JPH0113590B2 - - Google Patents

Info

Publication number
JPH0113590B2
JPH0113590B2 JP17553180A JP17553180A JPH0113590B2 JP H0113590 B2 JPH0113590 B2 JP H0113590B2 JP 17553180 A JP17553180 A JP 17553180A JP 17553180 A JP17553180 A JP 17553180A JP H0113590 B2 JPH0113590 B2 JP H0113590B2
Authority
JP
Japan
Prior art keywords
light
light source
fiber
measuring device
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17553180A
Other languages
Japanese (ja)
Other versions
JPS5798100A (en
Inventor
Katsuyuki Fujito
Hiroaki Nakada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17553180A priority Critical patent/JPS5798100A/en
Publication of JPS5798100A publication Critical patent/JPS5798100A/en
Publication of JPH0113590B2 publication Critical patent/JPH0113590B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Arrangements For Transmission Of Measured Signals (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Description

【発明の詳細な説明】 本発明は、1つの光源と伝送路で、多数の場所
における周囲環境等(例えば温度や湿度)の情報
を、その場所において電源を使用せず、かつ比較
的簡便な方法で測定し伝送することを目的とする
光フアイバ式多点計測装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides information on the surrounding environment (e.g., temperature and humidity) at multiple locations using a single light source and transmission line, without using a power source at each location, and in a relatively simple manner. The present invention relates to an optical fiber multi-point measuring device for measuring and transmitting data using a method.

従来から、光フアイバを用いて環境情報を検
出・伝送すれば、電気的な方法に比べて発火の危
険がなく、また耐火特性も良く電磁誘導にも強い
ので非常に信頼性が高い測定・伝送が可能になる
事は良く知られている。ところで、測定点が多数
にわたる場合、通常の方法では各測定点毎に1本
のフアイバをひきデータの収集を行なわねばなら
ず布線がめんどうである。また、1本のフアイバ
で多数の情報を送るには、情報を時分割多重して
送つたり、波長多重を行なつたりする方法が採用
されている。ところで、このような方法では各測
定点において、時分割多重するための装置や発光
素子等の駆動用電源が必要となり、別に電源線を
ひいたり、バツテリを用いたりしている。また、
発火の危険があつたり、防爆の必要のある所で
は、電源を用いる事はたとえ小容量といえども避
けた方が良い。
Traditionally, optical fibers have been used to detect and transmit environmental information, which poses no risk of ignition compared to electrical methods, and has good fire resistance and resistance to electromagnetic induction, making it an extremely reliable measurement and transmission method. It is well known that this is possible. By the way, when there are a large number of measurement points, in the usual method, one fiber must be drawn for each measurement point to collect data, which makes wiring cumbersome. In order to send a large amount of information through a single fiber, methods such as time division multiplexing and wavelength multiplexing of the information are used. By the way, such a method requires a device for time division multiplexing, a power source for driving the light emitting elements, etc. at each measurement point, and requires a separate power line or a battery. Also,
In places where there is a risk of ignition or where explosion-proofing is required, it is better to avoid using a power supply, even if it is of small capacity.

本発明は光源を1つにし、かつフアイバ線も1
本でありながら、同時に多数の場所の環境情報の
伝送が可能であり、その上測定点において電源を
使用しないので発火等の心配の全くない測定伝送
系を非常に簡単な方法で実現可能にするものであ
る。
The present invention uses one light source and one fiber wire.
Although it is a book, it is possible to transmit environmental information from many places at the same time, and since no power source is used at the measurement point, it is possible to realize in a very simple way a measurement transmission system that does not have any concerns about ignition etc. It is something.

本発明による構成の概略図を第1図に示す。あ
る程度巾の広いスペクトルを有する光源1よりの
光を集光してフアイバ5−1に入射させる。第1
図の構成はフイルタとして1部の波長の光を選択
反射するものを用いた例であり、光源よりの光は
反射光を分離するための3dB光分岐器2を通つた
後フアイバ5−2により第1の測定点にある測定
器3に送られる。測定器3はフアイバ出射光を平
行光にするレンズ系101と周囲環境に応じてそ
の光路を横切るように構成された第1の光波長選
択反射フイルタ(以後単に反射フイルタという)
102よりなる。この部分の具体的構成を第3図
によりさらに詳しく説明する。
A schematic diagram of a configuration according to the present invention is shown in FIG. Light from a light source 1 having a somewhat wide spectrum is focused and made incident on the fiber 5-1. 1st
The configuration shown in the figure is an example in which a filter that selectively reflects light of a part of the wavelength is used.The light from the light source passes through a 3dB optical splitter 2 to separate the reflected light, and then passes through the fiber 5-2. It is sent to the measuring device 3 located at the first measuring point. The measuring device 3 includes a lens system 101 that converts fiber-emitted light into parallel light, and a first light wavelength selective reflection filter (hereinafter simply referred to as a reflection filter) configured to cross the optical path according to the surrounding environment.
Consists of 102. The specific configuration of this part will be explained in more detail with reference to FIG.

第3図は検出情報が温度の場合の測定器の構成
例である。フアイバ8より出射された巾の広いス
ペクトルを有する光がセルフオツクレンズ9によ
りコリメートされ、同じようなレンズ10により
集光されてフアイバ11に入射される。このコリ
メートされた平行光路を横切る形で選択反射フイ
ルタ12が配置されており、この例では反射フイ
ルタ12はバイメタル13の一端に図の矢印方向
に平行移動可能なように接続されている。このよ
うな構成をとる事により、周囲温度の影響でバイ
メタル13が屈曲し、それにより反射フイルタ1
2が光路を横切る面積が変化する事になる。
FIG. 3 shows an example of the configuration of a measuring device when the detected information is temperature. Light having a wide spectrum emitted from the fiber 8 is collimated by a self-occurring lens 9, condensed by a similar lens 10, and incident on the fiber 11. A selective reflection filter 12 is arranged across this collimated parallel optical path, and in this example, the reflection filter 12 is connected to one end of a bimetal 13 so as to be movable in parallel in the direction of the arrow in the figure. By adopting such a configuration, the bimetal 13 is bent under the influence of the ambient temperature, which causes the reflection filter 1 to bend.
The area where 2 crosses the optical path will change.

今、光源1のスペクトルが第2図の包絡線で示
されるものとする。第2図は横軸が光の波長、縦
軸が強度である。次に例えば、反射フイルタの中
心波長をλ1〜λ4とし、第1図の測定器3の反射フ
イルタ102の中心波長が第2図のλ1であるとす
ると、このような測定器3よりの反射光のうちの
λ1の波長成分の光量を検出する事により、測定器
3の周囲温度の検出が可能になる。一方、この測
定器3の透過光はλ1の波長以外の成分はほとんど
変化をうけない。次の測定器4の反射フイルタ1
03の中心波長をλ2とすると、この測定器4より
の反射光は測定器3の反射フイルタ102の影響
なく光源側へ透過してゆく。
Assume now that the spectrum of the light source 1 is shown by the envelope in FIG. In FIG. 2, the horizontal axis is the wavelength of light, and the vertical axis is the intensity. Next, for example, if the center wavelength of the reflection filter is λ 1 to λ 4 and the center wavelength of the reflection filter 102 of the measuring instrument 3 in FIG. 1 is λ 1 in FIG. By detecting the amount of light of the wavelength component of λ 1 of the reflected light, the ambient temperature of the measuring device 3 can be detected. On the other hand, the components of the transmitted light of this measuring device 3 other than the wavelength λ 1 are hardly changed. Reflection filter 1 of next measuring instrument 4
Assuming that the center wavelength of 03 is λ 2 , the reflected light from the measuring device 4 is transmitted to the light source side without being affected by the reflection filter 102 of the measuring device 3.

このようにして、各測定器よりの反射光は光源
1よりの出射光を送るフアイバ内を出射光と反対
側に伝送され、3dB分岐器2に入る。ここで、各
反射光はフアイバ5−5により分光器6に送ら
れ、この分光器6の、各反射フイルタの中心波長
に対する分光位置におかれた光検出器群7により
各スペクトルの光量、この例では各測定器の周囲
温度が検出される。
In this way, the reflected light from each measuring device is transmitted through the fiber that sends the emitted light from the light source 1 to the side opposite to the emitted light, and enters the 3 dB splitter 2. Here, each reflected light is sent to a spectrometer 6 by a fiber 5-5, and a photodetector group 7 of this spectrometer 6 placed at a spectral position relative to the center wavelength of each reflection filter detects the light intensity of each spectrum. In the example, the ambient temperature of each measuring device is detected.

ここで、光源1のスペクトルの広さと、測定器
に使用される反射フイルタの波長選択特性と測定
点の数とは相互に密接に関連している。測定点数
を多くとりたい時は、反射フイルタの波長選択特
性を急峻にするか、光源のスペクトル巾を広くす
る必要がある。ところで光源のスペクトル巾を広
くした場合、伝送用フアイバ、測定器中の使用レ
ンズの色収差等により、フアイバと、これらレン
ズよりなる伝送系の波長透過特性が問題となる場
合がある。反射フイルタを用いたものでは、これ
らを考慮して反射フイルタの配列順序を決める
と、分光器への反射光量が均一化できるという特
徴がある。
Here, the spectral breadth of the light source 1, the wavelength selection characteristics of the reflection filter used in the measuring instrument, and the number of measurement points are closely related to each other. When it is desired to take a large number of measurement points, it is necessary to make the wavelength selection characteristic of the reflection filter steeper or to widen the spectral width of the light source. By the way, when the spectral width of the light source is widened, the wavelength transmission characteristics of the transmission system consisting of the fiber and these lenses may become a problem due to chromatic aberration of the transmission fiber and the lenses used in the measuring instrument. A device using a reflection filter has a feature that if the order of arrangement of the reflection filters is determined taking these into consideration, the amount of light reflected to the spectroscope can be made uniform.

反射フイルタは、例えば多層膜の多重反射を利
用したものなどが考えられる。また分光器6とし
ては単純なプリズムを用いたものや、回折格子を
用いたもの等が使用可能であり、測定点の数、用
いる光源のスペクトルの広さ、反射フイルタの波
長選択特性により最適のものを選べば良い。
The reflection filter may be one that utilizes multiple reflections of a multilayer film, for example. In addition, as the spectrometer 6, one using a simple prism or one using a diffraction grating can be used. All you have to do is choose something.

また、第1図の例でのフアイバの終端では、反
射光が生じないよう、吸収物を設けたりする必要
がある。
Further, at the end of the fiber in the example shown in FIG. 1, it is necessary to provide an absorber to prevent reflected light from occurring.

第1図の例では反射フイルタの反射光を用いて
検出・測定する系を示したが、透過光を利用する
方法も当然考えられる。そのような系では、3dB
光分岐器2は不要となり、光源1よりの光はフア
イバにより直ちに測定器3に送られ、最終端に分
光器および光検出器群が設けられる事になる。な
お、この時には測定器としては、反射フイルタで
はなく、ある特定の波長の光を選択吸収するもの
を用いても良い。この系は構成要素品は少なくて
すむが、全スペクトルが同一距離を伝送される事
になるため伝送後の分光器への入射スペクトル強
度は一義的に決まつてしまう。また、伝送系がル
ープになつている時以外は、光源部と検出部のお
かれる場所が異なるため、反射を用いたものに比
べメンテナンス性が悪くなる。
Although the example in FIG. 1 shows a detection/measurement system using reflected light from a reflective filter, it is of course possible to consider a method using transmitted light. In such a system, 3dB
The optical splitter 2 becomes unnecessary, and the light from the light source 1 is immediately sent to the measuring device 3 through the fiber, and a spectrometer and a photodetector group are provided at the final end. Note that at this time, instead of a reflection filter, a measuring device that selectively absorbs light of a specific wavelength may be used. Although this system requires fewer components, since the entire spectrum is transmitted over the same distance, the intensity of the spectrum incident on the spectrometer after transmission is uniquely determined. In addition, since the light source section and the detection section are located at different locations except when the transmission system is in a loop, maintenance becomes worse than when using reflection.

次に測定器について、温度以外のものを検出す
る場合について説明する。本発明では、検出情報
を長さ、または距離に変換するものはすべて使用
可能である事は明らかである。
Next, the case where the measuring device detects something other than temperature will be explained. It is clear that anything that converts detection information into length or distance can be used in the present invention.

例えば、湿度検出の方法について述べると、湿
度変化により伸縮するナイロンや毛髪を用いたも
のを、先の例のバイメタルの代わりに用いる事に
より可能となる。
For example, regarding the method of detecting humidity, it is possible to use a material made of nylon or hair that expands and contracts with changes in humidity instead of the bimetal used in the previous example.

次に、振動検出に用いる事も可能であり、その
場合には振動子の先端に反射フイルタを取り付け
たものを使用すれば良い。また、圧力計としても
直ちに利用できる事は明白である。また各波長毎
にあらかじめ、測定個所や測定対象をふりわけて
おけば、どこがどう状態であるかを明確に把握で
きる。
Next, it can also be used for vibration detection, in which case a vibrator with a reflection filter attached to the tip may be used. It is also obvious that it can be used immediately as a pressure gauge. In addition, by assigning the measurement locations and measurement targets for each wavelength in advance, it is possible to clearly understand where the conditions are.

以上述べたように本発明により、1つの光源と
1つの伝送用光フアイバにより、多数の場所にお
ける周囲環境情報(温・湿度、気圧、振動等)を
電源を用いないで測定・伝送する事が可能な系を
提供することができる。また、この系はビル内ま
たは屋内程度の距離の周囲環境の測定・伝送系と
して最適である。
As described above, the present invention makes it possible to measure and transmit ambient environment information (temperature/humidity, atmospheric pressure, vibration, etc.) at many locations without using a power source using one light source and one transmission optical fiber. A possible system can be provided. Furthermore, this system is most suitable as a measurement and transmission system for the surrounding environment within a building or at a distance comparable to indoors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例によるフアイバ式多
点計測装置の概略構成図、第2図は第1図に用い
る光源のスペクトルを示す図、第3図は第1図の
測定部の一構成例を示す図である。 1……光源、2……分岐器、3,4……測定
部、5−1〜5−5……光フアイバ、6……分光
器、7……検出器群、102,103……反射フ
イルタ。
FIG. 1 is a schematic configuration diagram of a fiber-type multi-point measuring device according to an embodiment of the present invention, FIG. 2 is a diagram showing the spectrum of the light source used in FIG. 1, and FIG. It is a figure showing an example of composition. DESCRIPTION OF SYMBOLS 1... Light source, 2... Brancher, 3, 4... Measurement part, 5-1 to 5-5... Optical fiber, 6... Spectrometer, 7... Detector group, 102, 103... Reflection filter.

Claims (1)

【特許請求の範囲】[Claims] 1 光フアイバを用いてある地点での周囲環境情
報等を検出し伝送する装置において、少くとも、
巾広いスペクトルをもつ1つの光源と、該光源の
各々異なつた1部のスペクトルを選択的に反射ま
たは吸収する複数個のフイルタと、そのフイルタ
を周囲環境に応じて移動せしめる手段と、前記フ
イルタよりの反射または透過光を分光する手段
と、この分光手段の、前記フイルタの反射または
吸収スペクトル位置に対応して配置された光検出
器とを有する事を特徴とする光フアイバ式多点計
測装置。
1. In a device that detects and transmits information on the surrounding environment at a certain point using an optical fiber, at least
A light source with a wide spectrum, a plurality of filters that selectively reflect or absorb different portions of the spectrum of the light source, means for moving the filter according to the surrounding environment, and 1. An optical fiber multi-point measuring device comprising means for spectrally reflecting or transmitting light of the filter, and a photodetector of the spectroscopic means disposed corresponding to the position of the reflection or absorption spectrum of the filter.
JP17553180A 1980-12-11 1980-12-11 Optical fiber type multi-point measuring apparatus Granted JPS5798100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17553180A JPS5798100A (en) 1980-12-11 1980-12-11 Optical fiber type multi-point measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17553180A JPS5798100A (en) 1980-12-11 1980-12-11 Optical fiber type multi-point measuring apparatus

Publications (2)

Publication Number Publication Date
JPS5798100A JPS5798100A (en) 1982-06-18
JPH0113590B2 true JPH0113590B2 (en) 1989-03-07

Family

ID=15997690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17553180A Granted JPS5798100A (en) 1980-12-11 1980-12-11 Optical fiber type multi-point measuring apparatus

Country Status (1)

Country Link
JP (1) JPS5798100A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190105723A (en) * 2018-03-06 2019-09-18 임영학 Rivet coupling apparatus of vertical pressing type

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947695A (en) * 1982-09-13 1984-03-17 綜合警備保障株式会社 Alarm transmission system using optical fiber
JPS59229698A (en) * 1983-06-10 1984-12-24 株式会社チノー Optical measuring apparatus
JPS61288298A (en) * 1985-06-17 1986-12-18 日立電線株式会社 Multipoint monitoring system
JPS621100A (en) * 1985-06-26 1987-01-07 国際計装株式会社 Detection circuit
JP2007301274A (en) * 2006-05-15 2007-11-22 Pentax Corp Infrared ray-cutting filter furnished endoscope device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190105723A (en) * 2018-03-06 2019-09-18 임영학 Rivet coupling apparatus of vertical pressing type

Also Published As

Publication number Publication date
JPS5798100A (en) 1982-06-18

Similar Documents

Publication Publication Date Title
JP2531940B2 (en) Method for fiber optic transmission of spectrally coded values of variable physical measurands and apparatus for implementing the method
JP3002268B2 (en) Physical quantity measurement device
US6335524B1 (en) High speed demodulation systems for fiber optic grating sensors
JP2716207B2 (en) Interferometer sensor and use of the sensor in an interferometer device
WO2020196689A1 (en) Light source device for optical measurement, spectroscopic measurement device, and spectroscopic measurement method
CA2272033A1 (en) Arrangement for determining the temperature and strain of an optical fiber
CN100507455C (en) Intensity modulation type optical fiber sensor multiplexing method
US6118530A (en) Optical scanning spectrometer
JPS61502980A (en) Optical fiber strain meter for dispersive and discrete analysis
EP0727640B1 (en) Optical distance measurement
US6917735B2 (en) Apparatus for interrogating an optical signal
US11346689B2 (en) Optical measuring system with an interrogator and a polymer-based single-mode fibre-optic sensor system
US6822218B2 (en) Method of and apparatus for wavelength detection
CN105806374A (en) Fiber bragg grating wavelength demodulation method
JPH0113590B2 (en)
US7570350B2 (en) Detecting different spectral components of an optical signal by means of an optical shutter
US4946275A (en) Fiber optic position transducer
US20040105607A1 (en) Method and apparatus for continuous measurement of the refractive index of fluid
WO2007085301A1 (en) Spectral components detection with a switchable filter
JP3663966B2 (en) Wavelength measuring device
KR100292809B1 (en) Apparatus for measuring wavelength and optical power and optical signal-to-noise ratio of wavelength division multiplexed optical signal
JP2002005755A (en) Light monitoring system and temperature detecting system
JPH0429969B2 (en)
JPS62144033A (en) Optical sensor
JPH056126B2 (en)