JPS59116359A - Alloy wire of high strength, high twistability and low thermal expansibility - Google Patents

Alloy wire of high strength, high twistability and low thermal expansibility

Info

Publication number
JPS59116359A
JPS59116359A JP22567982A JP22567982A JPS59116359A JP S59116359 A JPS59116359 A JP S59116359A JP 22567982 A JP22567982 A JP 22567982A JP 22567982 A JP22567982 A JP 22567982A JP S59116359 A JPS59116359 A JP S59116359A
Authority
JP
Japan
Prior art keywords
core wire
thermal expansion
twistability
steel
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22567982A
Other languages
Japanese (ja)
Other versions
JPH0255495B2 (en
Inventor
Keiji Murata
村田 圭次
Yukio Yamaoka
幸男 山岡
Shigeki Yamashita
山下 茂喜
Kenichi Aota
健一 青田
Seiji Kikuma
菊間 征司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Kobelco Wire Co Ltd
Original Assignee
Kobe Steel Ltd
Shinko Wire Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Shinko Wire Co Ltd filed Critical Kobe Steel Ltd
Priority to JP22567982A priority Critical patent/JPS59116359A/en
Publication of JPS59116359A publication Critical patent/JPS59116359A/en
Publication of JPH0255495B2 publication Critical patent/JPH0255495B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain a core wire rod of high strength, high twistability and low thermal expansibility by using a steel having a specified composition contg. Ni, Mo and Co as the material of a steel core wire for ACSR. CONSTITUTION:A steel wire contg. 30-45% Ni, 0.5-4.5% Mo, 0.31-0.45% C, 1-10% Co and <0.5% Si and <1% Mn as deoxidizing elements is used as a reinforcing core wire for ACSR (aluminum cable steel reinforced). The composition of the steel wire has quantitative relation between Co and Ni represented by an equation Co<=8-0.3(Ni-35). A core wire for ACSR with superior tensile strength, superior twistability and high resistance to sag due to thermal expansion accompanying temp. rise during power transmission is obtd.

Description

【発明の詳細な説明】 この発明(J、AC8R用鋼芯線に使用される高強度高
捻回特性を右−づる低熱i張合金線に門りるちのである
DETAILED DESCRIPTION OF THE INVENTION This invention is based on a low-temperature I-strength alloy wire that has high strength and high twisting properties to be used in a steel core wire for AC8R.

一般に、AC8Rは架わj(によりカテプリー曲線と称
される垂れ下がりが生じるため、主どして保安」ニの問
題から、このACS Rの周囲にはある程度の空間を1
71Hプで45<必要があり、とくに市IJi地ではス
ペース上の制約があるため、前記垂れ一層がりを極力小
さくづる必要があった。従来のAC8Rは補強用として
7本撚りの高炭素鋼の芯線を配しているが、この芯線で
は引張強さく120ko/mM以上)および捻回値(2
0回jス上)の点で侵れているが、熱膨張係数が13X
10’/C:と大き0ために、送電による温度上昇にに
つて大きく膨張し、大きな垂れ下がりが生じる傾向があ
った。
In general, the AC8R is designed to have a certain amount of space around it, mainly due to safety concerns, as it causes a sag called a cateply curve.
71 HP was required, and because of space constraints, especially in the city, it was necessary to make the sag as small as possible. The conventional AC8R has a 7-strand high carbon steel core wire for reinforcement, but this core wire has a tensile strength of 120 ko/mM or more and a torsion value of 2.
It is corroded at the point (on the 0th axis), but the coefficient of thermal expansion is 13X
10'/C: Because of the large value of 0, there was a tendency for the material to expand significantly as the temperature rose due to power transmission, resulting in large sagging.

とくに、最近では電力消″R但の増加により、市街地で
の送電量の増加の要求があり、これに伴つ−CA CS
 Rの太径化が必要となっCいる1、このため、AC8
Rの垂れ下がりは一層大きくなってしまい、でれたけ既
設畝jハの空地を広げなりればならないが、現状では用
地確保は大きなロス1−アップどなり、既設AC8Rの
みの太径化は困難と考えられている。
In particular, recently there has been a demand for an increase in the amount of power transmitted in urban areas due to an increase in power consumption.
It is necessary to increase the diameter of R, so AC8
The sagging of the R will become even larger, and we will have to widen the vacant land of the existing ridge, but at present, securing the land will result in a large loss of 1-up, and it will be difficult to increase the diameter of the existing AC8R alone. It is being

イこて、垂れ下がりを小さくづる手段どして、熱膨張係
数の小さい芯線を使用J−る試みがなされている。従来
より熱膨張の小さい合金としては、インバー(Fe−3
6Ni合金)やスーパー−rンバー(F e−35N 
i −2Co合金)が知られ−Cいるが、これらは弾痕
の仲M加工を施しCも引張強さは100 kQ、−’ 
mlrを越え田、しかも強化手段として甲に炭素等を添
加して引張強さを向上させてし捻回(f口、を低くなり
、鋼芯線製作時の撚線加■CffJi線が起り、実用上
ら靭性がIL(い〕〔め、ΔC3R1\の適用Ij、不
TiJ能である。
Attempts have been made to use a core wire with a small coefficient of thermal expansion as a means of reducing sagging. Invar (Fe-3) is an alloy with smaller thermal expansion than conventional alloys.
6Ni alloy) and super-r alloy (Fe-35N
i -2Co alloy) is known, but these are treated with M processing in the middle of the bullet hole, and C also has a tensile strength of 100 kQ, -'
In addition, carbon etc. are added to the instep as a reinforcing measure to improve tensile strength and torsion (f) is lowered, and twisted wire is applied during the production of steel core wire. Above all, the toughness is IL(I), the application Ij of ΔC3R1\, and the inability to TiJ.

この光明け、このような従来の欠点を解消するために4
.jされたしのであり、引張強さおよび捻回1的の優れ
た合金線を提供づるものである。すなわら、この発明は
Ni  :30へ・45%、IVI+1:0゜5〜/、
5%、、C:0.31〜O,’15%、CO;1−・1
0%からなり、残部がFeおj、びl1l12酸元素と
して通営含まれる$1がQ、5%以下、lyl nが1
%以下と不可避的不純物とて構成され、かつ上記N1と
C11の関係がCO≦8−0.3<Nt−35)2とな
るJ:うに設定し7たものである。
At this dawn, in order to eliminate these conventional drawbacks, we
.. It provides an alloy wire with excellent tensile strength and twistability. That is, this invention has Ni: 30 to 45%, IVI+1: 0°5~/,
5%, C: 0.31~O, '15%, CO; 1-.1
0%, the remainder is Fe, and the rest is contained as an acid element. $1 is Q, 5% or less, and lyl n is 1
% or less as unavoidable impurities, and the relationship between N1 and C11 is CO≦8-0.3<Nt-35)2.

Niを30へ・/IO%、COを1〜10%とし、CO
≦8 0.3 (Ni−35>2としたのは、次の理由
による。、”J”、)わら、第゛1図(△)はFe−N
1−co金合金Q〜300”Cの平均熱膨張係数の変化
を示したもので、Niが3O−n0%、COが1〜10
%付近に熱膨張の低い組成がある。
Ni to 30/IO%, CO 1 to 10%, CO
≦8 0.3 (The reason why Ni-35>2 is set is as follows., "J",) Figure 1 (△) shows Fe-N
It shows the change in the average thermal expansion coefficient of 1-co gold alloy Q~300''C, where Ni is 3O-n0% and CO is 1~10%.
There is a composition with low thermal expansion around %.

第1図(B)は第1図(A)の部分拡大図であり、−! 熱膨張係数を3X10/’C以下に抑えるためには、曲
線1に囲まれた組成内τある必要がある。
FIG. 1(B) is a partially enlarged view of FIG. 1(A), and -! In order to suppress the thermal expansion coefficient to 3×10/'C or less, the composition τ must be within the range of curve 1.

イこで、NiとC(lのバランスを曲FA1の表示式で
あるCo≦8−0.3 (Ni−35>’に設定する必
要がある。NiとC(lのバランスがこの式を外れると
、熱膨張係数が3 、 OX 10’、”Cを越えるの
で好ましくない。
Now, it is necessary to set the balance of Ni and C(l to Co≦8-0.3 (Ni-35>', which is the display formula for song FA1. If it deviates, the coefficient of thermal expansion will exceed 3, OX 10', "C", which is not preferable.

Cは低いほど熱膨張係数には有利であるが、第2図に示
J−ように、Cが0.3%未満では引張強さは130 
k(1/−に達せず、従ってCが0.3%以上でないと
強度的には実用性がない。一方、Cの含有量が高ずぎる
と、熱膨張係数が高くなり、C′h<0 、45 % 
ヲ越えると、O〜、 300 ℃ノ平均熱膨張係数が3
.5X10  /℃を満足しなくなるので、Cは0.3
1・−0,45の範囲に規定することが必要である。
The lower the carbon content, the better the thermal expansion coefficient, but as shown in Figure 2, if the carbon content is less than 0.3%, the tensile strength is 130%.
k(1/-, and therefore, it is not practical in terms of strength unless C is 0.3% or more. On the other hand, if the C content is too high, the thermal expansion coefficient becomes high, and C'h< 0,45%
When exceeding 0, the average coefficient of thermal expansion at 300℃ is 3.
.. Since it no longer satisfies 5X10/℃, C is 0.3
It is necessary to specify it in the range of 1.-0.45.

1MOについては、これの添加ににり強度がTRし、M
Oが母相へ固溶Jるよりも、むしろこの合金の場合、C
と結び角いでM(120の炭化物が析出し、この炭化物
の析出により高捻回特性が得られるようになる1、第3
図はこの状況を示したbのC1引張強さが130 k(
17/mrl iス上を示づ直径3 mmの1ノイ17
のMO6右mと捻回110、熱膨張係数との関係である
31曲線2は捻回値、曲線3は熱膨張係数をそれぞれ示
している。これより捻回値20回以上、熱11HN係1
a3.5X 10−’/’lX下ヲ示12−bのはMO
が0.5=4.5%であり、M (lが4゜5以上では
膨張が大きくなり、実用性に乏しい。
Regarding 1MO, the addition of 1MO increased the glue strength, and M
Rather than O going into solid solution in the matrix, in this alloy C
The carbide of M (120) is precipitated at the connecting angle, and the precipitation of this carbide makes it possible to obtain high twisting characteristics.
The figure shows this situation, and the C1 tensile strength of b is 130 k (
17/mrl i 1 noise 17 with a diameter of 3 mm
Curve 2 shows the twist value, and curve 3 shows the thermal expansion coefficient. From this, twist value is 20 times or more, heat 11HN 1
a3.5X 10-'/'lX As shown below, 12-b is MO
is 0.5=4.5%, and if M(l is 4°5 or more, the expansion will be large and it will be impractical.

Slは含有用が11′1大Jると熱膨張係数が大きくな
るので、製鋼士必要な0.5%以下とし、M nに′)
い(し溶シ1土の問題にす196以下に設定−りる必要
がある。j、た、P、s等(ま溶製上、不可避的不純物
として(7’ljりる。。
Since the coefficient of thermal expansion of Sl becomes large when the content is 11'1, it should be kept at 0.5% or less, which is required by steelmakers, and Mn')
In order to solve the problem of melting, it is necessary to set it to 196 or less.

実施例 表−1に示づ合金を圧延に上り直径12mmの線祠とし
、酸洗、燐酸塩コーティングの後、伸線機にJこり直径
9 mmまで加工した。ぞの摸、大気焼鈍炉により85
0℃、5時間の焼鈍を行い、加]二歪みを除去して軟化
さUると同時に、Mo2c炭化物を析出させ、高捻回値
を示すに適した組織とした。焼鈍後、酸洗、]−ティン
グを施し、伸線機により89%の加工を与えて直径3 
mmのワイヤを製作した。このワイAアについて引張強
さ、捻回値、および熱膨張係数を測定した結果を表−2
に示1゜表−q  (wt%工 上記表−1d5よび表−2に示されるにうに、本発明合
金のN011〜4は共(こ引張強さが1301(g/−
以上、捻回が20回以上、熱膨張係数が3゜5X10−
′/’C以下で実用性が大ぎい特性を示している。これ
に対して、比較inのNo、5はCの含有量が低いため
引張強さが低く、NO,6はMOがないために捻回値が
低く、No7はMOが多いために熱膨張係数が大きく、
N098はCの金石■が低いため引張強さが120 k
!7/ mA未満てあり、何れも実用性に乏しい値とな
っている。
EXAMPLE The alloy shown in Table 1 was rolled into a wire with a diameter of 12 mm, and after pickling and phosphate coating, it was processed into a wire drawing machine with a J-shape diameter of 9 mm. 85 by atmospheric annealing furnace
Annealing was performed at 0° C. for 5 hours to remove the strain and soften the material, and at the same time precipitate Mo2c carbide, resulting in a structure suitable for exhibiting a high torsion value. After annealing, pickling, ]-ting, and 89% processing using a wire drawing machine to create a wire with a diameter of 3
A wire of mm was manufactured. Table 2 shows the results of measuring the tensile strength, torsion value, and coefficient of thermal expansion of this wire.
As shown in Table 1d5 and Table 2 above, N011 to 4 of the alloys of the present invention have a tensile strength of 1301 (g/-
More than 20 twists, thermal expansion coefficient 3゜5X10-
'/'C or less, it exhibits characteristics that are highly practical. On the other hand, comparative in No. 5 has a low tensile strength due to a low C content, No. 6 has a low torsion value due to the absence of MO, and No. 7 has a thermal expansion coefficient due to a large amount of MO. is large,
N098 has a low tensile strength of 120K due to the low gold content of C.
! 7/mA, which is a value that is not practical.

以」−説明したJ:うに、この梵明は、ACS R用鋼
芯線としてNi −C−Mo−Coのバランスを適正に
設定し、製造の過程でMo2C炭化物を析出させて高捻
回に適した金属組織と覆ることにより、引張強さを13
0 kg/ mrA以上とし、捻回1ifl 20回以
上、0〜300°Cの平均熱膨張係数3.5x1o−’
、、/℃以下のワイ鬼7を製造することをiil能にし
たものである。従って、これを用いれば現用の送電鉄塔
の建て替えを行うことなく、AC8Rの断面積を大きく
して送電量の増加に対処することかひき、大径化やAC
8Rの昇温ににる垂れ下がりを従来と同様、あるいはそ
れ以下に抑えることが可能となる−しのぐある。
- Explained J: Uni, this Bonmei set the balance of Ni-C-Mo-Co appropriately as the steel core wire for ACS R, and precipitated Mo2C carbide in the manufacturing process to make it suitable for high twisting. By covering the metal structure, the tensile strength is increased to 13
0 kg/mrA or more, twisting 1ifl 20 times or more, average coefficient of thermal expansion from 0 to 300°C 3.5x1o-'
This makes it possible to produce a temperature of less than , /°C. Therefore, if this is used, it is possible to increase the cross-sectional area of AC8R to cope with the increase in the amount of power transmitted without having to rebuild the current transmission tower.
It is possible to suppress the sagging caused by the temperature rise of 8R to the same level as before or even lower than that of the conventional type.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(△)は1Te−Ni−Co合金の熱膨張係数特
性図、第1図(B)はその部分拡大図、第2図はC含有
量と引張強さとの関係図、第3図はMO含含有と捻回値
および熱膨張係数との関係図である。 1・・・C0−N+関係曲線、2・・・捻回(直の曲線
、3・・・熱膨張係数の曲線。
Figure 1 (△) is a thermal expansion coefficient characteristic diagram of 1Te-Ni-Co alloy, Figure 1 (B) is a partially enlarged view, Figure 2 is a diagram of the relationship between C content and tensile strength, Figure 3 is a relationship diagram between MO content, torsion value, and thermal expansion coefficient. 1...C0-N+ relationship curve, 2...Twisted (straight curve), 3...Curve of thermal expansion coefficient.

Claims (1)

【特許請求の範囲】[Claims] 1、Ni:30へ・45%、Mo : 0.5−・1゜
5%、C:0.31−0.45%、Co:1〜10%か
ら4「す、残部が「eおよびn+1酸元素として通1鶴
含まれるS;が0.5%以下、Mllが1%以下と不可
避的不純物どで(−4成され、かつ上記NiとCOの関
係がCO≦8−0.3 (Ni −35)2ど4jるJ
、−′)に設定したことを特if9どづる高強度高捻回
低熱膨張合金線。  ・
1, Ni: 30 to 45%, Mo: 0.5-1゜5%, C: 0.31-0.45%, Co: 1 to 10% to 4'', the remainder is ``e and n+1''S; contained as an acid element is 0.5% or less, Mll is 1% or less and unavoidable impurities (-4), and the relationship between Ni and CO is CO≦8-0.3 ( Ni -35)2d4jruJ
, -') is specially set to high strength, high twist, and low thermal expansion alloy wire.・
JP22567982A 1982-12-22 1982-12-22 Alloy wire of high strength, high twistability and low thermal expansibility Granted JPS59116359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22567982A JPS59116359A (en) 1982-12-22 1982-12-22 Alloy wire of high strength, high twistability and low thermal expansibility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22567982A JPS59116359A (en) 1982-12-22 1982-12-22 Alloy wire of high strength, high twistability and low thermal expansibility

Publications (2)

Publication Number Publication Date
JPS59116359A true JPS59116359A (en) 1984-07-05
JPH0255495B2 JPH0255495B2 (en) 1990-11-27

Family

ID=16833080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22567982A Granted JPS59116359A (en) 1982-12-22 1982-12-22 Alloy wire of high strength, high twistability and low thermal expansibility

Country Status (1)

Country Link
JP (1) JPS59116359A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4904447A (en) * 1987-07-16 1990-02-27 Nippon Chuzo Kabushiki Kaisha Low thermal expansion casting alloy having excellent machinability

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55119156A (en) * 1979-03-09 1980-09-12 Sumitomo Electric Ind Ltd High strength and low expansion alloy
JPS55122855A (en) * 1979-03-12 1980-09-20 Daido Steel Co Ltd High strength low thermal expansion alloy
JPS5741350A (en) * 1980-08-25 1982-03-08 Furukawa Electric Co Ltd:The Alloy with high strength, high ductility and low thermal expansibility and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55119156A (en) * 1979-03-09 1980-09-12 Sumitomo Electric Ind Ltd High strength and low expansion alloy
JPS55122855A (en) * 1979-03-12 1980-09-20 Daido Steel Co Ltd High strength low thermal expansion alloy
JPS5741350A (en) * 1980-08-25 1982-03-08 Furukawa Electric Co Ltd:The Alloy with high strength, high ductility and low thermal expansibility and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4904447A (en) * 1987-07-16 1990-02-27 Nippon Chuzo Kabushiki Kaisha Low thermal expansion casting alloy having excellent machinability

Also Published As

Publication number Publication date
JPH0255495B2 (en) 1990-11-27

Similar Documents

Publication Publication Date Title
JPH07197125A (en) Production of high strength steel pipe having excellent sulfide stress corrosion crack resistance
JPH06172859A (en) Production of high strength steel tube excellent in sulfide stress corrosion cracking resistance
JPH01259124A (en) Manufacture of high-strength oil well tube excellent in corrosion resistance
US6106639A (en) Stainless steel wire and process of manufacture
JPH05263191A (en) Hot rolled steel sheet high in young&#39;s modulus in width direction and its manufacture
JP2002256395A (en) High strength and low thermal expansion alloy having excellent twisting and alloy wire thereof
JPS60234952A (en) Steel for pipe
JPS59116359A (en) Alloy wire of high strength, high twistability and low thermal expansibility
JPH08100242A (en) Alloy wire with high strength, high toughness and low thermal expansion and its production
JPH07228947A (en) Alloy with high strength and low thermal expansion
JPH06279945A (en) Wire with high strength and low thermal expansion and its production
JP3061977B2 (en) High strength low thermal expansion alloy
JP2689864B2 (en) High toughness steel pipe
JP3839957B2 (en) High strength low thermal expansion alloy wire
JP3241912B2 (en) Manufacturing method of hot rolled steel sheet with excellent sulfide stress corrosion cracking resistance in plastic deformation environment
JPH0241577B2 (en)
JPH108205A (en) Electric resistance welded tube for quenching excellent in workability and durability and its production
JPH09256103A (en) Hot rolled steel plate capable of providing steel plate member of low yield ratio after hot forming, and the hot rolled steel plate member
JPH05171358A (en) Alloy with high strength and low thermal expansion
JPH01278339A (en) Flexural sour fluid transport pipe
JPH05212439A (en) Electrically resisting welded oil well tube excellent in crushing resistance and manufacture thereof
JPH11335785A (en) High strength low thermal expansion alloy and its production
JPS63235450A (en) Ferrite stainless steel having excellent low temperature toughness
JPH073399A (en) High strength low thermal expansion alloy
JPS61139643A (en) High pressure breakage type electrically seamed oil well pipe having high yielding strength at inner and outer surface part thereof