JPH0255495B2 - - Google Patents

Info

Publication number
JPH0255495B2
JPH0255495B2 JP57225679A JP22567982A JPH0255495B2 JP H0255495 B2 JPH0255495 B2 JP H0255495B2 JP 57225679 A JP57225679 A JP 57225679A JP 22567982 A JP22567982 A JP 22567982A JP H0255495 B2 JPH0255495 B2 JP H0255495B2
Authority
JP
Japan
Prior art keywords
thermal expansion
coefficient
wire
tensile strength
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57225679A
Other languages
Japanese (ja)
Other versions
JPS59116359A (en
Inventor
Keiji Murata
Yukio Yamaoka
Shigeki Yamashita
Kenichi Aota
Seiji Kikuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Kobelco Wire Co Ltd
Original Assignee
Kobe Steel Ltd
Shinko Wire Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Shinko Wire Co Ltd filed Critical Kobe Steel Ltd
Priority to JP22567982A priority Critical patent/JPS59116359A/en
Publication of JPS59116359A publication Critical patent/JPS59116359A/en
Publication of JPH0255495B2 publication Critical patent/JPH0255495B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、ACSR用鋼芯線に使用される高強
度高捻回特性を有する低熱膨張合金線に関するも
のである。 一般に、ACSRは架線によりカテナリー曲線と
称される垂れ下がりが生じるため、主として保安
上の問題から、このACSRの周囲にはある程度の
空間を開けておく必要があり、とくに市街地では
スペース上の制約があるため、前記垂れ下がりを
極力小さくする必要があつた。従来のACSRは補
強用として7本撚りの高炭素鋼の芯線を配してい
るが、この芯線では引張強さ(120Kg/mm2以上)
および捻回値(20回以上)の点で優れているが、
熱膨張係数が13×10-6/℃と大きいために、送電
による温度上昇によつて大きく膨張し、大きな垂
れ下がりが生じる傾向があつた。とくに、最近で
は電力消費量の増加により、市街地での送電量の
増加の要求があり、これに伴つてACSRの太径化
が必要となつている。このため、ACSRの垂れ下
がりは一層大きくなつてしまい、それだけ既設鉄
塔の空地を広げなければならないが、現状では用
地確保は大きなコストアツプとなり、既設ACSR
のみの太径化は困難と考えられている。 そこで、垂れ下がりを小さくする手段として、
熱膨張係数の小さい芯線を使用する試みがなされ
ている。従来より熱膨張の小さい合金としては、
インバー(Fe−36Ni合金)やスーパーインバー
(Fe−35Ni−2Co合金)が知られているが、これ
らは強度の伸線加工を施しても引張強さは100
Kg/mm2を越えず、しかも強化手段として単に炭素
等を添加して引張強さを向上させても捻回値は低
くなり、鋼芯線製作時の撚線加工で断線が起り、
実用上も靭性が低いため、ACSRへの適用は不可
能である。 この発明は、このような従来の欠点を解消する
ためになされたものであり、引張強さおよび捻回
値の優れた合金線を提供するものである。すなわ
ち、この発明はNi:30〜45%、Mo:0.5〜4.5%、
C:0.31〜0.45%、Co:1〜10%からなり、残部
がFeおよび脱酸元素として通常含まれるSiが0.5
%以下、Mnが1%以下と不可避的不純物とで構
成され、かつ上記NiとCoの関係がCo≦8−0.3
(Ni−35)2となるように設定した圧延線材に、減
面率20〜50%の加工を加えた後に焼鈍してモリブ
デン炭化物(Mo2C)を析出させ、ついで所定線
径まで減面率70%以上の加工を加えるようにした
ものである。 Niを30〜40%、Coを1〜10%とし、Co≦8−
0.3(Ni−35)2としたのは、次の理由による。すな
わち、第1図AはFe−Ni−Co合金の0〜300℃
の平均熱膨張係数の変化を示したもので、各曲線
の数値は熱膨脹係数(x10-6/℃)を示し、Niが
30〜40%、Coが1〜10%付近に熱膨張の低い組
成がある。第1図Bは第1図Aの部分拡大図であ
り、熱膨張係数を3×10-6/℃以下に抑えるため
には、曲線1に囲まれた組成内である必要があ
る。そこで、NiとCoのバランスを曲線1の表示
式であるCo≦8−0.3(Ni−35)2に設定する必要
がある。NiとCoのバランスがこの式を外れると、
熱膨張係数が3.0×10-6/℃を越えるので好まし
くない。 Cは低いほど熱膨張係数には有利であるが、第
2図に示すように、Cが0.3%未満では引張強さ
は130Kg/mm2に達せず、従つてCが0.3%以上でな
いと強度的には実用性がない。一方、Cの含有量
が高すぎると、熱膨張係数が高くなり、Cが0.45
%を越えると、0〜300℃の平均熱膨張係数が3.5
×10-6/℃を満足しなくなるので、Cは0.31〜
0.45の範囲に規定することが必要である。 Moについては、これの添加により強度が上昇
し、Moが母相へ固溶するよりも、むしろこの合
金の場合、Cと結び付いてMo2Cの炭化物が析出
し、この炭化物の析出により高捻回特性が得られ
るようになる。第3図はこの状況を示したもの
で、引張強さが130Kg/mm2以上を示す直径3mmの
ワイヤのMo含有量と捻回値、熱膨張係数との関
係である。曲線2は捻回値、曲線3は熱膨張係数
をそれぞれ示している。これより捻回値20回以
上、熱膨張係数3.5×10-6/℃以下を示すものは
Moが0.5〜4.5%であり、Moが4.5以上では膨張が
大きくなり、実用性に乏しい。 Siは含有量が増大すると熱膨張係数が大きくな
るので、製鋼上必要や0.5%以下とし、Mnについ
ても溶製上の問題より1%以下に設定する必要が
ある。また、P,S等は溶製上、不可避的不純物
として存在する。 実施例 表−1に示す合金を圧延により直径12mmの線材
とし、酸洗、燐酸塩コーテイングの後、伸線機に
より直径9mmまで加工した。その後、大気焼鈍炉
により850℃、5時間の焼鈍を行い、加工歪みを
除去して軟化させると同時に、Mo2C炭化物を析
出させ、高捻回値を示すに適した組織とした。焼
鈍後、酸洗、コーテイングを施し、伸縮機により
89%の加工を与えて直径3mmのワイヤを製作し
た。このワイヤについて引張強さ、捻回値、およ
び熱膨張係数を測定した結果を表−2に示す。 上記工程において焼鈍前に軽度の加工を加える
理由は以下の通りである。軽度(減面率20〜50
%)の伸線加工を加えると材料中には転位(結晶
欠陥)が均一に導入されるため、これに続く850
℃の焼鈍によつて、この転位上にMo炭化物が優
先的に析出する。このためMo炭化物の分布が均
一になるという効果がある。これに反して、軽度
の加工を加えないとMo炭化物は粒界等に優先的
に析出し、材料の脆化を招くことになる。 第4図はMo炭化物の析出特性を示し、6は析
出開始線、7は析出終了線をそれぞれ示し、これ
より850℃において最も析出が行われやすいこと
がわかる。
The present invention relates to a low thermal expansion alloy wire that has high strength and high twisting characteristics and is used as a steel core wire for ACSR. Generally, an ACSR has a sagging line called a catenary curve caused by the overhead wires, so it is necessary to leave a certain amount of space around the ACSR, mainly for safety reasons, and there are space constraints, especially in urban areas. Therefore, it was necessary to reduce the sagging as much as possible. Conventional ACSR has a 7-strand high carbon steel core wire for reinforcement, but this core wire has a tensile strength (120Kg/mm2 or more).
Although it is excellent in terms of and twist value (20 times or more),
Since the coefficient of thermal expansion is as large as 13×10 -6 /°C, it expands greatly due to temperature rise due to power transmission, and tends to cause large sag. In particular, due to the recent increase in power consumption, there has been a demand for an increase in the amount of power transmitted in urban areas, and this has led to the need for ACSRs to have larger diameters. For this reason, the ACSR will sag even more, and the vacant land for the existing tower will have to be expanded accordingly.However, in the current situation, securing land will increase the cost significantly, and the existing ACSR will need to be expanded.
It is considered difficult to increase the diameter of the chisel. Therefore, as a means to reduce drooping,
Attempts have been made to use core wires with a small coefficient of thermal expansion. As an alloy with smaller thermal expansion than conventional ones,
Invar (Fe-36Ni alloy) and Super Invar (Fe-35Ni-2Co alloy) are known, but these have a tensile strength of 100% even after high-strength wire drawing.
Even if the tensile strength is not exceeded by Kg/mm 2 and the tensile strength is simply added as a reinforcing measure, the torsion value will be low, and wire breakage will occur during the stranding process when manufacturing the steel core wire.
In practical terms, it is impossible to apply to ACSR due to its low toughness. The present invention was made to eliminate such conventional drawbacks, and provides an alloy wire with excellent tensile strength and twist value. That is, this invention uses Ni: 30 to 45%, Mo: 0.5 to 4.5%,
C: 0.31 to 0.45%, Co: 1 to 10%, the balance being Fe and 0.5% Si, which is usually included as a deoxidizing element.
% or less, Mn is 1% or less and unavoidable impurities, and the relationship between Ni and Co is Co≦8−0.3.
(Ni−35) 2 is processed to an area reduction rate of 20 to 50%, annealed to precipitate molybdenum carbide (Mo 2 C), and then reduced to a predetermined wire diameter. It is designed to be processed to a rate of 70% or more. Ni is 30~40%, Co is 1~10%, Co≦8−
The reason for setting 0.3 (Ni−35) to 2 is as follows. In other words, Fig. 1 A shows the Fe-Ni-Co alloy at 0 to 300°C.
The figure shows the change in the average thermal expansion coefficient of Ni.The numerical value of each curve indicates the thermal expansion coefficient (x10 -6 /℃)
There is a composition with low thermal expansion around 30-40% and 1-10% Co. FIG. 1B is a partial enlarged view of FIG. 1A, and in order to suppress the thermal expansion coefficient to 3×10 −6 /° C. or less, the composition must be within the range of curve 1. Therefore, it is necessary to set the balance between Ni and Co to Co≦8−0.3(Ni−35) 2, which is the expression of curve 1. When the balance of Ni and Co deviates from this formula,
It is not preferable because the coefficient of thermal expansion exceeds 3.0×10 -6 /°C. The lower the C content, the better the coefficient of thermal expansion. However, as shown in Figure 2, if the C content is less than 0.3%, the tensile strength will not reach 130 Kg/mm 2 . It is practically impractical. On the other hand, if the C content is too high, the coefficient of thermal expansion will increase, and C will be 0.45
%, the average coefficient of thermal expansion from 0 to 300℃ is 3.5
Since it no longer satisfies ×10 -6 /℃, C is 0.31~
It is necessary to specify within the range of 0.45. With regard to Mo, the strength increases with the addition of Mo, and rather than Mo becoming a solid solution in the matrix, in the case of this alloy, it combines with C and precipitates Mo 2 C carbide, and the precipitation of this carbide causes high twisting. You will be able to obtain the characteristics. Figure 3 shows this situation, and shows the relationship between the Mo content, twist value, and thermal expansion coefficient of a wire with a diameter of 3 mm and a tensile strength of 130 Kg/mm 2 or more. Curve 2 shows the torsion value, and curve 3 shows the coefficient of thermal expansion. From this, those with a twist value of 20 times or more and a thermal expansion coefficient of 3.5×10 -6 /°C or less are
The Mo content is 0.5 to 4.5%, and if the Mo content is 4.5 or more, the expansion will be large and it will be impractical. Since the coefficient of thermal expansion of Si increases as the content increases, it is necessary to set it at 0.5% or less as required for steel manufacturing, and Mn also needs to be set at 1% or less due to problems in melting. Further, P, S, etc. exist as unavoidable impurities during melting. Examples The alloys shown in Table 1 were rolled into wire rods with a diameter of 12 mm, and after pickling and phosphate coating, the wire rods were processed to a diameter of 9 mm using a wire drawing machine. Thereafter, annealing was performed at 850° C. for 5 hours in an air annealing furnace to remove machining strain and soften the material, and at the same time precipitate Mo 2 C carbide, resulting in a structure suitable for exhibiting a high torsion value. After annealing, pickling, coating, and expansion and contraction
A wire with a diameter of 3 mm was produced with 89% processing. Table 2 shows the results of measuring the tensile strength, torsion value, and coefficient of thermal expansion of this wire. The reason why light processing is added before annealing in the above process is as follows. Mild (area reduction rate 20-50
%), dislocations (crystal defects) are uniformly introduced into the material, so the subsequent 850
By annealing at ℃, Mo carbides preferentially precipitate on these dislocations. This has the effect of making the distribution of Mo carbides uniform. On the other hand, if light processing is not applied, Mo carbides will preferentially precipitate at grain boundaries, leading to embrittlement of the material. FIG. 4 shows the precipitation characteristics of Mo carbides, where 6 shows the precipitation start line and 7 the precipitation end line, which shows that precipitation is most likely to occur at 850°C.

【表】【table】

【表】 上記表−1および表−2に示されるように、本
発明合金のNo.1〜4は共に引張強さが130Kg/mm2
以上、捻回が20回以上、熱膨張係数が3.5×
10-6/℃以下で実用性が大きい特性を示してい
る。これに対して、比較鋼のNo.5はCの含有量が
低いため引張強さが低く、No.6はMoがないため
に捻回値が低く、No.7はMoが多いために熱膨張
係数が大きく、No.8はCの含有量が低いため引張
強さが120Kg/mm2未満であり、何れも実用性に乏
しい値となつている。 以上説明したように、この発明は、ACSR用鋼
芯線としてNi−C−Mo−Coのバランスを適正に
設定し、製造の過程でMo2C炭化物を析出させて
高捻回に適した金属組織とすることにより、引張
強さを130Kg/mm2以上とし、捻回値20回以上、0
〜300℃の平均熱膨張係数3.5×10-6/℃以下のワ
イヤを製造することを可能にしたものである。従
つて、これを用いれば現用の送電鉄塔の建て替え
を行うことなく、ACSRの断面積を大きくして送
電量の増加に対処することができ、太径化や
ACSRの昇温による垂れ下がりを従来と同様、あ
るいはそれ以下に抑えることが可能となるもので
ある。
[Table] As shown in Tables 1 and 2 above, alloys No. 1 to 4 of the present invention both have a tensile strength of 130 Kg/mm 2
More than 20 twists, thermal expansion coefficient 3.5×
It exhibits characteristics that are highly practical at temperatures below 10 -6 /℃. On the other hand, comparative steel No. 5 has a low tensile strength due to its low C content, No. 6 has a low torsion value due to the absence of Mo, and No. 7 has a low tensile strength due to its high Mo content. The expansion coefficient is large, and No. 8 has a low C content, so the tensile strength is less than 120 Kg/mm 2 , and both values are poor in practical use. As explained above, this invention sets the balance of Ni-C-Mo-Co appropriately for the steel core wire for ACSR, precipitates Mo 2 C carbide in the manufacturing process, and creates a metal structure suitable for high twisting. By doing so, the tensile strength is 130Kg/mm2 or more, the twist value is 20 times or more, and the
This makes it possible to manufacture wires with an average coefficient of thermal expansion of 3.5×10 -6 /°C or less at temperatures up to 300°C. Therefore, by using this, it is possible to increase the cross-sectional area of the ACSR to cope with an increase in the amount of power transmitted without having to rebuild the current transmission tower, and it is possible to increase the diameter and
This makes it possible to suppress the drooping of the ACSR due to temperature rise to the same level as before or to a lower level.

【図面の簡単な説明】[Brief explanation of drawings]

第1図AはFe−Ni−Co合金の熱膨張係数特性
図、第1図Bはその部分拡大図、第2図はC含有
量と引張強さとの関係図、第3図はMo含有量と
捻回値および熱膨張係数との関係図、第4図は
Mo炭化物の析出特性図である。 1……Co−Ni関係曲線、2……捻回値の曲線、
3……熱膨張係数の曲線。
Figure 1A is a characteristic diagram of the thermal expansion coefficient of Fe-Ni-Co alloy, Figure 1B is a partially enlarged diagram, Figure 2 is a diagram of the relationship between C content and tensile strength, and Figure 3 is Mo content. Figure 4 shows the relationship between the torsion value and thermal expansion coefficient.
It is a precipitation characteristic diagram of Mo carbide. 1... Co-Ni relationship curve, 2... Torsion value curve,
3...Curve of thermal expansion coefficient.

Claims (1)

【特許請求の範囲】[Claims] 1 Ni:35〜45%、Mo:0.5〜4.5%、C:0.31
〜0.45%、Co:1〜10%からなり、残部がFeお
よび脱酸元素として通常含まれるSiが0.5%以下、
Mnが1%以下と不可避的不純物とで構成される
圧延線材に、減面率20〜50%の加工を加えた後に
焼鈍してモリブデン炭化物(Mo2C)を析出さ
せ、ついで所定線径まで減面率70%以上の加工を
加えるようにしたことを特徴とする高強度高捻回
低熱膨張合金線。
1 Ni: 35-45%, Mo: 0.5-4.5%, C: 0.31
~0.45%, Co: 1~10%, the balance is Fe and Si, which is normally included as a deoxidizing element, is 0.5% or less.
A rolled wire rod consisting of 1% or less Mn and unavoidable impurities is processed with an area reduction rate of 20 to 50%, annealed to precipitate molybdenum carbide (Mo 2 C), and then processed to a predetermined wire diameter. A high-strength, high-twist, low-thermal-expansion alloy wire that has been processed with an area reduction rate of 70% or more.
JP22567982A 1982-12-22 1982-12-22 Alloy wire of high strength, high twistability and low thermal expansibility Granted JPS59116359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22567982A JPS59116359A (en) 1982-12-22 1982-12-22 Alloy wire of high strength, high twistability and low thermal expansibility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22567982A JPS59116359A (en) 1982-12-22 1982-12-22 Alloy wire of high strength, high twistability and low thermal expansibility

Publications (2)

Publication Number Publication Date
JPS59116359A JPS59116359A (en) 1984-07-05
JPH0255495B2 true JPH0255495B2 (en) 1990-11-27

Family

ID=16833080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22567982A Granted JPS59116359A (en) 1982-12-22 1982-12-22 Alloy wire of high strength, high twistability and low thermal expansibility

Country Status (1)

Country Link
JP (1) JPS59116359A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2594441B2 (en) * 1987-07-16 1997-03-26 日本鋳造株式会社 Method for producing free-cutting high-temperature low-thermal-expansion cast alloy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55119156A (en) * 1979-03-09 1980-09-12 Sumitomo Electric Ind Ltd High strength and low expansion alloy
JPS55122855A (en) * 1979-03-12 1980-09-20 Daido Steel Co Ltd High strength low thermal expansion alloy
JPS5741350A (en) * 1980-08-25 1982-03-08 Furukawa Electric Co Ltd:The Alloy with high strength, high ductility and low thermal expansibility and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55119156A (en) * 1979-03-09 1980-09-12 Sumitomo Electric Ind Ltd High strength and low expansion alloy
JPS55122855A (en) * 1979-03-12 1980-09-20 Daido Steel Co Ltd High strength low thermal expansion alloy
JPS5741350A (en) * 1980-08-25 1982-03-08 Furukawa Electric Co Ltd:The Alloy with high strength, high ductility and low thermal expansibility and its manufacture

Also Published As

Publication number Publication date
JPS59116359A (en) 1984-07-05

Similar Documents

Publication Publication Date Title
JP3842053B2 (en) High strength low thermal expansion alloy with excellent twisting characteristics and its alloy wire
US6106639A (en) Stainless steel wire and process of manufacture
JP2609387B2 (en) High-strength high-toughness ultrafine steel wire wire, high-strength high-toughness ultrafine steel wire, twisted product using the ultrafine steel wire, and method for producing the ultrafine steel wire
JP4797305B2 (en) Invar alloy wire with excellent strength and twisting characteristics and manufacturing method thereof
JPH01279732A (en) High-strength steel wire excellent in hydrogen-induced cracking resistance
JPH0255495B2 (en)
US6221183B1 (en) High-strength and low-thermal-expansion alloy, wire of the alloy and method of manufacturing the alloy wire
JPH0649592A (en) High carbon steel wire rod for steel wire having high strength and high ductility
JPS60114517A (en) Production of steel wire rod which permits omission of soft annealing treatment
JPH08100242A (en) Alloy wire with high strength, high toughness and low thermal expansion and its production
JPS60204865A (en) High-carbon steel wire rod for hyperfine wire having high strength, toughness and ductility
JPH07228947A (en) Alloy with high strength and low thermal expansion
JPH0241577B2 (en)
JPS61264158A (en) Low carbon steel bar or wire rod for cold forging
JPH0673502A (en) High carbon steel wire rod or high carbon steel wire excellent in wire drawability and its production
JP2002302727A (en) Electroconductive, heat-resistant aluminum alloy wire and production method therefor
JP2767620B2 (en) Manufacturing method of ultra-fine high-tensile steel wire with excellent toughness
JPH0570894A (en) Alloy wire having high strength and low thermal expansion and excellent in twisting characteristic and its production
CN117144263B (en) High-strength low-thermal-expansion invar alloy wire for double-capacity wire and preparation method thereof
JP3191010B2 (en) High-strength low-thermal-expansion alloy wire having excellent torsion characteristics and method for producing the same
JPH06279945A (en) Wire with high strength and low thermal expansion and its production
JP2585168B2 (en) Method for producing high strength low linear expansion Fe-Ni alloy wire
JPS60116745A (en) Wire for steel cord
JP3839957B2 (en) High strength low thermal expansion alloy wire
JPH02197524A (en) Manufacture of high tensile steel wire for extra fine use