方法を提供する
ことにある。
The present invention has been made to solve such a problem. That is, an object of the present invention is to compensate for the transmission loss of an optical fiber in use.
Accordingly, it is an object of the present invention to provide a radiation thermometer having a transmission loss compensating function that enables continuous measurement for a long time, and a method of measuring the temperature.

【0006】[0006]

【課題を解決するための手段】予め集光レンズ(2)の
裏面に部分反射コーティングを施し、放射温度計の使用
時にコーティングで反射する波長の所定光量Pのパルス
光を光ファイバを介して外部から入力して集光レンズに
導くことにより、レンズの裏面で反射した光が光ファイ
バの往復分の伝送損失を受けて、通常の計測光に加算し
て計測される。従って、パルス光の有無による受光量の
変化S1,S2 からパルス光の往復分の伝送損失を受けた
反射光の光量ΔSが算出でき、これから光ファイバの透
過率Trを算出し伝送損失を補償することができる。本
発明は、かかる新規の原理に基づくものである。
A partial reflection coating is applied to the back surface of the condenser lens (2) in advance, and when a radiation thermometer is used, a predetermined amount of pulse light of a wavelength P reflected by the coating is externally transmitted via an optical fiber. The light reflected by the back surface of the lens receives the transmission loss of the round trip of the optical fiber, and is added to the normal measurement light and measured. Therefore, from the changes S1 and S2 of the received light amount depending on the presence or absence of the pulse light, the light amount ΔS of the reflected light having received the transmission loss for the reciprocation of the pulse light can be calculated. From this, the transmittance Tr of the optical fiber is calculated to compensate the transmission loss. be able to. The present invention is based on such a new principle.

【0007】本発明によれば、裏面に部分反射コーティ
ングが施され、かつ高温物体(1)からの放射光を集光
する集光レンズ(2)と、集光された光を伝送する光フ
ァイバ(3)と、伝送された光量を電気信号に変換しこ
れから高温物体の温度Tを演算する光電変換装置(1
0)とを備え、光電変換装置は、伝送された光を電流信
号に変換する受光素子(4)と、該電流信号を電圧信号
に変換する受光回路(5)と、前記部分反射コーティン
グで反射する波長の所定光量Pの光を発する発光素子
(12)と、該発光素子をパルス状に発光させる駆動回
路(13)と、発光素子と受光素子を光ファイバに結合
する光結合素子(14)と、発光素子のON/OFFに
同期して受光信号を取得するサンプリング回路(15)
と、各タイミングにおける受光回路からの電圧信号S1,
S2 から伝送損失を補償する演算回路(16)とを備え
たことを特徴とする伝送損失補償機能を有する放射温度
計が提供される。
According to the present invention, a condensing lens (2) having a partially reflective coating on the back surface for condensing light emitted from a high-temperature object (1), and an optical fiber for transmitting the condensed light And (3) a photoelectric conversion device (1) that converts the transmitted light amount into an electric signal and calculates the temperature T of the high-temperature object from the electric signal.
0), wherein the photoelectric conversion device comprises: a light receiving element (4) for converting transmitted light into a current signal; a light receiving circuit (5) for converting the current signal into a voltage signal; Light-emitting element (12) that emits a predetermined amount of light P at a desired wavelength, a driving circuit (13) that causes the light-emitting element to emit light in pulses, and an optical coupling element (14) that couples the light-emitting element and the light-receiving element to an optical fiber. And a sampling circuit (15) for acquiring a light receiving signal in synchronization with ON / OFF of the light emitting element
And the voltage signal S1, from the light receiving circuit at each timing.
A radiation thermometer having a transmission loss compensating function, comprising: an arithmetic circuit (16) for compensating transmission loss from S2.

【0008】本発明の好ましい実施形態によれば、前記
部分反射コーティングは、特定の波長λ1 を選択的に反
射するコーティングであり、前記発光素子(12)の光
は、波長λ1 のパルス光である。
According to a preferred embodiment of the present invention, the partial reflection coating is a coating which selectively reflects a specific wavelength λ 1, and the light of the light emitting element (12) is a pulse light of a wavelength λ 1. .

【0009】また、本発明によれば、高温物体(1)の
近傍に集光レンズ(2)を有し、該集光レンズで集光し
た光を光ファイバ(3)を介して受光素子(4)に導
き、その受光量から高温物体の温度Tを算出する温度計
測方法において、集光レンズの裏面に部分反射コーティ
ングを施し、該部分反射コーティングで反射する波長の
所定光量Pのパルス光を集光レンズ(2)に導くように
光ファイバに入射させ、パルス光の有無による受光量の
変化S1,S2 から伝送損失を補償する、ことを特徴とす
る温度計測方法が提供される。
Further, according to the present invention, a condenser lens (2) is provided in the vicinity of the high-temperature object (1), and light condensed by the condenser lens is received by a light receiving element (3) via an optical fiber (3). In the temperature measurement method for calculating the temperature T of the high-temperature object from the received light amount according to 4), a partial reflection coating is applied to the back surface of the condenser lens, and a pulse light of a predetermined light amount P having a wavelength reflected by the partial reflection coating is applied. There is provided a temperature measurement method characterized in that the light is incident on an optical fiber so as to be guided to a condenser lens (2), and transmission loss is compensated from changes S1 and S2 of a received light amount depending on the presence or absence of pulsed light.

【0010】上記本発明の装置及び方法により、発光素
子(12)、駆動回路(13)及び光結合素子(14)
により、放射温度計の使用時にコーティングで反射する
波長の所定光量Pのパルス光を光ファイバを介して集光
レンズ(2)の裏面に導き、光結合素子(14)、サン
プリング回路(15)、受光素子(4)及び受光回路
(5)により、レンズ裏面からの反射光を集光レンズの
透過光量S2 に加算して計測し、パルス光の有無による
受光量の変化S1,S2 から演算回路(16)により、パ
ルス光の往復分の伝送損失ΔSが算出でき、これから光
ファイバの透過率Trを算出し伝送損失を補償すること
ができる。
According to the apparatus and method of the present invention, the light emitting element (12), the driving circuit (13) and the optical coupling element (14).
As a result, a pulse light having a predetermined light amount P having a wavelength reflected by the coating when the radiation thermometer is used is guided to the back surface of the condenser lens (2) via the optical fiber, and the optical coupling element (14), the sampling circuit (15), The light receiving element (4) and the light receiving circuit (5) add the reflected light from the back surface of the lens to the transmitted light amount S2 of the condenser lens, measure the amount, and calculate the arithmetic circuit ( According to 16), the transmission loss ΔS for the reciprocation of the pulse light can be calculated. From this, the transmittance Tr of the optical fiber can be calculated to compensate for the transmission loss.

【0011】[0011]

【発明の実施の形態】以下、本発明の好ましい実施形態
を図面を参照して説明する。なお、各図において共通の
部材には同一の符号を付し重複した説明を省略する。図
1は、本発明による放射温度計の全体構成図である。こ
の図に示すように、本発明の放射温度計は、集光レンズ
2、光ファイバ3、及び伝送された光量を電気信号に変
換しこれから高温物体の温度Tを演算する光電変換装置
10から構成される。集光レンズ2は、高温物体1(例
えばタービンブレード)の近傍に設置され、高温物体1
からの放射光を光ファイバ3の端面に集光するようにな
っている。この集光レンズ2は、この図では単一の凸レ
ンズで示しているが、2枚以上のレンズからなる複合レ
ンズであってもよい。また、この図では集光レンズ2の
保護ガラスを示していないが、かかる保護ガラスを用い
てもよい。更に、本発明によれば、集光レンズ2の裏面
(図で右側表面)に部分反射コーティング2aが施され
ている。この部分反射コーティング2aは、特定の波長
λ1 を選択的に反射するのが好ましいが、本発明はこれ
に限定されず、広範囲の波長を反射するようになってい
てもよい。光ファイバ3は、集光レンズ2で集光された
光を光電変換装置10まで伝送するようになっている。
この光ファイバ3は、例えば、直径約0.4mm前後の
極細のファイバ線を複数(例えば3本)束ねて構成した
ものであり、可撓性を有している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. In the drawings, common members are denoted by the same reference numerals, and redundant description is omitted. FIG. 1 is an overall configuration diagram of a radiation thermometer according to the present invention. As shown in the figure, the radiation thermometer of the present invention comprises a condenser lens 2, an optical fiber 3, and a photoelectric conversion device 10 that converts a transmitted light amount into an electric signal and calculates a temperature T of a high-temperature object from the electric signal. Is done. The condenser lens 2 is installed near the hot object 1 (for example, a turbine blade).
The light emitted from the optical fiber 3 is focused on the end face of the optical fiber 3. Although the condensing lens 2 is shown as a single convex lens in this figure, it may be a compound lens composed of two or more lenses. Further, although the protective glass of the condenser lens 2 is not shown in this figure, such a protective glass may be used. Further, according to the present invention, the partial reflection coating 2a is applied to the back surface (the right surface in the figure) of the condenser lens 2. It is preferable that the partial reflection coating 2a selectively reflects a specific wavelength λ1. However, the present invention is not limited to this, and may reflect a wide range of wavelengths. The optical fiber 3 transmits the light condensed by the condenser lens 2 to the photoelectric conversion device 10.
The optical fiber 3 is configured by bundling a plurality of (for example, three) ultrafine fiber wires having a diameter of about 0.4 mm, for example, and has flexibility.

【0012】光電変換装置10は、図に示すように、受
光素子4、受光回路5、発光素子12、駆動回路13、
光結合素子14、サンプリング回路15及び演算回路1
6からなる。受光素子4は、光ファイバ3で伝送された
光を電流信号に変換する。受光回路5は、受光素子4で
変換した電流信号を電圧信号に変換する。従って、受光
素子4と受光回路5の組み合わせにより、光ファイバ3
で伝送された光の受光量を電圧信号(電圧レベル)に変
換することができ、この電圧信号を適当な演算回路で処
理することにより、従来と同様に高温物体1の温度を算
出することができる。
As shown in FIG. 1, the photoelectric conversion device 10 includes a light receiving element 4, a light receiving circuit 5, a light emitting element 12, a driving circuit 13,
Optical coupling element 14, sampling circuit 15, and arithmetic circuit 1
Consists of six. The light receiving element 4 converts the light transmitted through the optical fiber 3 into a current signal. The light receiving circuit 5 converts the current signal converted by the light receiving element 4 into a voltage signal. Therefore, the combination of the light receiving element 4 and the light receiving circuit 5 allows the optical fiber 3
Can be converted into a voltage signal (voltage level), and the voltage signal is processed by an appropriate arithmetic circuit to calculate the temperature of the high-temperature object 1 as in the related art. it can.

【0013】発光素子12は、部分反射コーティング2
aで反射する波長の所定光量Pの光を発する。この波長
は、部分反射コーティング2aが、特定の波長λ1 を選
択的に反射する場合には、これに併せて同一の波長λ1
とするのがよいが、部分反射コーティング2aが広範囲
の波長を反射する場合には、狭い波長範囲である限りで
任意の波長であってもよい。駆動回路13は、発光素子
12をパルス状に発光させる。更に、光結合素子14
は、発光素子12と受光素子4を光ファイバ3に結合し
ている。この構成により、発光素子12から光ファイバ
3を介して集光レンズ2にパルス光を照射することがで
き、かつ同時にその反射光と透過光を併せて受光し、受
光素子4により受光量を計測することができる。
The light emitting element 12 has a partially reflective coating 2
A light having a predetermined light amount P having a wavelength reflected by a is emitted. If the partial reflection coating 2a selectively reflects a specific wavelength λ1, the same wavelength λ1
However, when the partial reflection coating 2a reflects a wide range of wavelengths, any wavelength may be used as long as it is in a narrow wavelength range. The drive circuit 13 causes the light emitting element 12 to emit light in a pulse shape. Further, the optical coupling element 14
Connects the light emitting element 12 and the light receiving element 4 to the optical fiber 3. With this configuration, it is possible to irradiate the condenser lens 2 with pulsed light from the light emitting element 12 via the optical fiber 3 and simultaneously receive the reflected light and the transmitted light together, and measure the amount of light received by the light receiving element 4 can do.

【0014】サンプリング回路15は、発光素子12の
ON/OFFに同期して受光素子4からの受光信号を取
得する。更に、演算回路16は、発光素子12のON/
OFFの各タイミングにおける受光回路からの電圧信号
S1,S2 から伝送損失を補償するようになっている。
The sampling circuit 15 acquires a light receiving signal from the light receiving element 4 in synchronization with ON / OFF of the light emitting element 12. Further, the arithmetic circuit 16 determines whether the light emitting element 12 is ON / OFF.
The transmission loss is compensated from the voltage signals S1 and S2 from the light receiving circuit at each OFF timing.

【0015】図2は、本発明の原理図である。(A)に
おいて、高温物体1からの放射光の光量S0 に対して部
分反射コーティング2aの透過率をTr2 とすると、光
ファイバ3に入力する放射光の光量は、Tr2 ×S0 と
なる。更に光ファイバ3の透過率をTrとすると、受光
素子4で計測される光量S2 は、Tr2 ×S0 ×Trで
あり、S0 =S2 /(Tr2 ×Tr)..(式1)が成
り立つ。すなわち、部分反射コーティング2aの透過率
Tr2 は、製造時の測定により既知であるから、光ファ
イバ3の透過率Trがわかれば放射光の光量S0 が算出
でき、伝送損失を補償することができることがわかる。
FIG. 2 shows the principle of the present invention. In (A), if the transmittance of the partial reflection coating 2a is Tr2 with respect to the light amount S0 of the radiated light from the high temperature object 1, the light amount of the radiated light input to the optical fiber 3 is Tr2 * S0. Further, assuming that the transmittance of the optical fiber 3 is Tr, the light amount S2 measured by the light receiving element 4 is Tr2 × S0 × Tr, and S0 = S2 / (Tr2 × Tr). . (Equation 1) holds. That is, since the transmittance Tr2 of the partial reflection coating 2a is known by measurement at the time of manufacturing, if the transmittance Tr of the optical fiber 3 is known, it is possible to calculate the light amount S0 of the emitted light and compensate for the transmission loss. Understand.

【0016】図2(B)において、上述した放射温度計
(発光素子12、駆動回路13、光結合素子14)によ
り、部分反射コーティング2aで反射する波長の所定光
量Pのパルス光を集光レンズ2に導くと、光ファイバ3
の透過率Trを乗じたP×Trの光量が部分反射コーテ
ィング2aに入射し、部分反射コーティング2aの反射
率をFrとすると、P×Tr×Frの光量が反射し、更
に光ファイバ3の透過率Trを乗じたP×Tr2 ×Fr
=ΔS..(式2)の光量が(A)の透過光量S2 に加
算され、受光素子4で光量S1 として計測される。従っ
て、S2 +ΔS=S1 ..(式3)の関係が成り立。こ
こで、S2 、S1 、Pはそれぞれ既知又は計測可能であ
り、部分反射コーティング2aの反射率Frも製造時の
測定により既知であるから、式2から光ファイバ3の透
過率Trを実測することができる。
In FIG. 2B, the radiation thermometer (light emitting element 12, drive circuit 13, optical coupling element 14) is used to collect a pulse light of a predetermined light amount P having a wavelength reflected by the partial reflection coating 2a. 2 leads to an optical fiber 3
If the light quantity of P × Tr multiplied by the transmittance Tr of the light enters the partial reflection coating 2a and the reflectance of the partial reflection coating 2a is Fr, the light quantity of P × Tr × Fr is reflected, and the transmission of the optical fiber 3 is further performed. P × Tr 2 × Fr multiplied by the rate Tr
= ΔS. . The light amount of (Equation 2) is added to the transmitted light amount S2 of (A), and is measured by the light receiving element 4 as the light amount S1. Therefore, S2 + ΔS = S1. . (Equation 3) holds. Here, S2, S1, and P are known or measurable, respectively, and the reflectance Fr of the partial reflection coating 2a is also known by measurement at the time of manufacturing. Therefore, the transmittance Tr of the optical fiber 3 is actually measured from Expression 2. Can be.

【0017】上述した図2及び(式1)〜(式3)を用
いることにより、所定光量Pのパルス光を集光レンズ2
に導くように光ファイバに入射させ、パルス光の有無に
よる受光量の変化S1,S2 から伝送損失を補償すること
ができる。すなわち、発光素子12、駆動回路13及び
光結合素子14により、放射温度計の使用時にコーティ
ングで反射する波長の所定光量Pのパルス光を光ファイ
バを介して集光レンズ2の裏面に導き、光結合素子1
4、サンプリング回路15、受光素子4及び受光回路5
により、レンズ裏面からの反射光を集光レンズの透過光
量S2 に加算して計測し、パルス光の有無による受光量
の変化S1,S2 から演算回路16により、パルス光の往
復分の伝送損失ΔSが算出でき(式3)、これから光フ
ァイバの透過率Trを算出し(式2)、伝送損失を補償
する(式1)ことができ、これを出力装置7でCRT等
に表示し、或いは他の制御装置等に出力することができ
る。
By using the above-mentioned FIG. 2 and (Equation 1) to (Equation 3), the pulse light of the predetermined light amount P is
The transmission loss can be compensated from the changes S1 and S2 in the amount of received light depending on the presence or absence of pulsed light. That is, the light emitting element 12, the driving circuit 13, and the optical coupling element 14 guide the pulse light of a predetermined light amount P having a wavelength reflected by the coating when the radiation thermometer is used to the back surface of the condensing lens 2 via the optical fiber. Coupling element 1
4, sampling circuit 15, light receiving element 4, and light receiving circuit 5
, The reflected light from the back surface of the lens is added to the transmitted light amount S2 of the condenser lens, and measured. Can be calculated (Equation 3), the transmittance Tr of the optical fiber can be calculated from this (Equation 2), and the transmission loss can be compensated (Equation 1), and this can be displayed on a CRT or the like by the output device 7, or otherwise. Can be output to a control device or the like.

【0018】図3は、本発明の放射温度計における入力
波長と強度(光量)との関係図である。この図におい
て、(A)は、部分反射コーティング2aが、特定の波
長λ1を選択的に反射するのコーティングであり、発光
部分素子12が波長λ1 の所定光量Pの光を発する場合
を示している。この場合に、高温物体1からの放射光の
光量S0 は、通常例えば波長750nmから1550n
mまでの広範囲にわたり分布しているが、コーティング
2aにより特定の波長λ1 (例えば、約1300nm前
後)の光が反射され損失となる。しかし、全体の波長領
域に比べてコーティング2aによる損失領域は非常に狭
いため、放射温度計への影響はほとんどなく、全体の波
長領域における損失が少ないため高精度な温度計測がで
きる。また、コーティング2aが特定の波長λ1のみに
影響するため、その他の波長(例えばλ2 )を別の用途
に用いる場合、或いは波長λ1 以外の波長部分で特に高
精度が要求される場合に、コーティング2aの影響を皆
無又はほとんど無視できるレベルに低減することができ
る。
FIG. 3 is a diagram showing the relationship between input wavelength and intensity (light quantity) in the radiation thermometer of the present invention. In this figure, (A) shows a case where the partial reflection coating 2a is a coating that selectively reflects a specific wavelength λ1, and the light emitting partial element 12 emits light of a predetermined light amount P of the wavelength λ1. . In this case, the light amount S0 of the radiated light from the high-temperature object 1 is usually, for example, from 750 nm to 1550 n.
Although the light is distributed over a wide range up to m, light having a specific wavelength λ1 (for example, about 1300 nm) is reflected by the coating 2a, resulting in a loss. However, since the loss area due to the coating 2a is very narrow as compared with the entire wavelength region, there is almost no influence on the radiation thermometer, and the loss in the entire wavelength region is small, so that highly accurate temperature measurement can be performed. In addition, since the coating 2a affects only the specific wavelength λ1, the coating 2a is used when another wavelength (for example, λ2) is used for another purpose or when high precision is required in a wavelength portion other than the wavelength λ1. Can be reduced to a negligible or almost negligible level.

【0019】図3(B)は、部分反射コーティング2a
が、広範囲の波長を均一に反射するのコーティングであ
り、発光部分素子12が波長λ1 の所定光量Pの光を発
する場合を示している。この場合に、高温物体1からの
放射光の光量S0 は、コーティング2aにより広範囲の
波長(例えば波長750nmから1550nm)の光が
反射され損失となる。しかし、コーティング2aの反射
率(透過率Tr)を予め計測しておけば、上述した方法
により同様に温度計測ができる。また、上述の説明で
は、受光素子4及び発光素子12の光電変換における変
換ゲインηを無視して(100%として)いるが、実際
の装置では、かかる変換ゲインηは既知でありこれを含
めた式を適用するのがよい。
FIG. 3B shows a partial reflection coating 2a.
Is a coating that uniformly reflects a wide range of wavelengths, and shows a case where the light emitting sub-element 12 emits light of a predetermined light amount P of wavelength λ1. In this case, the light amount S0 of the radiated light from the high-temperature object 1 is lost because light of a wide range of wavelengths (for example, a wavelength of 750 nm to 1550 nm) is reflected by the coating 2a. However, if the reflectance (transmittance Tr) of the coating 2a is measured in advance, the temperature can be similarly measured by the above-described method. In the above description, the conversion gain η in the photoelectric conversion of the light receiving element 4 and the light emitting element 12 is ignored (assumed to be 100%). However, in an actual apparatus, such a conversion gain η is known and included. It is good to apply an expression.

【0020】なお本発明は、上述した実施形態に限定さ
れるものではなく、本発明の要旨を逸脱しない範囲で種
々の変更が可能である。例えば、本発明はガスタービン
・ブレード以外にも一般の高温物体の表面温度計測にも
適用することができる。
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention. For example, the present invention can be applied to surface temperature measurement of general high-temperature objects other than gas turbine blades.

【0021】[0021]

【発明の効果】上述したように、本発明の伝送損失補償
機能を有する放射温度計とその温度計測方法は、レンズ
表面の付着物による伝送損失を補償することができる、
等の優れた効果を有する。
As described above, the radiation thermometer having the transmission loss compensating function and the temperature measuring method according to the present invention can compensate for the transmission loss due to the attachment on the lens surface.
And so on.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による放射温度計の全体構成図である。FIG. 1 is an overall configuration diagram of a radiation thermometer according to the present invention.

【図2】本発明の原理図である。FIG. 2 is a principle diagram of the present invention.

【図3】本発明の放射温度計における入力波長と強度
(光量)との関係図である。
FIG. 3 is a diagram showing the relationship between input wavelength and intensity (light quantity) in the radiation thermometer of the present invention.

【図4】光ファイバを用いた従来の放射温度計の模式図
である。
FIG. 4 is a schematic diagram of a conventional radiation thermometer using an optical fiber.

【符号の説明】[Explanation of symbols]

1 高温物体 2 集光レンズ 2a 部分反射コーティング 3 光ファイバ 4 受光素子 5 受光回路 6 演算回路 7 出力装置 10 光電変換装置 12 発光素子 13 駆動回路 14 光結合素子 15 サンプリング回路 16 演算回路 DESCRIPTION OF SYMBOLS 1 High temperature object 2 Condensing lens 2a Partial reflection coating 3 Optical fiber 4 Light receiving element 5 Light receiving circuit 6 Arithmetic circuit 7 Output device 10 Photoelectric converter 12 Light emitting element 13 Drive circuit 14 Optical coupling element 15 Sampling circuit 16 Arithmetic circuit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 裏面に部分反射コーティングが施され、
かつ高温物体(1)からの放射光を集光する集光レンズ
(2)と、集光された光を伝送する光ファイバ(3)
と、伝送された光量を電気信号に変換しこれから高温物
体の温度Tを演算する光電変換装置(10)とを備え、 光電変換装置は、伝送された光を電流信号に変換する受
光素子(4)と、該電流信号を電圧信号に変換する受光
回路(5)と、前記部分反射コーティングで反射する波
長の所定光量Pの光を発する発光素子(12)と、該発
光素子をパルス状に発光させる駆動回路(13)と、発
光素子と受光素子を光ファイバに結合する光結合素子
(14)と、発光素子のON/OFFに同期して受光信
号を取得するサンプリング回路(15)と、各タイミン
グにおける受光回路からの電圧信号S1,S2 から伝送損
失を補償する演算回路(16)とを備えたことを特徴と
する伝送損失補償機能を有する放射温度計。
1. A partially reflective coating is applied to the back surface,
And a condenser lens (2) for condensing light emitted from the high-temperature object (1), and an optical fiber (3) for transmitting the condensed light
And a photoelectric conversion device (10) that converts the transmitted light amount into an electric signal and calculates the temperature T of the high-temperature object from the electric signal. The photoelectric conversion device converts the transmitted light into a current signal. ), A light receiving circuit (5) for converting the current signal into a voltage signal, a light emitting element (12) for emitting a predetermined amount of light P having a wavelength reflected by the partial reflection coating, and a light emitting element for emitting the pulsed light. A driving circuit (13), an optical coupling element (14) for coupling the light emitting element and the light receiving element to the optical fiber, a sampling circuit (15) for acquiring a light receiving signal in synchronization with ON / OFF of the light emitting element, A radiation thermometer having a transmission loss compensating function, comprising: an arithmetic circuit (16) for compensating transmission loss from voltage signals S1 and S2 from the light receiving circuit at the timing.
【請求項2】 前記部分反射コーティングは、特定の波
長λ1 を選択的に反射するコーティングであり、前記発
光素子(12)の光は、波長λ1 のパルス光である、こ
とを特徴とする請求項1に記載の放射温度計。
2. The method according to claim 1, wherein the partial reflection coating is a coating that selectively reflects a specific wavelength λ1, and the light of the light emitting element is pulsed light having a wavelength of λ1. 2. The radiation thermometer according to 1.
【請求項3】 高温物体(1)の近傍に集光レンズ
(2)を有し、該集光レンズで集光した光を光ファイバ
(3)を介して受光素子(4)に導き、その受光量から
高温物体の温度Tを算出する温度計測方法において、 集光レンズの裏面に部分反射コーティングを施し、該部
分反射コーティングで反射する波長の所定光量Pのパル
ス光を集光レンズ(2)に導くように光ファイバに入射
させ、パルス光の有無による受光量の変化S1,S2 から
伝送損失を補償する、ことを特徴とする温度計測方法。
3. A condensing lens (2) near the hot object (1), and the light condensed by the condensing lens is guided to a light receiving element (4) via an optical fiber (3). In a temperature measuring method for calculating a temperature T of a high-temperature object from an amount of received light, a partial reflection coating is applied to a back surface of a condenser lens, and a pulse light of a predetermined light amount P having a wavelength reflected by the partial reflection coating is collected. A temperature measurement method characterized in that the transmission loss is compensated from changes S1 and S2 in the amount of received light depending on the presence or absence of pulsed light.
JP21216998A 1998-07-28 1998-07-28 Radiation thermometer with optical loss compensation function and its temperature measurement method Expired - Fee Related JP3932680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21216998A JP3932680B2 (en) 1998-07-28 1998-07-28 Radiation thermometer with optical loss compensation function and its temperature measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21216998A JP3932680B2 (en) 1998-07-28 1998-07-28 Radiation thermometer with optical loss compensation function and its temperature measurement method

Publications (2)

Publication Number Publication Date
JP2000046655A true JP2000046655A (en) 2000-02-18
JP3932680B2 JP3932680B2 (en) 2007-06-20

Family

ID=16618058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21216998A Expired - Fee Related JP3932680B2 (en) 1998-07-28 1998-07-28 Radiation thermometer with optical loss compensation function and its temperature measurement method

Country Status (1)

Country Link
JP (1) JP3932680B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008307148A (en) * 2007-06-13 2008-12-25 Hoya Corp Endoscopic instrument
CN107255558A (en) * 2017-06-30 2017-10-17 电子科技大学 A kind of method for gathering the wave band radiation information of turbo blade three

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008307148A (en) * 2007-06-13 2008-12-25 Hoya Corp Endoscopic instrument
CN107255558A (en) * 2017-06-30 2017-10-17 电子科技大学 A kind of method for gathering the wave band radiation information of turbo blade three

Also Published As

Publication number Publication date
JP3932680B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
CN106471340B (en) For the device from multiple fiber sensor measuring optical signals
KR101207345B1 (en) Optic fiber distributed temperature sensor system with self- correction function and temperature measuring method using thereof
US7744275B2 (en) Optical fiber temperature sensing device
WO2007109336A3 (en) Apparatus for continuous readout of fabry-perot fiber optic sensor
US4763009A (en) Method and apparatus for remotely measuring the distribution of a physico-chemical parameter in a medium
EP1203211A1 (en) Method and device for fibre-optical measuring systems
JP3407435B2 (en) Optical fiber sensor
JP2000046655A (en) Radiation thermometer having light receiving loss compensation function and temperature measuring method therefor
KR100614006B1 (en) Strain measurement module using temperature controllable tunable light generator and fiberoptic system thereof
JP2009174987A (en) Distributed optical fiber temperature sensor
JPS6217621A (en) Optical power meter
JPS57157124A (en) Optical rod fabry-perot thermometer
JPS586431A (en) Temperature measuring method using optical fiber
JP2000046656A (en) Radiation thermometer having light receiving loss compensation function and temperature measuring method therefor
JPH0550710B2 (en)
JPS63308531A (en) Optical type gas pressure sensor
JP2003130734A (en) Temperature sensor and temperature measurement method
JP2003106970A (en) Density sensor
JP3110139B2 (en) Optical fiber temperature sensor
JPS63121722A (en) Temperature distribution detector
CN102798487B (en) Non-line type calibrates the System and method for of detecting optical cable attenuation parameter automatically
JP2022054215A (en) Physical quantity measurement device and temperature measurement device
JPS625605Y2 (en)
JPH06123661A (en) Optical fiber distribution type temperature sensor and apparatus for generating two wavelength light
JPH0735985B2 (en) Calibration method for optical fiber radiation thermometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070312

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees