JPH0429969B2 - - Google Patents

Info

Publication number
JPH0429969B2
JPH0429969B2 JP12347983A JP12347983A JPH0429969B2 JP H0429969 B2 JPH0429969 B2 JP H0429969B2 JP 12347983 A JP12347983 A JP 12347983A JP 12347983 A JP12347983 A JP 12347983A JP H0429969 B2 JPH0429969 B2 JP H0429969B2
Authority
JP
Japan
Prior art keywords
light
dichroic mirror
wavelength
light source
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12347983A
Other languages
Japanese (ja)
Other versions
JPS6015529A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12347983A priority Critical patent/JPS6015529A/en
Publication of JPS6015529A publication Critical patent/JPS6015529A/en
Publication of JPH0429969B2 publication Critical patent/JPH0429969B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/268Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light using optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Description

【発明の詳細な説明】 この発明は、複数のセンサを直列に接続するこ
とにより、複数点での計測が同時にできる光フア
イバ応用計測装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical fiber application measuring device that can measure at multiple points simultaneously by connecting multiple sensors in series.

従来、この種の装置として第1図に示すものが
提案されている。図において、1は波長λ0および
λ1を含む光を出す光源、2,4は光フアイバ、3
はセンサ、5は光分波器、6a,6bは光フアイ
バ、7a,7bは光電変換装置、8a,8bはサ
ンプルホールド増幅器、9は割算器を示す。
Conventionally, as this type of device, one shown in FIG. 1 has been proposed. In the figure, 1 is a light source that emits light including wavelengths λ 0 and λ 1 , 2 and 4 are optical fibers, and 3
5 is a sensor, 5 is an optical demultiplexer, 6a and 6b are optical fibers, 7a and 7b are photoelectric conversion devices, 8a and 8b are sample and hold amplifiers, and 9 is a divider.

センサ3は、被測定物理量に応じて光学的基礎
吸収端波長λqが変化する特性を有し、光温度セン
サを例にとると、λqは温度上昇とともに長波長側
に移行する。したがつてセンサ3のλqが光源1の
出力光の波長λ0およびλ1の間にあるような組合せ
を選択し、波長λ0の光を参照光、波長λ1の光を信
号光として使用することにより、センサ1部以外
の光強度変化を補償できる。たとえばセンサ3の
材料としてGaAs(室温でのλq0.87mμ)を使用
した場合、透過光強度がほぼ一定の波長λ0の光源
としてInGaAsP系LED(λ01.3mμ)が、また透
過光強度が温度に依存する波長λ1の光の光源とし
てAlGaAs系LED(λ10.87mμ)が使用される。
The sensor 3 has a characteristic that the optical fundamental absorption edge wavelength λ q changes depending on the physical quantity to be measured. Taking an optical temperature sensor as an example, λ q shifts to the longer wavelength side as the temperature rises. Therefore, a combination is selected such that λ q of the sensor 3 is between the wavelengths λ 0 and λ 1 of the output light of the light source 1, and the light with the wavelength λ 0 is used as the reference light and the light with the wavelength λ 1 is used as the signal light. By using this, it is possible to compensate for changes in light intensity in areas other than the first part of the sensor. For example, when GaAs (λ q 0.87 mμ at room temperature) is used as the material for the sensor 3, an InGaAsP LED (λ 0 1.3 mμ) is used as a light source with wavelength λ 0 where the transmitted light intensity is almost constant, and An AlGaAs LED (λ 1 0.87 mμ) is used as a light source for light with a temperature-dependent wavelength λ 1 .

光源1から光フアイバ2を通り、センサ3を通
過した光は、光フアイバ4を経由して光分波器5
に導かれ、この分波器5によつて、波長λ0の光は
光フアイバ6aを経て光電変換装置7aに、また
波長λ1の光フアイバ6bを経て光電変換装置7b
に分岐され、それぞれ電気信号に変換される。光
フアイバ2,4の曲げによる損失、光源1の出射
パワーの変動などによる光量の変化は、波長λ0
よびλ1の光に対してほぼ同様に作用するので、光
電変換装置7a,7bの各電気出力信号にもほぼ
同様に現われることとなる。したがつて光電変換
装置7a,7bの出力信号をそれぞれ増幅器8
a,8bで増幅したのち割算器9で割算すれば、
センサ3の置かれた点における計測量を正確に知
ることができる。
The light from the light source 1 passes through the optical fiber 2 and the sensor 3, and then passes through the optical fiber 4 to the optical demultiplexer 5.
By the demultiplexer 5, the light with the wavelength λ 0 passes through the optical fiber 6a to the photoelectric conversion device 7a, and the light with the wavelength λ 1 passes through the optical fiber 6b to the photoelectric conversion device 7b.
and each is converted into an electrical signal. Changes in the amount of light due to bending of the optical fibers 2 and 4, fluctuations in the output power of the light source 1, etc. act in almost the same way on the light of wavelengths λ 0 and λ 1 , so each of the photoelectric conversion devices 7a and 7b Almost the same will appear in the electrical output signal. Therefore, the output signals of the photoelectric conversion devices 7a and 7b are transmitted to the amplifier 8, respectively.
If we amplify with a and 8b and then divide with divider 9, we get
The measured quantity at the point where the sensor 3 is placed can be accurately known.

従来の光フアイバ応用計測装置は以上のように
構成されているので、使用できるセンサは一つの
光フアイバ計測装置について1個に限られ、複数
点での計測を同時に行うことが必要な場合には、
必要数の光フアイバ計測装置を並設しなければな
らず、コストの面でも不利となるなどの欠点があ
つた。
Conventional optical fiber applied measurement devices are configured as described above, so the number of sensors that can be used is limited to one per optical fiber measurement device, and when it is necessary to measure at multiple points simultaneously, ,
The required number of optical fiber measuring devices must be installed in parallel, which is disadvantageous in terms of cost.

この発明は、上記のような従来のものの欠点を
除去するためになされたもので、多重スペクトル
光源とダイクロイツクミラーとを用いることによ
り、同時に複数点での計測を行うことを可能にし
た光フアイバ応用計測装置を提供することを目的
としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and it is an optical fiber that makes it possible to perform measurements at multiple points simultaneously by using a multispectral light source and a dichroic mirror. The purpose is to provide applied measurement equipment.

以下、この発明の一実施例を図について説明す
る。第2図において、10は3つの波長λ0,λ1
λ2の光を時系列に発する光源、2および4は光フ
アイバ、11a,11bおよび11cはダイクロ
イツクミラー、3aおよび3bはセンサ、12a
および12bは光合波器、7は光電変換器、8
a,8bはサンプルホールド増幅器、9は割算器
である。ダイクロイツクミラー11a,11b,
11cは、それぞれ第4図に示すような反射率特
性を有している。
An embodiment of the present invention will be described below with reference to the drawings. In FIG. 2, 10 represents three wavelengths λ 0 , λ 1 ,
A light source that emits light of λ 2 in time series, 2 and 4 are optical fibers, 11a, 11b and 11c are dichroic mirrors, 3a and 3b are sensors, 12a
and 12b is an optical multiplexer, 7 is a photoelectric converter, 8
a and 8b are sample and hold amplifiers, and 9 is a divider. Dichroic mirrors 11a, 11b,
11c has reflectance characteristics as shown in FIG. 4, respectively.

光源10には、第3図aおよびbにそれぞれ示
すサンプルタイミング信号S1およびS2が供給
され、一方のサンプルタイミング信号S1はサン
プルホールド増幅器8aおよび割算器9に、また
他方のサンプルタイミング信号S2はサンプルホ
ールド増幅器8bおよび割算器9にも供給され
る。そして光源10は、サンプルタイミング信号
S1,S2に応じて、第3図cに示すように、
λ0,λ1,λ2の各波長の光を順次に時系列に発し、
この光が光フアイバ2を経由してダイクロイツク
ミラー11a,11b,11cに順次に入射す
る。
The light source 10 is supplied with sample timing signals S1 and S2 shown in FIGS. It is also supplied to a sample and hold amplifier 8b and a divider 9. Then, the light source 10, as shown in FIG. 3c, according to the sample timing signals S1 and S2,
Light of each wavelength λ 0 , λ 1 , λ 2 is emitted sequentially in time series,
This light passes through the optical fiber 2 and enters dichroic mirrors 11a, 11b, and 11c in sequence.

ここで「ダイクロイツクミラー」とは、ガラス
板上に非吸収の屈折率の高い物質と低い物質を交
互に真空蒸着したもので、光の干渉で特定の波長
域の光だけを反射し、他の波長域の光を透過する
性質を有するミラーを指す。屈折率の高い物質と
低い物質の膜の厚さおよび層数を適当に選定する
ことにより、反射する光の波長を任意に変更する
ことができる。
Here, a "dichroic mirror" is a glass plate on which non-absorbing materials with high and low refractive indexes are alternately vacuum-deposited, and through optical interference, only reflects light in a specific wavelength range, while others Refers to a mirror that has the property of transmitting light in the wavelength range. By appropriately selecting the thickness and number of layers of the material with a high refractive index and the material with a low refractive index, the wavelength of the reflected light can be arbitrarily changed.

第1のダイクロイツクミラー11aは、波長λ0
の光だけを反射し、波長λ1およびλ2の光をそのま
ま透過させる特性を有する。このダイクロイツク
ミラー11aで反射した波長λ0の光は、光合波器
12aおよび12bを順次に通過したのち、光フ
アイバ4を経由して光電変換器7に導かれる。ま
た第2のダイクロイツクミラー11bでは、第1
のダイクロイツクミラー11aを透過した波長λ1
およびλ2の光のうち、波長λ1の光だけが反射し、
この光は、第1のセンサ3aを透過したのち光合
波器12aに導かれる。同様に第3のダイクロイ
ツクミラー11cでは波長λ2の光が反射し、この
光は第2のセンサ3bを透過したのち第2の光合
波器12bに導かれる。センサ3aおよび3b
は、前述のように計測物理量に応じて特定波長の
光の透過率が変化する性質を有するので、光電変
換器7に入射する波長λ0,λ1,λ2の光のうち、波
長λ1およびλ2の光の強度が各センサ3aおよび3
bにおける計測物理量を示していることになり、
光電変換器7の出力信号はたとえば第3図dのよ
うな波形を有する。
The first dichroic mirror 11a has a wavelength λ 0
It has the property of reflecting only the light of wavelengths λ 1 and λ 2 and transmitting it as is. The light of wavelength λ 0 reflected by this dichroic mirror 11a passes through optical multiplexers 12a and 12b in sequence, and then is guided to a photoelectric converter 7 via an optical fiber 4. Further, in the second dichroic mirror 11b, the first
The wavelength λ 1 transmitted through the dichroic mirror 11a of
Of the light with wavelength λ 2 and λ 2 , only the light with wavelength λ 1 is reflected,
This light is guided to the optical multiplexer 12a after passing through the first sensor 3a. Similarly, the third dichroic mirror 11c reflects light of wavelength λ 2 , and after passing through the second sensor 3b, this light is guided to the second optical multiplexer 12b. Sensors 3a and 3b
has the property that the transmittance of light of a specific wavelength changes depending on the measured physical quantity as described above . and λ 2 light intensity for each sensor 3a and 3
This indicates the measured physical quantity at b,
The output signal of the photoelectric converter 7 has a waveform as shown in FIG. 3d, for example.

光電変換器7の出力信号は、サンプルホールド
増幅器8aにおいて、サンプルタイミング信号S
1にしたがつてサンプルホールドされ、したがつ
てサンプルホールド増幅器8aの出力として、参
照波長λ0の光の強度に比例した第3図eに示すよ
うな信号が得られる。また他方のサンプルホール
ド回路8bにおいては、光電変換器7の出力信号
がサンプルタイミング信号S2にしたがつてサン
プルホールドされるので、波長λ1およびλ2の光の
強度にそれぞれ対応したレベルで交互に変化する
第3図fのような信号が出力される。この2つの
信号eおよびfは、割算器9で割算され、第3図
gのような信号が得られる。この信号gは、光源
11の出力低下などの要因による変動の影響が除
去された信頼性の高いものである。
The output signal of the photoelectric converter 7 is converted into a sample timing signal S in a sample and hold amplifier 8a.
Therefore, as the output of the sample-and-hold amplifier 8a, a signal as shown in FIG. 3e, which is proportional to the intensity of the light having the reference wavelength λ 0 , is obtained. In addition, in the other sample and hold circuit 8b, the output signal of the photoelectric converter 7 is sampled and held according to the sample timing signal S2, so that the output signal of the photoelectric converter 7 is sampled and held in accordance with the sample timing signal S2 . A changing signal as shown in FIG. 3f is output. These two signals e and f are divided by a divider 9 to obtain a signal as shown in FIG. 3g. This signal g is highly reliable as it is free from the influence of fluctuations due to factors such as a decrease in the output of the light source 11.

第5図はこの発明の他の実施例を示すもので、
光源13は、第6図aに示すような波形のタイミ
ング信号Sにしたがつて、3つの波長λ0,λ1,λ2
の光を時間的に同時に発する。この光は、第2図
の場合と同様に、ダイクロイツクミラー11a,
11b,11cを経てセンサ3aおよび3bに導
かれ、光合波器12a,12bを経由して光分波
器14に導かれ、ここでそれぞれの波長を有する
3つの光に分波される。分波された3つの光は、
つぎの光電変換器15で個々に電気信号に変換さ
れて、たとえば第6図b,c,dにそれぞれ示す
ような波形の出力となり、その各々がサンプルホ
ールド増幅器16でサンプルホールドされる。波
長λ1およびλ2にそれぞれ対応する信号は、タイミ
ング信号Sに同期して動作するマルチプレクサ1
7で交互に選択され、割算器9に供給される。こ
の割算器9には、サンプルホールド増幅器16か
ら波長λ0の光に対応する信号が供給され、したが
つてタイミング信号Sに同期した割算動作によ
り、第6図eに示すように、センサ3aおよび3
bの計測物理量を交互に示す信号が得られる。
FIG. 5 shows another embodiment of this invention,
The light source 13 emits three wavelengths λ 0 , λ 1 , λ 2 according to a timing signal S having a waveform as shown in FIG. 6a.
emit light at the same time. As in the case of FIG. 2, this light is transmitted to the dichroic mirror 11a,
The light is guided to sensors 3a and 3b via 11b and 11c, and then to an optical demultiplexer 14 via optical multiplexers 12a and 12b, where it is demultiplexed into three lights having respective wavelengths. The three separated lights are
The next photoelectric converter 15 converts each signal into an electric signal, resulting in waveform outputs as shown, for example, in FIG. The signals corresponding to the wavelengths λ 1 and λ 2 are sent to a multiplexer 1 operating in synchronization with the timing signal S.
7 are alternately selected and supplied to the divider 9. This divider 9 is supplied with a signal corresponding to the light of wavelength λ 0 from the sample-and-hold amplifier 16, and therefore, by the division operation synchronized with the timing signal S, the sensor 3a and 3
A signal alternately indicating the measured physical quantity b is obtained.

なお上記の各実施例では、2つのセンサを用い
た場合を示したが、3個以上のセンサを設けるこ
ともできる。
In each of the above embodiments, two sensors are used, but three or more sensors may be provided.

以上のようにこの発明によれば、多重スペクト
ル光源からの光をダイクロイツクミラーにより
個々の波長の光に分波し、各波長の光をセンサで
計測物物理量に応じて減衰させたのち、センサを
通らない光を参照光として用いる計測結果を補正
するようにしたので、複数のセンサでの計測を同
時に行うことが可能となる。また得られた計測結
果が、光フアイバの曲げによる損失、あるいは光
源の出射パワーの変動などの影響を受けることは
なく、きわめて精度の高い計測値が得られる効果
がある。
As described above, according to the present invention, light from a multispectral light source is split into light of individual wavelengths by a dichroic mirror, and the light of each wavelength is attenuated by a sensor according to the physical quantity of the object to be measured. Since the measurement results are corrected using the light that does not pass through as the reference light, it becomes possible to perform measurements with multiple sensors simultaneously. Furthermore, the obtained measurement results are not affected by losses due to bending of the optical fiber or fluctuations in the output power of the light source, so that extremely accurate measurement values can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光フアイバ応用計測装置の構成
を示すブロツク図、第2図はこの発明の一実施例
による光フアイバ応用計測装置の構成を示すブロ
ツク図、第3図は第2図の各部における信号のタ
イミングチヤート、第4図は各ダイクロイツクミ
ラーの透過率特性図、第5図はこの発明の他の実
施例を示すブロツク図、第6図は第5図の各部に
おける信号のタイミングチヤートである。 2,4……光フアイバ、3a,3b……セン
サ、7……光電変換器、8a,8b……サンプル
ホールド増幅器、9……割算器、10……光源、
11a,11b,11c……ダイクロイツクミラ
ー、12a,12b……光合波器、13……光
源、14……光分波器、15……光電変換器、1
6……サンプルホールド増幅器、17……マルチ
プレクサ。なお、図中同一符号は同一又は相当部
分を示す。
FIG. 1 is a block diagram showing the configuration of a conventional optical fiber applied measuring device, FIG. 2 is a block diagram showing the configuration of an optical fiber applied measuring device according to an embodiment of the present invention, and FIG. 3 shows each part of FIG. 2. 4 is a transmittance characteristic diagram of each dichroic mirror, FIG. 5 is a block diagram showing another embodiment of the present invention, and FIG. 6 is a timing chart of signals at each part of FIG. 5. It is. 2, 4... Optical fiber, 3a, 3b... Sensor, 7... Photoelectric converter, 8a, 8b... Sample and hold amplifier, 9... Divider, 10... Light source,
11a, 11b, 11c...dichroic mirror, 12a, 12b...optical multiplexer, 13...light source, 14...optical demultiplexer, 15...photoelectric converter, 1
6... Sample and hold amplifier, 17... Multiplexer. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 1 反射する光の波長が相互に異なる複数のダイ
クロイツクミラーと、各ダイクロイツクミラーの
反射光の各波長を含む複数の波長の光を発する光
源と、この光源からの光を上記ダイクロイツクミ
ラーに順次に導く光フアイバと、第1のダイクロ
イツクミラー以外の各ダイクロイツクミラーから
の反射光をそれぞれ受け、この光を計測物理量に
応じて減衰させる複数のセンサと、光フアイバを
通して導かれた上記第1のダイクロイツクミラー
の反射光および上記各センサの透過光の強度を各
波長ごとに電気信号に変換する光電変換器と、こ
の光電変換器の各波長ごとの出力信号レベルをサ
ンプルホールドするサンプルホールド増幅器と、
このサンプルホールド増幅器の出力のうち、上記
各センサを透過した光の各々に対応する出力を、
上記第1のダイクロイツクミラーで反射した光に
対応する出力で割算する割算器とを備えた光フア
イバ応用計測装置。
1. A plurality of dichroic mirrors that reflect different wavelengths of light, a light source that emits light of a plurality of wavelengths including each wavelength of the reflected light of each dichroic mirror, and a light source that emits light from the light source to the dichroic mirror. an optical fiber that is guided sequentially, a plurality of sensors that receive reflected light from each dichroic mirror other than the first dichroic mirror, and attenuate this light in accordance with a measured physical quantity; A photoelectric converter that converts the intensity of the reflected light from the dichroic mirror 1 and the transmitted light from each of the sensors into electrical signals for each wavelength, and a sample hold that samples and holds the output signal level of each wavelength of this photoelectric converter. an amplifier;
Among the outputs of this sample-and-hold amplifier, the outputs corresponding to each of the lights transmitted through each of the above sensors are
an optical fiber application measuring device comprising a divider that divides the light reflected by the first dichroic mirror by an output corresponding to the light reflected by the first dichroic mirror.
JP12347983A 1983-07-08 1983-07-08 Measuring apparatus utilizing optical fiber Granted JPS6015529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12347983A JPS6015529A (en) 1983-07-08 1983-07-08 Measuring apparatus utilizing optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12347983A JPS6015529A (en) 1983-07-08 1983-07-08 Measuring apparatus utilizing optical fiber

Publications (2)

Publication Number Publication Date
JPS6015529A JPS6015529A (en) 1985-01-26
JPH0429969B2 true JPH0429969B2 (en) 1992-05-20

Family

ID=14861647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12347983A Granted JPS6015529A (en) 1983-07-08 1983-07-08 Measuring apparatus utilizing optical fiber

Country Status (1)

Country Link
JP (1) JPS6015529A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5685823A (en) * 1994-03-30 1997-11-11 Asahi Kogaku Kogyo Kabushiki Kaisha End structure of endoscope
JP3490817B2 (en) * 1995-03-13 2004-01-26 ペンタックス株式会社 Endoscope tip

Also Published As

Publication number Publication date
JPS6015529A (en) 1985-01-26

Similar Documents

Publication Publication Date Title
US7157693B2 (en) Optical wavelength interrogator
JP2531940B2 (en) Method for fiber optic transmission of spectrally coded values of variable physical measurands and apparatus for implementing the method
US6335524B1 (en) High speed demodulation systems for fiber optic grating sensors
JP2716207B2 (en) Interferometer sensor and use of the sensor in an interferometer device
CA2272033A1 (en) Arrangement for determining the temperature and strain of an optical fiber
CN101881634A (en) High-speed multi-channel fiber bragg grating (FBG) sensing demodulation system based on AWG (Arrayed Waveguide Grating) and method
US6573489B1 (en) Passive, temperature compensated techniques for tunable filter calibration in bragg-grating interrogation systems
US4430565A (en) Correlating fiber optical measuring device
CN105806374A (en) Fiber bragg grating wavelength demodulation method
CN111381199B (en) Pulse high-intensity magnetic field optical measurement system and method
JP3760649B2 (en) Physical quantity measurement system
JPH0429969B2 (en)
JPS58132637A (en) Pressure measuring device employing optical fiber
US6270254B1 (en) Extended range fiber-optic temperature sensor
JPH056126B2 (en)
JPH0113590B2 (en)
RU81574U1 (en) FIBER OPTICAL MEASURING SYSTEM (OPTIONS)
JPS62159027A (en) Detecting device for degree of deterioration of oil
JPS599526A (en) Temperature measuring device
JPS6423126A (en) Multiple light source polarization analyzing method
SU1599685A1 (en) Pressure gauge
JP2683255B2 (en) Raman temperature sensor
JPH0258677B2 (en)
KR100292809B1 (en) Apparatus for measuring wavelength and optical power and optical signal-to-noise ratio of wavelength division multiplexed optical signal
JPH0953999A (en) Optical external force detector