JPS58139038A - Temperature measuring device using optical fiber - Google Patents

Temperature measuring device using optical fiber

Info

Publication number
JPS58139038A
JPS58139038A JP2310782A JP2310782A JPS58139038A JP S58139038 A JPS58139038 A JP S58139038A JP 2310782 A JP2310782 A JP 2310782A JP 2310782 A JP2310782 A JP 2310782A JP S58139038 A JPS58139038 A JP S58139038A
Authority
JP
Japan
Prior art keywords
light
optical
temperature
optical fiber
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2310782A
Other languages
Japanese (ja)
Inventor
Kazuo Hisama
和生 久間
Shuichi Tai
田井 修市
Toshio Aranishi
新西 俊雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2310782A priority Critical patent/JPS58139038A/en
Publication of JPS58139038A publication Critical patent/JPS58139038A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/12Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance

Abstract

PURPOSE:To provide a high-precise photo thermometer, by a method wherein light transmitting a photo temperature sensor is separated into an output, corresponding to a wavelength having transmissivity depending on temperature, and an output, corresponding to a wavelength having transmissivity not depending on temperature, by means of an optical BPE to find a ratio between the two electric output signals. CONSTITUTION:Light from a light source 1 using a luminous diode enters a photo temperature sensor 3 through an optical fiber 2. Light passing through the sensor 3 is connected to bundle fibers 7 and 7', which are branched into two parts, through an optical fiber 4 by a photo connector 6, and is further joined, in order, to optical BPF8, 8' corresponding to wavelengths lambda1 and lambda2, photoelectric converters 5, 5', and amplifiers 9, 9', and the outputs of the amplifiers 9, 9' are inputted to a divider 10. The BPF8 is a BPF centering around a wavelength lambda1 having transmissivity, depending on temperature, of a light transmitting the sensor 3, and the BPF8' is a BPF which has a wavelength lambda2 having transmissivity hardly depending on temperature. This permits temperature of a spot where the sensor 3 is located to be high-precisely measured by means of the output of the divider 10.

Description

【発明の詳細な説明】 この発明は、光ファイバによる温度計測装置に関するも
のであり、さらに詳しくいうと、光温度センナと信号の
伝送路となる光ファイバを用いた温度計測装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature measuring device using an optical fiber, and more specifically, to a temperature measuring device using an optical temperature sensor and an optical fiber serving as a signal transmission path.

従来、この種の装置として第1図に示すものがあった。Conventionally, there has been a device of this type as shown in FIG.

すなわち、光源/からの光を光ファイバコを通してGa
Aaのような半導体結晶あるいは非晶質体でなる光温度
センサ3に与え、この光温度センサ3を経た光を、光フ
ァイバ参を介して光電変換装置j[入力させるものであ
る。光温度センサJの光の透過率は光の波長によって変
化し、かつ、温度によって変化する、第2図は、このよ
うな光温度センサの波長依存性と温度との関係の一例を
示し、横軸に波長λ、縦軸に透過率、パラメータとして
は温[Ttを用いて表わしている。この図から、波長λ
l、λコ、λJでは温度T1の変化によって透過率が変
化することがわかる。いま、光源lの光の波長なλJ&
C選んでおけば、温度がT/からTJまで変化する範囲
で畔光温度センサ3における光の透過率が変化する。光
源/から光ファイバJK入射する光の強さがわかってお
れば、光電変換装置jK入射する光の強さを測定するこ
とKよって、光温度センサJKおける光の透過率を算出
することができ、かくして、光温度センサJの温度を知
ることができるのである。
In other words, the light from the light source passes through the optical fiber
The light is applied to an optical temperature sensor 3 made of a semiconductor crystal or an amorphous material such as Aa, and the light that has passed through the optical temperature sensor 3 is inputted to a photoelectric conversion device j via an optical fiber. The light transmittance of the optical temperature sensor J changes depending on the wavelength of the light and changes depending on the temperature. Figure 2 shows an example of the relationship between the wavelength dependence of such an optical temperature sensor and the temperature. The wavelength λ is plotted on the axis, the transmittance is plotted on the vertical axis, and temperature [Tt] is used as a parameter. From this figure, the wavelength λ
It can be seen that the transmittance changes with changes in temperature T1 at 1, λ, and λJ. Now, the wavelength of light from light source l is λJ&
If C is selected, the light transmittance in the edge light temperature sensor 3 changes within the range where the temperature changes from T/ to TJ. If the intensity of the light entering the optical fiber JK from the light source is known, the light transmittance at the optical temperature sensor JK can be calculated by measuring the intensity of the light entering the photoelectric conversion device JK, thus , the temperature of the optical temperature sensor J can be known.

しかし、以上のような従来の装置にあっては。However, in the case of conventional devices such as those mentioned above.

光ファイバー、光温度センサ3.光ファイバ亭郷の相互
間結合効率が変化したり、光ファイバー。
Optical fiber, optical temperature sensor 3. The mutual coupling efficiency of optical fibers changes, or the optical fibers.

参の曲がりによる伝送損失の変化によって光電変換装置
Sへの入射光量が変化したとき、その変化と、光温度セ
ンサJの温度変化による入射光量の変化とを弁別できず
、正確な測定値が得られないという欠点が存しでいた。
When the amount of light incident on the photoelectric conversion device S changes due to a change in transmission loss due to the bending of the sensor, it is impossible to distinguish between that change and the change in the amount of incident light due to a temperature change of the optical temperature sensor J, making it impossible to obtain an accurate measurement value. The disadvantage was that it was not possible to do so.

この発明は1以上のような従来のものの欠点を除去する
ためKなされたものであり、装置を構成する光学部材相
互の結合効率の変化等による測定誤差を解消した光ファ
イバによる温度針側装置を提供することを目的とするも
のである。
This invention was made in order to eliminate one or more of the drawbacks of the conventional devices, and provides a temperature needle side device using an optical fiber that eliminates measurement errors caused by changes in coupling efficiency between optical members constituting the device. The purpose is to provide

また、この発明の、目的は、光受信側の光ファイ・:゛
・町、 バの出射端面に、波長通過域の異なる一種の光学   
”帯域通過フィルタを設け、その一方のフィルタから光
電変換装置に入射する光を信号光、他方な参照光として
処理する光ファイバによる温度計測装置を提供するとと
Kある。
It is also an object of the present invention to provide a type of optical fiber with different wavelength passbands on the output end face of the optical fiber on the receiving side.
``It is proposed to provide a temperature measuring device using an optical fiber, which includes band-pass filters and processes light incident on a photoelectric conversion device from one of the filters as a signal light and the other as a reference light.

られた波長λ)、λコに対する光学帯域通過フィルタを
用い、光温度センサを通過するとき、透過率が−gK依
存する第1の波長λ/に対応する出力電圧と、透過率が
温度Kfiとんと依存しない第コの波長λコに対応する
出力電圧との比を求める手段によることを特徴とするも
のである。
When the light passes through the temperature sensor, the output voltage corresponding to the first wavelength λ/ whose transmittance depends on −gK and the transmittance at temperature Kfi and The present invention is characterized by means for determining the ratio between the output voltage and the output voltage corresponding to the independent wavelength λ.

以下1図面を用いてこの発明を詳述する。This invention will be explained in detail below using one drawing.

第3図は、この発明の一実施例であり1発光ダイオード
を用いた光源l、単芯またはバンドルファイバでなる光
ファイバコ、 41 、 ()aAs  のごとき半導
体結晶あるいは非晶質体でなる光温度センサJ等は、第
7図におけるものと同様である。光ファイバ亭の出力端
は光コネクタ4を介してコ分岐されたバンドルファイバ
ラ、7′に接続され、さらに波長λl、λJK対応する
光学帯域通過フィルタt、t’、光電変換装置3,3′
、増幅器デ、t′がそれぞれ順次接続され、増幅器9.
9′の出力は割算器10K接続構成されている。
FIG. 3 shows an embodiment of the present invention, in which a light source using a light emitting diode, an optical fiber made of a single core or a bundle fiber, and a light temperature of a semiconductor crystal or an amorphous material such as ()aAs are shown. Sensor J etc. are the same as those in FIG. The output end of the optical fiber tube is connected to a co-branched bundle fiber optic 7' via an optical connector 4, and further connected to optical bandpass filters t and t' corresponding to wavelengths λl and λJK, and photoelectric conversion devices 3 and 3'.
, amplifiers D and t' are connected in sequence, and amplifiers 9 .
The output of 9' is connected to a divider 10K.

次に、動作について説明するのであるが、それに先立っ
て、第参図により主要部分の特性良ついて説明する。第
参図(a)は光源/として発光ダイオードを用いた場合
のスペクトルで、これに対し同図(b)は、半導体結晶
でなる光温度センサ3の光吸収特性の温度依存性を示し
、同図(C)は、光学帯域通過フィルタz、t’の通過
波長帯域の関係を例示したものである。
Next, the operation will be explained, but before that, the characteristics of the main parts will be explained with reference to FIG. Figure (a) shows the spectrum when a light emitting diode is used as the light source, while Figure (b) shows the temperature dependence of the light absorption characteristics of the optical temperature sensor 3 made of semiconductor crystal. Figure (C) illustrates the relationship between the pass wavelength bands of the optical band pass filters z and t'.

第3図において、光ファイバコに挿入される光源lから
の光のスペクトルには第参図(a) K示したように、
波長λlおよびλ−がふくまれているものとする。光フ
ァイバーに挿入された光は光温度センナ3に導かれるの
であるが、この光温度センサJとして半導体結晶を用い
た場合について説明する。半導体結晶は、第参図(b)
 K示したように、光学基礎吸収端波長λg (’r)
を有しており、この2g(T)よりも短波長の光に対し
て吸収量が急激に増加する。また、一般に、2g(T)
は温度が上昇すると共に長波長側に移行する。したがっ
て、2g(T)をふくむスペクトルの一定強度の光が光
温度センサ3に入射すると、その透過光強度は温度の上
昇と共に減少する。光温度センサJを透過した光は、光
ファイバ参によって光受信部に導かれ、光コネクタ6を
介してバンドルファイバク、7′に分岐され。
In Figure 3, the spectrum of light from the light source l inserted into the optical fiber is as shown in Figure (a) K.
It is assumed that the wavelengths λl and λ- are included. The light inserted into the optical fiber is guided to the optical temperature sensor 3, and a case where a semiconductor crystal is used as the optical temperature sensor J will be explained. The semiconductor crystal is shown in Figure (b).
KAs shown, the optical fundamental absorption edge wavelength λg ('r)
The amount of absorption increases rapidly for light with a wavelength shorter than 2g(T). Also, generally 2g(T)
shifts to longer wavelengths as the temperature rises. Therefore, when light with a constant intensity in the spectrum including 2g(T) is incident on the optical temperature sensor 3, the transmitted light intensity decreases as the temperature rises. The light transmitted through the optical temperature sensor J is guided to a light receiving section by an optical fiber, and branched to a bundle fiber back 7' via an optical connector 6.

さらK、それぞれ光学帯域通過フィルタt、t’を経て
光電変換装置3,3′で電気信号に変換される。
Furthermore, the signals K are converted into electrical signals by photoelectric conversion devices 3 and 3' through optical bandpass filters t and t', respectively.

光学帯域通過フィルタtは、第ダ図(c)K示したよう
に、光温度センサJを通過する光の透過率が温度に依存
する第1の波長λlを中心とする帯域通過フィルタであ
り、光学帯域通過フィルタl′は透過率が温度Knとん
ど依存しない第コの波長λコを中心とする帯域通過フィ
ルタである。そのため。
The optical band-pass filter t is a band-pass filter whose transmittance of light passing through the optical temperature sensor J is centered at the first wavelength λl, which is temperature-dependent, as shown in FIG. The optical band-pass filter l' is a band-pass filter whose transmittance is centered at the th wavelength λ whose transmittance hardly depends on the temperature Kn. Therefore.

波長λ/に対応する光電変換装置3の電気出力信号は光
温度センサJの温度に↓って変化するが。
The electrical output signal of the photoelectric conversion device 3 corresponding to the wavelength λ/ changes according to the temperature of the optical temperature sensor J.

□ 2 J K %j f、オう□□竺−1゜1−ヵ。□ 2 J           j f, □□竺-1゜1-ka.

号は温度によってほとんど変化しない。一方、光コネク
タ6や光温度センサ3における光学結合損失、光ファイ
バコ、参の曲げKよる損失、光源lからの出射パワーの
変動等は波長λl、λコの光に対してほぼ同様に作用す
るので、光電変換装置S。
The number changes little with temperature. On the other hand, optical coupling losses in the optical connector 6 and optical temperature sensor 3, losses due to bending of optical fibers, fluctuations in output power from light source 1, etc. act in almost the same way on light of wavelengths λl and λ. Therefore, photoelectric conversion device S.

j′の各電気出力信号に4.fiぼ同様にあられれるこ
ととなる。したがって、光電変換装置S、?の電気出力
信号をそれぞれ増幅器t、t’で増幅したのち1割算器
10で除算すれば、光温度センサ3の置かれた場所の温
度を精度よく測定することができる。
4 for each electrical output signal of j'. It will come to you in the same way. Therefore, the photoelectric conversion device S, ? If the electrical output signals of are amplified by the amplifiers t and t', respectively, and then divided by the divider 10, the temperature at the location where the optical temperature sensor 3 is placed can be accurately measured.

なお、上記の実施例では、光源として発光ダイオードを
用いたものを示したが、ノーロゲンランプやタングステ
ンランプなど、他の光源を使用してもよい。
In the above embodiment, a light emitting diode was used as the light source, but other light sources such as a norogen lamp or a tungsten lamp may be used.

また1以上の実施例では、光温度センサとして半導体結
晶を用いた場合について示したが、非晶質体、カルコー
ゲンガラスなど他の材料を用いてもよい。
Further, in one or more embodiments, a semiconductor crystal is used as the optical temperature sensor, but other materials such as an amorphous body or chalcogen glass may be used.

さらK、以上メ集施例では、光温度センサから   1
の透過光を光ファイバで光コネクタに導き、その出力光
をバンドルファイバでコ分岐する構成につイテ示したが
、ビームスプリッタなどを用いた光分配器、光分波器等
を用いてもよい。光分波器を用いた場合は、上記の実施
例における光学的帯域通過フィルタを必要としない構成
とすることができる。これは、第3図に示すようK、光
ファイバ参からの光を充分波器//によって波長λlと
λコに分波し、波長λlの光は光ファイバ13を経て光
電変換装置jK、波長λコの光は光ファイバ/j′を経
て光電変換装置3′に入力して電気信号に変換される。
Furthermore, in the above example, from the light temperature sensor 1
Although we have shown a configuration in which the transmitted light is guided to an optical connector using an optical fiber and the output light is co-branched using a bundle fiber, it is also possible to use an optical splitter using a beam splitter, an optical demultiplexer, etc. . When an optical demultiplexer is used, a configuration that does not require the optical bandpass filter in the above embodiments can be achieved. As shown in Fig. 3, the light from the optical fiber 13 is demultiplexed into wavelengths λl and λ by the wave splitter//, and the light with the wavelength λl passes through the optical fiber 13 to the photoelectric conversion device jK. The light of λ is input to the photoelectric conversion device 3' through the optical fiber /j' and converted into an electric signal.

また1以上いずれかの実施例においても、測定精度を向
上させるために、光温度センサからの透過光をコ分岐し
た2波長刃式の構造について説明したが、光電変換装置
に入る光に対して波長λノ。
In addition, in any one of the first or more embodiments, a two-wavelength blade structure was described in which the transmitted light from the optical temperature sensor is co-branched in order to improve measurement accuracy. Wavelength λノ.

λJK対応する光学帯域通過フィルタを機械的に交互に
入れかえ、これと同期する電気回路によって、波長λ/
に対応する電気信号と波長λJK対応する電気信号を分
離することができる。これは第6図に示すような構成に
なるもので、光学帯域通過フィルタS、t′を機械的に
変位して入れかえる駆動回路lコ、パルス発生回路/3
.サンプルホールド回路/ $ 、 / 4”を順次接
続してなり、サンプルホールド回路/ 参、 / l’
は増幅器tと割算器70間に挿入され、駆動回路/JK
同期して波長λノ、λJKそれぞれ対応する電気信号を
分離して5割算器ioで除算させる。
The wavelength λ/
It is possible to separate the electrical signal corresponding to the wavelength λJK from the electrical signal corresponding to the wavelength λJK. This has a configuration as shown in Fig. 6, and includes a drive circuit that mechanically displaces and replaces the optical bandpass filters S and t', and a pulse generation circuit/3.
.. The sample and hold circuit / $ and / 4" are connected in sequence, and the sample and hold circuit / $ and / l' are connected in sequence.
is inserted between the amplifier t and the divider 70, and the drive circuit/JK
In synchronization, electric signals corresponding to wavelengths λ and λJK are separated and divided by a divider by 5 io.

以上のように%この発明は、簡単な構成により。As described above, this invention has a simple configuration.

光学部材の特性変化による測定誤差を排除して精度の高
い温度測定ができる。
Highly accurate temperature measurement is possible by eliminating measurement errors due to changes in the characteristics of optical members.

【図面の簡単な説明】[Brief explanation of drawings]

第7図は従来の装置の構成図、第2図は同じく光温度セ
ンサの特性線図、第3図はこの発明の−、実施例の構成
図、第参図(a) 9 (b) I (C)は同じくそ
れぞれ光源光のスペクトル線図、光温度センサの特性線
図、光学帯域通過フィルタの特性線図、第j図、第6図
は同じくそれぞれ他の実施例の構成図である。 l・・光源、コ、 41 、 / j 、 / &’・
・光ファイバ、3・・光温度センサ、 ! 、 j’・
・光電変換装置、6・・光コネクタ、り、り′・・バン
ドルファイバ、 t 、 t’・・光学帯域通過フィル
タ、!、テ′・・増幅器、io・・割算器、l/・・光
分波器。 /コ・・駆動回路、13・・パルス発生器、/#。 / II’・・サンプルホールド回路。 なお、各図中、同一符号は同一または相当部分を示す。 代理人  葛  野  信  − ・1・ 幣1図 処3図 焔4図 幣5図 党6図
Fig. 7 is a block diagram of a conventional device, Fig. 2 is a characteristic diagram of a light temperature sensor, and Fig. 3 is a block diagram of an embodiment of the present invention. (C) is a spectral diagram of the light source, a characteristic diagram of the optical temperature sensor, and a characteristic diagram of the optical bandpass filter, respectively, and FIGS. J and 6 are configuration diagrams of other embodiments, respectively. l・・light source, ko, 41, / j, / &'・
・Optical fiber, 3... Optical temperature sensor, ! , j'・
- Photoelectric conversion device, 6... Optical connector, Ri, Ri'... Bundle fiber, t, t'... Optical bandpass filter,! , Te'... amplifier, io... divider, l/... optical demultiplexer. /Co...Drive circuit, 13...Pulse generator, /#. / II'...Sample hold circuit. In each figure, the same reference numerals indicate the same or corresponding parts. Agent Makoto Kuzuno - ・1・ 1 illustration 3 illustrations Homura 4 illustrations 5 illustrations party 6 illustrations

Claims (1)

【特許請求の範囲】 <i)光ファイバを介して光源からの光が入射される光
温度センサと、この光温度センサを透過した前記光を光
ファイバを介して受光する光受信部を備えた温度計測装
置において、前記光受信部で受光する光を、前記光11
[センサの透過率が温度に依存する第7の波長λlの帯
域と、透過率が温度Kfiとんと依存しない第コの波長
λコの帯域に分離する手段と、前記波長λl、λコに対
応する電気出力信号の比を求める手段を備えてなること
を特徴とする光ファイバによる温度計測装置。 (コ)光温度センサを透過した光を2分岐するl対のバ
ンドルファイバの出力端にそれぞれ配置され波長λノ、
λ1の帯域をそれぞれ通過する光学帯域通過フィルタと
、これら光学帯域通過フィルタにそれぞれ結合された光
電変換装置と、これらの光電変換装置の出力の比を求め
る割算器を備えた特許請求の範囲第1項記載の光ファイ
バによる温度計測装置。 (3)光温度センサを透過した光を波長λノ、λコの帯
域に分離する光分波器と、光ファイバを介して前記光分
波器の光出力に結合されたl対の光電変換装置と、これ
ら光電変換装置の電気出力信号の比を求める割算器を備
えた特許請求の範囲第1項記載の光学ファイバによる温
度計測装置。 (4I)光温度センサを透過した光を導出する光ファイ
バの出力端と単一の充電変換装置間に可動に配置され波
長λl、λコの光をそれぞれ通過する光、学帯域通過フ
ィルタ、この光学帯域通過フィルタを入れかえ駆動する
駆動手段、この駆動手段と同期して前記波長λl、λ1
の光に対応する電気出力信号を分離する手段1、分離さ
れた前記電気出力信号の比を求める手段を備えた特許請
求の範囲第1項記載の光学ファイバによる温度計測装置
[Claims] <i) A light temperature sensor that receives light from a light source through an optical fiber, and a light receiving section that receives the light that has passed through the light temperature sensor through the optical fiber. In the temperature measuring device, the light received by the light receiving section is
[Means for separating the sensor into a seventh wavelength λl band whose transmittance depends on temperature and a seventh wavelength λband whose transmittance does not depend on temperature Kfi; 1. A temperature measuring device using an optical fiber, comprising means for determining a ratio of electrical output signals. (g) The wavelength λ is placed at the output end of l pairs of bundle fibers that split the light transmitted through the optical temperature sensor into two.
Claim 1 comprising: optical bandpass filters that each pass a band of λ1; photoelectric conversion devices respectively coupled to these optical bandpass filters; and a divider for calculating the ratio of the outputs of these photoelectric conversion devices. A temperature measuring device using an optical fiber according to item 1. (3) An optical demultiplexer that separates the light transmitted through the optical temperature sensor into wavelength bands of λ and λ, and a pair of photoelectric conversions coupled to the optical output of the optical demultiplexer via an optical fiber. 2. A temperature measuring device using an optical fiber according to claim 1, comprising a divider for determining the ratio of the electrical output signals of these photoelectric conversion devices. (4I) A school band pass filter that is movably arranged between the output end of the optical fiber that guides the light that has passed through the optical temperature sensor and the single charging conversion device and that passes the light with wavelengths λl and λ, respectively; A driving means for replacing and driving the optical bandpass filter, and synchronizing with this driving means, the wavelengths λl, λ1
2. A temperature measuring device using an optical fiber according to claim 1, comprising: means for separating electrical output signals corresponding to the light; and means for determining a ratio of the separated electrical output signals.
JP2310782A 1982-02-13 1982-02-13 Temperature measuring device using optical fiber Pending JPS58139038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2310782A JPS58139038A (en) 1982-02-13 1982-02-13 Temperature measuring device using optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2310782A JPS58139038A (en) 1982-02-13 1982-02-13 Temperature measuring device using optical fiber

Publications (1)

Publication Number Publication Date
JPS58139038A true JPS58139038A (en) 1983-08-18

Family

ID=12101242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2310782A Pending JPS58139038A (en) 1982-02-13 1982-02-13 Temperature measuring device using optical fiber

Country Status (1)

Country Link
JP (1) JPS58139038A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4979134A (en) * 1988-07-15 1990-12-18 Minolta Camera Kabushiki Kaisha Method for measuring surface temperature of semiconductor wafer substrate, and heat-treating apparatus
US4980847A (en) * 1984-03-07 1990-12-25 Omron Tateisi Electronics Co. Temperature measuring device
US5709473A (en) * 1996-05-13 1998-01-20 General Motors Corporation Temperature sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5526494A (en) * 1978-06-26 1980-02-25 Asea Ab Optical fiber thermodetector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5526494A (en) * 1978-06-26 1980-02-25 Asea Ab Optical fiber thermodetector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4980847A (en) * 1984-03-07 1990-12-25 Omron Tateisi Electronics Co. Temperature measuring device
US4979134A (en) * 1988-07-15 1990-12-18 Minolta Camera Kabushiki Kaisha Method for measuring surface temperature of semiconductor wafer substrate, and heat-treating apparatus
US5709473A (en) * 1996-05-13 1998-01-20 General Motors Corporation Temperature sensor

Similar Documents

Publication Publication Date Title
US4260883A (en) Optical measurement system
US7157693B2 (en) Optical wavelength interrogator
JP6491399B2 (en) Multi-channel tunable laser performance test equipment
ATE27489T1 (en) FIBER OPTIC MEASUREMENT DEVICE.
CA1246354A (en) Optical measuring device using a spectral modulation sensor having an optically resonant structure
KR950033445A (en) Temperature measuring method and apparatus using optical fiber
CN101290248B (en) Single-mode infra-red wavemeter based on Mach-Zehnder Interferometer filtering principle
US4295042A (en) Method of and device for measuring chlorophyll of living leaves
JPS58139038A (en) Temperature measuring device using optical fiber
JPH0450639A (en) Optical sample analyzer
JPH0354292B2 (en)
JPS58132637A (en) Pressure measuring device employing optical fiber
JPS599526A (en) Temperature measuring device
Fuh et al. Wavelength division multiplexer for fiber optic sensor readout
JP2683255B2 (en) Raman temperature sensor
JPS6144334A (en) Temperature measuring device
KR100239793B1 (en) Optical wavelength division demultiplexer using the optical circulator
SU1765735A1 (en) Pressure transducer
KR100292809B1 (en) Apparatus for measuring wavelength and optical power and optical signal-to-noise ratio of wavelength division multiplexed optical signal
KR101756364B1 (en) Optical Spectrometer of using Fiber Bragg Grating
JPS6252808B2 (en)
JPS58109828A (en) Temperature measuring device
JPS613024A (en) Apparatus for measuring wavelength dispersion of optical fiber
SU845582A1 (en) Optical radar for probing nitrogen dioxide in atmosphere
JPH06123661A (en) Optical fiber distribution type temperature sensor and apparatus for generating two wavelength light