JP2767620B2 - Manufacturing method of ultra-fine high-tensile steel wire with excellent toughness - Google Patents

Manufacturing method of ultra-fine high-tensile steel wire with excellent toughness

Info

Publication number
JP2767620B2
JP2767620B2 JP22118489A JP22118489A JP2767620B2 JP 2767620 B2 JP2767620 B2 JP 2767620B2 JP 22118489 A JP22118489 A JP 22118489A JP 22118489 A JP22118489 A JP 22118489A JP 2767620 B2 JP2767620 B2 JP 2767620B2
Authority
JP
Japan
Prior art keywords
wire
patenting
final
tensile strength
steel wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22118489A
Other languages
Japanese (ja)
Other versions
JPH0382709A (en
Inventor
均 田代
洋 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP22118489A priority Critical patent/JP2767620B2/en
Publication of JPH0382709A publication Critical patent/JPH0382709A/en
Application granted granted Critical
Publication of JP2767620B2 publication Critical patent/JP2767620B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal Extraction Processes (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、伸線後の靭性に優れた線径0.4mm以下の引
張強さ350kg/mm2以上の極細高張力鋼線の製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application field] The present invention relates to a method for producing an ultrafine high-strength steel wire having a wire diameter of 0.4 mm or less and a tensile strength of 350 kg / mm 2 or more excellent in toughness after drawing. Things.

〔従来の技術〕[Conventional technology]

自動車タイヤ、産業用各種ベルト類、ゴムホースなど
の補強用に使用される微細鋼線は熱延線材よりパテンテ
ィング、伸線を繰り返しながら製造される。タイヤなど
の軽量化のためこの極細鋼線と高張力化ニーズが強い。
極細用線材の成分系として種々提案されているのが、最
も高強度なものとして特公昭46−6702号公報があげられ
る。しかし、同公報記載の発明は強度を出すため伸線前
のパテンティングを500℃以下で行っている。この成分
系ではパーライト変態の鼻の温度は550℃付近のため非
常にベーナイト組織が出やすくなっている。そのため高
張力鋼線の安定製造はむずかしく、靭性が不良となる危
険性が大きい。また、高い引張強さと強靭性をもつとい
う表現があるが、実施例にも具体的な靭性に関する記述
は見当らない。当時は高張力化といえば、引張強さのみ
が優先されていたことと用途が今日ほど多種多様ではな
かったためと考えられる。靭性の問題があり工業的な利
用には至っていないのが現状である。
Fine steel wires used for reinforcing automobile tires, industrial belts, rubber hoses, etc. are manufactured by repeatedly patenting and drawing from hot-rolled wire. There is a strong need for ultra-fine steel wires and high tensile strength to reduce the weight of tires.
Japanese Patent Publication No. Sho 46-6702 discloses the highest strength of various component systems for ultrafine wires. However, in the invention described in the publication, patenting before drawing is performed at 500 ° C. or less in order to increase strength. In this component system, the temperature of the nose in the pearlite transformation is around 550 ° C, so that the bainite structure is very easy to appear. Therefore, stable production of high-strength steel wire is difficult, and there is a great risk of poor toughness. In addition, there is an expression that the material has high tensile strength and toughness, but there is no specific description of toughness in Examples. At that time, high tensile strength was probably due to the fact that only tensile strength was prioritized and that the applications were not as diverse as today. At present, it has not been used industrially due to the problem of toughness.

靭性に富んだ高張力極細鋼線のニーズは強いが、線材
コストが安く、パテンティング、伸線も行いやすい大量
生産に適した極細高張力鋼線はないのが現状である。
There is a strong need for high-strength ultra-fine steel wires with high toughness, but at present there is no ultra-fine high-tensile steel wire suitable for mass production with low wire cost and easy to patent and draw.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

高張力鋼線の場合、引張強さが高いことは必須条件で
あるが、同時に十分な靭性も必要である。
In the case of a high-tensile steel wire, high tensile strength is an essential condition, but at the same time, sufficient toughness is also required.

靭性としては従来、絞り、捻回特性が使用されていた
が、最近の多様化する使い方に対しては評価として不十
分であり、疲労、撚り加工性、キンクが重要となってい
る。疲労特性は設計強度を決める因子なので軽量化には
高張力化かつ高疲労強度化が重要である。
Conventionally, drawing and twisting characteristics have been used as toughness, but their evaluation is insufficient for recent diversified uses, and fatigue, twistability, and kink are important. Since the fatigue characteristics are factors that determine the design strength, it is important to increase the tensile strength and the fatigue strength for weight reduction.

極細線は単線で使われるより、撚って使われることが
多いので、撚り加工できるかどうかが工業上重要であ
る。また極細線は低荷重で変形するので、伸線加工、撚
り加工、ゴムへの埋込みの際、曲げ変形を受ける。この
時、曲げ半径が小さかったり、結節ができた場合、簡単
に折損しては困る。そのため最近キンク特性が要求され
ている。それ故、ここではこれらの要求特性を総称して
靭性と称する。
Extra fine wires are often twisted rather than single wires, so it is industrially important to be able to twist them. In addition, since the ultrafine wire is deformed with a low load, it undergoes bending deformation during wire drawing, twisting, and embedding in rubber. At this time, if the bending radius is small or a knot is formed, it is not easy to break easily. Therefore, kink characteristics have recently been required. Therefore, these required properties are collectively referred to herein as toughness.

本発明は、これらの問題を解決するためになされたも
のであり、靭性のすぐれた極細高張力鋼線を工業的に安
定製造する方法を提供するものである。
The present invention has been made to solve these problems, and provides a method for industrially stably producing an ultrafine high-tensile steel wire having excellent toughness.

〔課題を解決するための手段および作用〕[Means and actions for solving the problem]

本発明者は鋼線材の組成と最終パテンティング前の予
備伸線量を特定することにより、最終パテンティング
時、ばらつきの少ない非常に均一な微細パーライト組織
を生成させ、その後の最終伸線により、靭性に富んだ高
張力極細線を製造できる条件を見出し、発明を完成させ
るに至った。
The present inventor specified the composition of the steel wire rod and the pre-drawing amount before final patenting, thereby producing a very uniform fine pearlite structure with little variation at the time of final patenting, and by the subsequent final drawing, the toughness was determined. The present inventors have found the conditions under which a high-tensile ultrafine wire rich in iron can be produced, and have completed the invention.

即ち、本発明の要旨は下記工程を結合したものであ
る。
That is, the gist of the present invention is a combination of the following steps.

C:0.80〜1.00%,Si:0.40〜1.10%,Mn:0.20〜0.60%,C
r:0.20〜0.60%,Co+Ni:0.05〜0.60%,Al:0.0005〜0.00
50% 残部鉄および不可避的不純物からなる鋼線材を使用す
ること 上記線材を最終パテンティング前に伸線加工歪1.0〜
3.0の予備伸線を行うこと 上記予備伸線材を最終パテンティングし、0.04〜0.10
μmのラメラー間隔の微細パーライト組織とすること 上記最終パテンティング材を伸線加工歪3.5〜4.5(伸
線加工歪=ln(d0/dn2,d0:パテンティング線径,dn:伸
線径)の最終伸線を行うこと により、引張強さ350kg/mm2以上の高張力高靭性極細線
を製造することである。
C: 0.80 to 1.00%, Si: 0.40 to 1.10%, Mn: 0.20 to 0.60%, C
r: 0.20 to 0.60%, Co + Ni: 0.05 to 0.60%, Al: 0.0005 to 0.00
Use a steel wire consisting of 50% balance iron and unavoidable impurities.
Preliminary wire drawing of 3.0 Perform final patenting of the above pre-wired material, 0.04 to 0.10
A fine pearlite structure having a lamella spacing of μm The final patenting material is drawn strain 3.5 to 4.5 (drawing strain = l n (d 0 / d n ) 2 , d 0 : patenting wire diameter, d (n : wire diameter) is to produce a high-strength, high-toughness ultrafine wire having a tensile strength of 350 kg / mm 2 or more by performing the final wire drawing.

以上の構成要件について限定理由を説明する。 Reasons for limiting the above-mentioned components will be described.

まずCであるがCは鋼の強度を上げる最も重要な元素
である。それ故、可能な限り利用する。Cが0.80%以上
ないと他の合金元素をいくら添加してもパテンティング
後の引張強さ150kg/mm2以上とならないので下限とし
た。他方、1.00%超とすると網目状セメンタイトの発生
が抑えられず、伸線加工時にカッピー断線を抑制できな
い。
First, C is the most important element for increasing the strength of steel. Therefore, use as much as possible. If C is not more than 0.80%, the tensile strength after patenting will not be more than 150 kg / mm 2 , no matter how much other alloying elements are added. On the other hand, when the content exceeds 1.00%, the generation of network cementite cannot be suppressed, and it is not possible to suppress the disconnection of the cuppy during the wire drawing.

Siは固溶硬化元素として知られている。パテンティン
グ後の引張強さを150kg/mm2以上とするには、パーライ
トラメラー間隔を0.04〜0.10μmとしても固溶硬化の寄
与を得る必要がある。そのためにはSi0.40%以上の添加
が必要である。また、Siが1.10%超になると硬質のSiO2
単体介在物の出現が防止できず0.3mm以下の鋼線での断
線発生頻度高くなり,疲労特性が大幅に劣化するので1.
10%以下とした。
Si is known as a solid solution hardening element. In order to increase the tensile strength after patenting to 150 kg / mm 2 or more, it is necessary to obtain solid solution hardening even if the pearlite lamellar interval is set to 0.04 to 0.10 μm. For that purpose, it is necessary to add Si 0.40% or more. When the Si content exceeds 1.10%, hard SiO 2
Since the appearance of single inclusions cannot be prevented, the frequency of wire breakage in steel wires of 0.3 mm or less increases, and the fatigue characteristics deteriorate significantly.
10% or less.

Mnはパーライト変態を遅らせる。線材圧延後の冷却過
程で中心部にミクロマルテンサイトなどの異常組織を発
生させないように0.60%以下とした。Mnが0.20%未満に
なると熱間圧延時の表面割れを防止できなくなるので0.
20%以上とした。パテンティング材強度へ及ぼすMnの効
果はSi,Crに比べると小さいので0.20〜0.60%の範囲で
十分である。
Mn delays perlite transformation. The content is set to 0.60% or less so as not to generate an abnormal structure such as micro martensite in the center during the cooling process after the wire rod rolling. If Mn is less than 0.20%, it becomes impossible to prevent surface cracks during hot rolling.
20% or more. Since the effect of Mn on the strength of the patenting material is smaller than that of Si and Cr, the range of 0.20 to 0.60% is sufficient.

Crはパーライトラメラー間隔を微細化させる最も有効
な元素である。工業的に短時間でパテンティングを終了
させるためには、鼻の温度でのパーライト変態終了時間
を30秒以内に抑える必要がある。そのためにはCrを0.60
%以下とする必要がある。他方、最終パテンティングに
おいてラメラー間隔を0.10μm以下とするにはCrを0.20
%以上添加する必要がある。
Cr is the most effective element for reducing the pearlite lamellar spacing. In order to industrially end patenting in a short time, it is necessary to suppress the pearlite transformation end time at the temperature of the nose within 30 seconds. For that, Cr should be 0.60
% Or less. On the other hand, to make the lamella interval 0.10 μm or less in the final patenting,
% Must be added.

NiはCoと同時添加することにより、パーライトラメラ
ー整列化効果を発揮することはよく知られている。しか
し、予備伸線の後の最終パテンティング時、炭素鋼だと
未発達のラメラーパーライトの間に非常に細かいセメン
タイトが点状に析出した組織が出現する。これは伸線性
を著しく阻害する。このため、予備伸線により最終パテ
ンティング後の引張強さが上昇することがわかっていた
が、うまく利用できなかった。本発明者はCoとNiがこの
非常に細かい点状のセメンタイトの析出防止に有効であ
ること、効果は同じであることを見出した。この非常に
細かい点状のセメンタイトと析出防止にはCo+Niが0.05
%以上必要である。0.60%でこの析出防止効果は飽和す
る。Co,Niは値段が高いのでコスト上から工業的利用を
制約することになるので上限規制した。
It is well known that Ni exhibits a pearlite lamellar alignment effect when added simultaneously with Co. However, at the time of the final patenting after the preliminary drawing, a structure in which very fine cementite is precipitated in dots between the undeveloped lamellar pearlite appears in the case of carbon steel. This significantly impairs the drawability. For this reason, although it was known that the tensile strength after the final patenting was increased by the preliminary drawing, it could not be used effectively. The present inventor has found that Co and Ni are effective in preventing precipitation of this very fine point-like cementite, and the effects are the same. This very fine point-like cementite and 0.05% Co + Ni to prevent precipitation
% Is required. At 0.60%, the effect of preventing precipitation is saturated. Because Co and Ni are expensive, they restrict industrial use from the viewpoint of cost.

鋼中の介在物中で最も硬いものは単体のAl2O3であ
る。しかし、複合酸化物の場合は酸化物系介在物中にと
け込み融点を下げ軟質化させる作用がある。Alが0.0005
%未満だと酸化物系介在物軟質化作用がないので0.0005
%以上とした。また、0.0050%超だとAl2O3単体介在物
が発生するので0.0050%以下に規制した。
The hardest inclusion in steel is Al 2 O 3 alone. However, in the case of a composite oxide, it has the effect of melting into oxide-based inclusions, lowering the melting point and softening. Al is 0.0005
%, There is no softening effect of oxide-based inclusions, so 0.0005
% Or more. If the content is more than 0.0050%, a single inclusion of Al 2 O 3 is generated, so the content is restricted to 0.0050% or less.

次に予備伸線であるが、炭素鋼だと最終パテンティン
グ時、未発達のラメラーパーライトの間に非常に細かい
セメンタイトが点状に析出した組織が出現し、最終伸線
時の伸線性を阻害するので、予備伸線による最終パテン
ティング材の引張強さの上昇効果をうまく利用できなか
った。Co+Niを0.05〜0.50%添加することにより伸線性
を阻害することなく、予備伸線による最終パテンティン
グ材の引張強さの上昇効果が利用できる。予備伸線の伸
線加工歪が1.0未満だと、最終パテンティング時のオー
ステナイト結晶粒微細化が十分でなく引張強さの上昇効
果が得られない。伸線加工歪が3.0超になるとCo+Niを
いくら添加しても細かいセメンタイトの点状析出を防止
できないので3.0以下とした。
Next, in pre-drawing, carbon steel shows a structure in which very fine cementite precipitates in dots between undeveloped lamellar pearlite at the time of final patenting, impairing drawability at the time of final drawing. Therefore, the effect of increasing the tensile strength of the final patenting material by the preliminary drawing could not be used effectively. By adding 0.05% to 0.50% of Co + Ni, the effect of increasing the tensile strength of the final patenting material by preliminary drawing can be used without impairing the drawability. If the drawing strain of the pre-drawing is less than 1.0, austenite crystal grains are not sufficiently refined at the time of final patenting, and the effect of increasing the tensile strength cannot be obtained. If the drawing strain exceeds 3.0, no matter how much Co + Ni is added, fine cementite dot-like precipitation cannot be prevented.

最終パテンティングにおいてラメラー間隔を0.10μm
以下にしないとパテンティング材強度が150kg/mm2以上
とならず、伸線後の微細線で引張強さ350kg/mm2に到達
しない。他方、ラメラー間隔が0.04μm未満になると、
変態温度が鼻の温度以下となるので1部にベーナイト組
織が混じってくる。伸線性を確保するには全面を均一な
微細パーライト組織とする必要がある。それ故、ラメラ
ー間隔を0.04μm以上とした。
In the final patenting, the lamella interval is 0.10μm
Otherwise, the strength of the patenting material will not exceed 150 kg / mm 2 and the tensile strength will not reach 350 kg / mm 2 with the fine wire after drawing. On the other hand, when the lamellar spacing is less than 0.04 μm,
Since the transformation temperature is lower than the temperature of the nose, the bainite structure is partially mixed. In order to secure drawability, it is necessary to form a uniform fine pearlite structure on the entire surface. Therefore, the lamella interval is set to 0.04 μm or more.

最終伸線の伸線加工歪であるが、線径0.4mm以下で引
張強さ350kg/mm2以上とするためには3.5以上必要であ
る。しかし、伸線加工歪が4.5超になると靭性が確保で
きなくなる。それ故、伸線加工歪は4.5以下とした。
Although it is the strain at the time of final drawing, 3.5 or more is necessary in order to make the wire diameter 0.4 mm or less and the tensile strength 350 kg / mm 2 or more. However, if the drawing strain exceeds 4.5, toughness cannot be secured. Therefore, the drawing strain was set to 4.5 or less.

本発明により安定して線径0.4mm以下の靭性の高い引
張強さ350kg/mm2以上の極細高張力鋼線の製造が可能に
なった。
According to the present invention, it has become possible to stably produce an ultrafine high-tensile steel wire having a wire diameter of 0.4 mm or less and a high toughness of 350 kg / mm 2 or more.

以下、実施例によって本発明を説明する。 Hereinafter, the present invention will be described with reference to examples.

〔実施例〕〔Example〕

50kg真空溶解炉を用いて第1表に示す成分の鋼を溶製
した。これらの鋼を7mmφ線材に圧延後、鉛パテンティ
ング、伸線加工を行い極細線を試作し特性把握した。
Using a 50 kg vacuum melting furnace, steel having the components shown in Table 1 was melted. After rolling these steels into 7mmφ wire rods, they were subjected to lead patenting and wire drawing to produce ultrafine wires as prototypes and their characteristics were grasped.

第2表に伸線条件と得られた極細線特性を示す。No.
1,8,9,14が本発明である。いずれも引張強さ350kg/mm2
以上であり、撚り加工性、疲労寿命、キンク特性が優れ
ている。
Table 2 shows the drawing conditions and the obtained ultrafine wire characteristics. No.
1,8,9,14 are the present invention. Both have a tensile strength of 350kg / mm 2
As described above, the twistability, fatigue life, and kink characteristics are excellent.

No.2はCが低いため、鉛パテンティング材の引張強さ
が150kg/mm2に満たないので、0.20mmの引張強さも350kg
/mm2未満である。No.3はCが高いため網目状セメンタイ
トが析出し、カッピー断線した。No.4はSiが高いため硬
質のSiO2介在物が存在し、カッピー断線を起こした。N
o.5はCrが高いためパテンティング時、完全にパーライ
トに変態が終了せず、中心部にミクロマルテンサイトが
発生し、伸線時カッピー断線を起こした。No.6はCo+Ni
の添加量が少なかったため、最終パテンティング時セメ
ンタイトの点状析出が起こり、これによりカッピー断線
した。No.7はAlが0.0055%と高いので、Al2O3介在物が
発生し、伸線時、カッピー断線した。No.10は予備伸線
の伸線加工歪3を超えてとったため、最終パテンティン
グ材の引張強さは高くなったが、Ni+Coによるセメンタ
イトの点状析出防止効果が得られず、カッピー断線し
た。No.11は予備伸線の伸線加工歪が小さいために最終
パテンティング材の引張強さが150kg/mm2未満になり、
最終極細線でも引張強さが350kg/mm2未満となり疲労寿
命も低い。No.12は最終伸線加工歪が小さいため最終極
細線も引張強さが350kg/mm2未満となり疲労寿命も低
い。No.13は最終伸線加工歪が大きいため過伸線とな
り、引張強さは高いが靭性不良となった。
No.2 because C is low, since the tensile strength of the lead patenting material is less than 150 kg / mm 2, tensile strength of 0.20 mm 350 kg
/ mm 2 . In No. 3, since the C content was high, network cementite was precipitated, and the wire was cut off. In No.4, hard SiO 2 inclusions were present due to the high Si content, which caused the disconnection of the cuppy. N
In the case of o.5, the transformation to pearlite did not complete at the time of patenting due to the high Cr content, micro-martensite was generated in the center, and the disconnection occurred during drawing. No.6 is Co + Ni
Because of the small amount of, a point-like precipitation of cementite occurred at the time of final patenting, which caused disconnection of the cuppy. In No. 7, since Al was as high as 0.0055%, Al 2 O 3 inclusions were generated, and the wire was broken during the wire drawing. In No. 10, the tensile strength of the final patenting material was increased because the drawing strain of the preliminary drawing exceeded 3 and the tensile effect of the final patenting material was increased, but the effect of preventing the precipitation of the cementite in the form of spots by Ni + Co was not obtained, and the wire was cut off. . No.11 tensile strength of the final patenting material to wire drawing strain preliminary drawing is small is less than 150 kg / mm 2,
Even the final ultrafine wire has a tensile strength of less than 350 kg / mm 2 and a low fatigue life. No. 12 has a small final wire drawing strain, so the final ultrafine wire also has a tensile strength of less than 350 kg / mm 2 and a low fatigue life. No. 13 was overdrawn due to large final drawing strain, and the tensile strength was high but the toughness was poor.

以上の実施例からも本発明が靭性の優れた極細高張力
鋼線の製造法としていかに優れているかがわかる。
The above examples also show how excellent the present invention is as a method for producing an ultrafine high-tensile steel wire having excellent toughness.

〔発明の効果〕〔The invention's effect〕

以上述べたように本発明によれば低コストで靭性の優
れた引張強さ350kg/mm2以上の極細高張力鋼線の工業的
製造が可能である。
As described above, according to the present invention, it is possible to industrially produce an ultrafine high-tensile steel wire having a low cost and excellent toughness and a tensile strength of 350 kg / mm 2 or more.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C21D 8/06 B21C 1/00 - 19/00──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) C21D 8/06 B21C 1/00-19/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】C:0.80〜1.00%,Si:0.40〜1.10% Mn:0.20〜0.60%,Cr:0.20〜0.60% Co+Ni:0.05〜0.60%,Al:0.0005〜0.0050% 残部鉄および不可避的不純物からなる鋼線材を最終パテ
ンティング前に伸線加工歪1.0〜3.0(伸線加工歪=l
n(d0/dn2,d0:パテンティング線径,dn:伸線径)の予
備伸線を行った後、最終パテンティングを行い、0.04〜
0.10μmのラメラー間隔の微細パーライト組織とし、伸
線加工歪3.5〜4.5の最終伸線を行うことを特徴とする靭
性の優れた引張強さ350kg/mm2以上の極細高張力鋼線の
製造方法
[Claim 1] C: 0.80 to 1.00%, Si: 0.40 to 1.10% Mn: 0.20 to 0.60%, Cr: 0.20 to 0.60% Co + Ni: 0.05 to 0.60%, Al: 0.0005 to 0.0050% Balance iron and unavoidable impurities Before final patenting, a steel wire rod consisting of 1.0 to 3.0 (drawing strain = l
n (d 0 / d n) 2, d 0: patenting wire diameter, d n: Shinsen径) after the conducted preliminary drawing of performs final patenting, 0.04
A method for producing an ultra-fine high-tensile steel wire with excellent toughness and a tensile strength of 350 kg / mm 2 or more, which has a fine pearlite structure with a lamellar interval of 0.10 μm and is subjected to final drawing with a drawing strain of 3.5 to 4.5.
JP22118489A 1989-08-28 1989-08-28 Manufacturing method of ultra-fine high-tensile steel wire with excellent toughness Expired - Lifetime JP2767620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22118489A JP2767620B2 (en) 1989-08-28 1989-08-28 Manufacturing method of ultra-fine high-tensile steel wire with excellent toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22118489A JP2767620B2 (en) 1989-08-28 1989-08-28 Manufacturing method of ultra-fine high-tensile steel wire with excellent toughness

Publications (2)

Publication Number Publication Date
JPH0382709A JPH0382709A (en) 1991-04-08
JP2767620B2 true JP2767620B2 (en) 1998-06-18

Family

ID=16762796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22118489A Expired - Lifetime JP2767620B2 (en) 1989-08-28 1989-08-28 Manufacturing method of ultra-fine high-tensile steel wire with excellent toughness

Country Status (1)

Country Link
JP (1) JP2767620B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2609387B2 (en) * 1990-12-28 1997-05-14 株式会社 神戸製鋼所 High-strength high-toughness ultrafine steel wire wire, high-strength high-toughness ultrafine steel wire, twisted product using the ultrafine steel wire, and method for producing the ultrafine steel wire
US6688148B1 (en) * 2001-01-26 2004-02-10 Defiance Precision Products, Inc. Manufacturing process for making engine components of high carbon content steel using cold forming techniques
CN114574679B (en) * 2022-03-31 2023-10-24 建龙北满特殊钢有限责任公司 Carbon steel hard wire rod for steel wire rope and manufacturing method thereof
CN115747613A (en) * 2022-11-01 2023-03-07 包头钢铁(集团)有限责任公司 Production method of wire rod for railway sleeper steel bar

Also Published As

Publication number Publication date
JPH0382709A (en) 1991-04-08

Similar Documents

Publication Publication Date Title
JP2735647B2 (en) High strength and high ductility steel wire and method for producing high strength and high ductility extra fine steel wire
JP2609387B2 (en) High-strength high-toughness ultrafine steel wire wire, high-strength high-toughness ultrafine steel wire, twisted product using the ultrafine steel wire, and method for producing the ultrafine steel wire
JP3246210B2 (en) High strength and high toughness hot-dip coated steel wire and method for producing the same
JP2767620B2 (en) Manufacturing method of ultra-fine high-tensile steel wire with excellent toughness
JP3572993B2 (en) Steel wire, steel wire, and method of manufacturing the same
JP3456455B2 (en) Steel wire rod, steel wire, and method for producing them
JPS6152348A (en) High efficiency carbon steel wire
JP3001572B1 (en) High-strength, high-ductility ultrafine steel wire, stranded wire, and method for producing the same
JP3277878B2 (en) Wire drawing reinforced high-strength steel wire and method of manufacturing the same
JPH06271937A (en) Production of high strength and high toughness hyper-eutectoid steel wire
JP3725576B2 (en) Manufacturing method of high strength galvanized steel wire
JPH0649592A (en) High carbon steel wire rod for steel wire having high strength and high ductility
JPH062039A (en) Production of extra fine wire of medium carbon steel
JP3400071B2 (en) High strength steel wire and high strength steel wire with excellent fatigue properties
JP3267833B2 (en) High-strength extra-fine steel wire with excellent fatigue properties and method for producing the same
JP3061918B2 (en) Method of manufacturing steel cord with excellent fatigue properties
JPH07268787A (en) Highly strong steel wire excellent in fatigue characteristic and steel cord using the steel wire and rubber product using the steel wire or the steel cord
JPH07179994A (en) Hyper-eutectoid steel wire having high strength and high toughness and ductility and its production
JPH06145895A (en) High sterength and high toughness steel wire rod, extra fine steel wire using the same steel wire rod, production therefor and straded steel wire
JP3250247B2 (en) Manufacturing method of high carbon steel wire for wire drawing
JP3036393B2 (en) High strength and high toughness hot-dip galvanized steel wire and method for producing the same
JPH0853743A (en) Production of high strength and high toughness hot-dip plated steel wire
JP2687839B2 (en) High carbon steel wire rod with excellent wire drawability and twistability
JPH0999312A (en) Manufacture of high-strength extra fine steel wire excellent in ductility
JPH0699746B2 (en) Manufacturing method of ultra-high-strength steel wire