JPS59115940A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS59115940A
JPS59115940A JP57224370A JP22437082A JPS59115940A JP S59115940 A JPS59115940 A JP S59115940A JP 57224370 A JP57224370 A JP 57224370A JP 22437082 A JP22437082 A JP 22437082A JP S59115940 A JPS59115940 A JP S59115940A
Authority
JP
Japan
Prior art keywords
pressure
valve
low
circuit
pressure side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57224370A
Other languages
Japanese (ja)
Inventor
充 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP57224370A priority Critical patent/JPS59115940A/en
Publication of JPS59115940A publication Critical patent/JPS59115940A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は空気調和機等の冷凍装置に関し、特にその起動
・停止時の冷媒制御装置に係わる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a refrigeration system such as an air conditioner, and more particularly to a refrigerant control system for starting and stopping the refrigeration system.

従来例の構成とその問題点 従来の冷凍装置の起動、停止時の冷媒制御装置ハ198
2 PURDUE COMPRESSORTECHNO
LOGY C0NFERENCEのANANARYSI
S  OF  A  NEW  TYPEREFRIG
ERATION  に発表されており第1図に示す。第
1図において1はコンプレッサで、カレントカットオフ
素子2、コンデンサ3、オンオフ素子4、キャピラリー
チューブ5、エバポレータ6、アキュムレータ7を環状
に接続して冷凍装置を構成している。尚カレントカット
オフ素子2とコンプレッサ1の吸入側はバイパス回路8
で連結されている。
Configuration of conventional example and its problems Refrigerant control device when starting and stopping conventional refrigeration equipment 198
2 PURDUE COMPRESSORTECHNO
ANANARYSI of LOGY CONFERENCE
S OF A NEW TYPEREFRIG
ERATION and is shown in Figure 1. In FIG. 1, 1 is a compressor, and a current cutoff element 2, a condenser 3, an on/off element 4, a capillary tube 5, an evaporator 6, and an accumulator 7 are connected in a ring to form a refrigeration system. The current cutoff element 2 and the suction side of the compressor 1 are connected to a bypass circuit 8.
are connected.

その動作は、冷却運転中、バイパス回路8は閉塞され冷
媒はコンプレッサ1、カレントカットオン素子2、コン
デンサ3、オンオン素子4、キャピラリーチューブ5、
エバポレータ6、アキュムレータ7、再びコンプレッサ
1へと流れ正常な冷却作用を行う。一方停止時にはオン
オフ素子4は閉塞し、カレントカソトオノ素子2はコン
デンサ3の回路を閉塞すると共にバイパス回路8を開路
してコンプレッサ1の高圧側と低圧側の圧力バランスを
図9次の起動を容易にする。カレントカノトオヲ素子2
とオンオフ素子4で迦断されたコンデンサ3内の液冷媒
は運転状態のまま次の運転まで保持されるので次の運転
時の冷却の立上シが早くなり省エネルギー化が図れる。
During cooling operation, the bypass circuit 8 is closed and the refrigerant is transferred to the compressor 1, current cut-on element 2, condenser 3, on-on element 4, capillary tube 5,
It flows to the evaporator 6, accumulator 7, and again to the compressor 1 to perform a normal cooling action. On the other hand, when stopped, the on/off element 4 is closed, and the current cassette element 2 closes the circuit of the capacitor 3 and opens the bypass circuit 8 to maintain the pressure balance between the high pressure side and the low pressure side of the compressor 1. Make it. Current Kanotoo Element 2
Since the liquid refrigerant in the condenser 3 that has been turned off by the on-off element 4 is maintained in the operating state until the next operation, the cooling start-up during the next operation can be accelerated and energy can be saved.

いわゆる起動損失の低減である。以上が従来例の構成と
効果であるが次のような欠点も有している。川」ち運転
停止時にはコンプレッサ1の高圧側と低圧側をバイノく
スさせて圧力の均等化を行うため、コンプレッサ1の高
圧側に滞留する高温高圧ガスが低温であるエバポレータ
6に流入して凝縮、加熱し熱負荷とな)省エネルギーを
さまたげる。近年のようにロータリーコンプレッサ(高
圧容器型)化が進むにつれて前記高温高圧ガスの量が多
大となり、省エネルギーを更にさまたげるし、また密閉
容器内を高圧にするための起動損失も増大するという欠
点を有している。また力1/ントカソトオフ素子2は停
止時にコンデンサ3への主回路を閉塞すると共にバイパ
ス回路8を開路するため構成が複雑で高価である。
This is a reduction in so-called starting loss. Although the configuration and effects of the conventional example have been described above, it also has the following drawbacks. When the operation is stopped, the high-pressure side and low-pressure side of the compressor 1 are equalized to equalize the pressure, so the high-temperature and high-pressure gas that remains on the high-pressure side of the compressor 1 flows into the low-temperature evaporator 6 and condenses. (heating and heat load) hinders energy conservation. As the use of rotary compressors (high-pressure container type) has progressed in recent years, the amount of high-temperature, high-pressure gas has increased, which further impedes energy conservation, and also has the disadvantage of increasing the startup loss required to create high pressure inside the closed container. are doing. In addition, the power 1/torque offset element 2 closes the main circuit to the capacitor 3 and opens the bypass circuit 8 when the motor is stopped, so the structure is complicated and expensive.

発明の目的 そこで本発明は冷凍装置の省エネルギーを更に図ると共
に構造が簡単にして、安価な冷凍装置を提供することを
目的とする。
OBJECTS OF THE INVENTION Therefore, it is an object of the present invention to provide a refrigeration system which is further energy efficient, has a simple structure, and is inexpensive.

発明の構成 この目的を達成するため本発明は冷凍サイクルのエバポ
レータの上流側および下流側の各々に配設され、冷凍装
置の運転中は開略し、停止中は閉路する高圧弁および低
圧弁を設けると共に、停止時にコンプレッサの高圧側と
低圧側をバイパスさせかつ、圧縮機の所定回転数以下で
閉路し、それ以下で開路するバイパス弁を設けることに
より、停止時には冷凍装置の高圧側の高温高圧ガスをエ
バポレータに流入しないようにして熱負荷の減少いわゆ
る停止損失の低減を図9、再起動時に冷凍装置の高圧側
の昇圧時間の減少いわゆる起動損失の低減を図ると共に
、停止時にはコンプレッサの高圧側と低圧側の圧力を等
しくすることにより起動を容易にするものである。
Structure of the Invention To achieve this object, the present invention provides a high-pressure valve and a low-pressure valve that are disposed on the upstream and downstream sides of the evaporator of the refrigeration cycle, and are opened when the refrigeration system is in operation and closed when the refrigeration system is stopped. In addition, by providing a bypass valve that bypasses the high-pressure side and low-pressure side of the compressor when the compressor is stopped, and which closes at a predetermined number of rotations of the compressor or less and opens at a speed lower than that, the high-temperature, high-pressure gas on the high-pressure side of the refrigeration equipment is removed when the refrigeration equipment stops. Fig. 9 shows a reduction in the pressure increase time on the high-pressure side of the refrigeration equipment when restarting, a reduction in so-called starting loss, and a reduction in the so-called start-up loss. This makes startup easier by equalizing the pressure on the low pressure side.

実施例の説明 以下本発明の一実施例を添付図面に従い説明する。第2
図〜第5図において、11は高圧容器型の密閉型圧縮機
(以下、ロータリーコンプレッサとよぶ)で、密閉容器
12と圧縮要素13と図示しない電動要素で構成されて
いる。そして、冷凍装置u、ロータリーコンプレッサ1
1、:Iンアサ14、流体制御弁16の高圧回路15a
、キャピラリーチューブ16、エノくポレータ17、前
記流体制御弁15の低圧回路15b、サクションライン
18、ロータリーコンプレッサ11を順次環状に連結し
て成る。前記流体制御弁15は高圧回路isaが上部、
低圧回路15bが下部になるよう略垂直に配設し7てい
る。前記流体制御弁16は略中空円筒状の高圧側ケーシ
ング19と、これまた略中空円筒状の低圧側ケーシング
2oとで外殻21を形成し気密を保持している。前記外
殻21内には高圧回路15aと低圧回路15bとを仕切
シ、前記2回路の圧力に応動して伸縮するベローズ22
を配設している。前記ベローズ22の下端中央部にはベ
ローズ12を図中上方に向って付勢するコイルバネ23
を設け、その下方には前記コイルバネ23を保持し、ベ
ローズ22の過度の動きを規制するとともに破損を防止
するリテイナ−24を有している。前記リテイナ−24
にはベローズ22が低圧回路15bの圧力を正しく感知
するだめの複数個の小孔24a 、24a・・・・・・
が設けである。このリティナ−24は両ケーシング19
゜2o間にておさえられている。一方、高圧側ケーシン
グ19は入口管19aと出口管19bと弁座19Cを有
し、略中央には円柱状のプランジャ26が上下に摺動自
在に収納されている。前記プランジャ25の上端中央部
にはボール弁よりなる高圧弁26がカシメにより固定さ
れ高圧側弁装置27を形成している。プランジャ26の
下端には前記プランジャ26とベローズ22とを一体的
に取りつけるための凹部25aを設け、ベローズ22を
カシメにて一体的に挟着支持している。また低圧側ケー
シング20にも入口管20 a 、出口管2 ob。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings. Second
In the drawings to FIG. 5, reference numeral 11 denotes a high-pressure container-type hermetic compressor (hereinafter referred to as a rotary compressor), which is composed of a hermetic container 12, a compression element 13, and an electric element (not shown). And refrigeration equipment u, rotary compressor 1
1,: I-assay 14, high pressure circuit 15a of fluid control valve 16
, a capillary tube 16, an enoprator 17, a low pressure circuit 15b of the fluid control valve 15, a suction line 18, and a rotary compressor 11, which are successively connected in an annular manner. The fluid control valve 15 has a high pressure circuit ISA at the top;
The low voltage circuit 15b is arranged substantially vertically at the bottom. The fluid control valve 16 has an outer shell 21 formed by a high-pressure side casing 19 having a substantially hollow cylindrical shape and a low-pressure side casing 2o also having a substantially hollow cylindrical shape, and maintains airtightness. Inside the outer shell 21, there is a bellows 22 that partitions the high voltage circuit 15a and the low voltage circuit 15b and expands and contracts in response to the pressure of the two circuits.
has been set up. At the center of the lower end of the bellows 22 is a coil spring 23 that urges the bellows 12 upward in the figure.
A retainer 24 is provided below the retainer 24 for holding the coil spring 23, regulating excessive movement of the bellows 22, and preventing damage. The retainer 24
has a plurality of small holes 24a, 24a, etc. for the bellows 22 to correctly sense the pressure of the low pressure circuit 15b.
is the provision. This retainer 24 has both casings 19
It is held between ゜2o. On the other hand, the high-pressure side casing 19 has an inlet pipe 19a, an outlet pipe 19b, and a valve seat 19C, and a cylindrical plunger 26 is housed in substantially the center so as to be slidable up and down. A high pressure valve 26 made of a ball valve is fixed to the center of the upper end of the plunger 25 by caulking to form a high pressure side valve device 27. A recess 25a is provided at the lower end of the plunger 26 for integrally attaching the plunger 26 and the bellows 22, and the bellows 22 is integrally clamped and supported by caulking. The low pressure side casing 20 also includes an inlet pipe 20 a and an outlet pipe 2 ob.

弁座20 cを有し、略中夫には外縁部にガス通路を形
成する切り欠き28aを設けたり一フ弁よりなる低圧弁
28を移動自在に収納している。前記低圧弁28の上方
には低圧弁28の過度の動きを規制するストッパ29を
低圧側ケーシング2oに圧入固定して低圧側弁装置30
を形成している。
It has a valve seat 20c, and a notch 28a forming a gas passage is provided at the outer edge of the shaft, and a low pressure valve 28, which is a one-flap valve, is movably accommodated. Above the low pressure valve 28, a stopper 29 for regulating excessive movement of the low pressure valve 28 is press-fitted and fixed into the low pressure side casing 2o, and a low pressure side valve device 30 is installed.
is formed.

次にロータリーコンプレッサ11について説明する。圧
縮要素13の吸入路31には密閉容器12内の高圧空間
32に連通する側路33を配設している。前記側路33
の上部は弁座34を有し、前記弁座34の上部には外周
部を部分的に切シ欠いた略星状の弁35を配設し、弁3
5の過度による動きを規制する中空状の弁ストッパ36
を設けている。丑だ弁36の外周側下部には弁35を上
方(開路方向)に付勢するバネ37を配設してバイパス
弁38を構成している。
Next, the rotary compressor 11 will be explained. The suction passage 31 of the compression element 13 is provided with a side passage 33 that communicates with a high pressure space 32 within the closed container 12 . Said side road 33
The upper part of the valve seat 34 has a valve seat 34, and the valve seat 34 has a substantially star-shaped valve 35 whose outer circumference is partially cut out.
Hollow valve stopper 36 that restricts movement due to excessive movement of 5.
has been established. A bypass valve 38 is configured by disposing a spring 37 on the outer peripheral side lower part of the waste valve 36 to bias the valve 35 upward (in the opening direction).

このバイパス弁38は圧縮要素23の同期速度の26〜
60%程度の回転数の時に閉路し、それ以下の回転数で
は開路するように側路33の寸法やバネ37の付勢力を
設定している。
This bypass valve 38 has a synchronous speed of 26~
The dimensions of the side passage 33 and the biasing force of the spring 37 are set so that the circuit is closed at a rotation speed of about 60% and opened at a rotation speed below that.

即ち、弁35の吸入路31側にかかる力F2と、弁35
の密封容器28の高圧空間32側にかかる力F1 が、
圧縮要素30の起動に従って、その同期速度(例えば3
600rpm)の25〜50%に達した際に、Fl〉F
2となって弁35を閉鎖するものである。
That is, the force F2 applied to the suction passage 31 side of the valve 35 and the force F2 applied to the suction passage 31 side of the valve 35
The force F1 applied to the high pressure space 32 side of the sealed container 28 is
Following activation of compression element 30, its synchronous speed (e.g. 3
600 rpm), when Fl〉F
2 and closes the valve 35.

上記構成に於て冷凍装置の運転中に於てはロータリーコ
ンプレッサ21の電動要素は同期速度に近い速度で運転
しているのでバイパス弁38は閉路しておシ正常な圧縮
作用を行う。
In the above configuration, when the refrigeration system is in operation, the electric element of the rotary compressor 21 operates at a speed close to the synchronous speed, so the bypass valve 38 closes and performs a normal compression operation.

従って冷凍装置の高圧側は通常の高圧力であシ、低圧側
も通常の低圧力であるため流体制御弁15のベローズ2
2は高圧回路15aと低圧回路15bとの圧力差によっ
てコイルバネ23を押し下げ、リティナ−24に浩るま
で伸長している。従って高圧弁26はベローズ22に一
体的に取シつけられたプランジャ25により、弁座19
cに高圧回路15aとエバポレータ17内の圧力差とコ
イルバネ23の伺勢力の和によって吸着されていたのが
引き離されて高圧側弁装置27は開路状態になっている
。一方低圧側弁装置30の低圧弁26はエバポレータ1
7より流入するガス流によシ吹き上げられて弁座20c
と離れ、ストッパ29に当接する。ガスは低圧弁28の
外縁部の切り欠き28aとストッパ29の隙間よシス中
矢印aで示す如く支障なく流れ低圧側弁装置30は開路
状態となっている。従って、ロータリーコンプレッサ1
1より吐出された冷媒ガスはコンデンサ14、流体制御
弁15の高圧回路16a、キャピラリーチューブ16、
エバポレータ17.流体制御弁15の低圧回路15b、
サクションライン18、ロータリーコンプレッサ11へ
と支障なく流れて冷凍作用を行う。
Therefore, the high pressure side of the refrigeration system is at the normal high pressure, and the low pressure side is also at the normal low pressure, so the bellows 2 of the fluid control valve 15
2 pushes down the coil spring 23 due to the pressure difference between the high voltage circuit 15a and the low voltage circuit 15b, and extends until it reaches the retainer 24. Therefore, the high pressure valve 26 is operated by the valve seat 19 by the plunger 25 which is integrally attached to the bellows 22.
At c, the pressure difference between the high pressure circuit 15a and the evaporator 17, and the sum of the biasing force of the coil spring 23 separates the adsorbed part, and the high pressure side valve device 27 is in an open state. On the other hand, the low pressure valve 26 of the low pressure side valve device 30 is connected to the evaporator 1
The valve seat 20c is blown up by the gas flow flowing in from 7.
and comes into contact with the stopper 29. Gas flows through the gap between the notch 28a on the outer edge of the low pressure valve 28 and the stopper 29 without any problem as shown by the arrow a in the system, and the low pressure side valve device 30 is in an open state. Therefore, rotary compressor 1
The refrigerant gas discharged from the condenser 14, the high pressure circuit 16a of the fluid control valve 15, the capillary tube 16,
Evaporator 17. low pressure circuit 15b of fluid control valve 15,
It flows without any problem to the suction line 18 and the rotary compressor 11 to perform the refrigeration action.

次に冷凍装置の停止中の状態について説明する。Next, the state in which the refrigeration system is stopped will be explained.

ロータリーコンプレッサ21−の停止によりエバポレー
タ17よりガス流が停止するので、流体制御弁16の低
圧回路16b内の低圧弁28は自重で落下し弁座20 
cに尚接して低圧側弁装置30を閉路状態にする。その
結果、ロータリーコンプレッサ11からのスーパーヒー
トガスが工/くボレータ17へと逆流、流入するのを防
止する。更に時間が経過すると密閉容器12内のスーパ
ーヒートガスは圧縮要素13のシリンダ室39に流入し
、吸入路31を経てサクションライン18へと流れ、流
体制御弁15の低圧回路15bに流入する(第3図中矢
印す屹す)ので低圧回路15b内の圧力は急激に上昇し
、高圧回路15aの圧力と近似となる。前記両回路15
a、15bの圧力が近似になるとベローズ22の下方に
設けたコイルノくネ23の付勢力が両回路15a、15
bの圧力差によりベローズ22に発生する力に打ち勝っ
てプランジャ26が押し2上けられ高圧側弁装置27は
閉路状態となシ、コンデンサ14よシのスーパーヒート
ガスのエバポレータ17への流入を防止する。この時バ
イパス弁38は高圧空間32の圧力と、側路33の圧力
は略同等であるためバネ37の付勢力により開路されて
次の起動のため待期状態を維持する。
Since the gas flow from the evaporator 17 is stopped due to the stop of the rotary compressor 21-, the low pressure valve 28 in the low pressure circuit 16b of the fluid control valve 16 falls under its own weight, and the valve seat 20
c is still in contact with the low pressure side valve device 30 to close the circuit. As a result, the superheated gas from the rotary compressor 11 is prevented from flowing backward into the compressor 17. As time further elapses, the superheated gas in the closed container 12 flows into the cylinder chamber 39 of the compression element 13, flows into the suction line 18 via the suction path 31, and flows into the low pressure circuit 15b of the fluid control valve 15 (the first 3), the pressure in the low pressure circuit 15b rises rapidly and becomes approximately the pressure in the high pressure circuit 15a. Both circuits 15
When the pressures in the circuits 15a and 15b are approximated, the biasing force of the coil nut 23 provided below the bellows 22 is applied to both circuits 15a and 15.
The force generated in the bellows 22 due to the pressure difference b is overcome, the plunger 26 is pushed up 2, and the high-pressure side valve device 27 is closed, preventing superheated gas from the condenser 14 from flowing into the evaporator 17. do. At this time, since the pressure in the high pressure space 32 and the pressure in the side passage 33 are approximately equal, the bypass valve 38 is opened by the biasing force of the spring 37 and maintains a waiting state for the next activation.

冷凍装置の次の起動時には電動要素の起動トルクやプル
アップトルクと呼ばれる3 00 rpm (同期速度
3600rpmの9%程度)以下の低トルク時にはバイ
パス弁38はまだ開放状態であるので圧縮作用は行なわ
ず、電動要素のスピードは急激に上昇すると共にトルク
も急激に上昇する。電動要素の回転数が所定の速度(同
期速度の25〜60%)に達するとバイパス弁38は閉
路し圧縮作用を始めるが、電動要素は十分なトルクを有
しており起動不能等は起さず正常運転に移行する。ロー
タリーコンプレッサ21が正常運転に移行するとサクシ
ョンライン18の圧力は低下し、低圧側弁装置30は開
路すると共に、低圧回路16bは圧力降下するのでベロ
ーズ22は下方に伸長し、ベローズ22に連結されたプ
ランジャ25によシ高圧側弁装置27は開路する。従っ
てロータリーコンプレッサ11より吐出された冷媒は、
コンデンサ14、流体制御弁15の高圧回路15a、キ
ャピラリーチューブ16、エバポレータ17、流体制御
弁16の低圧回路15b、サクションライン18から再
びロータリーコンプレッサ11へと循環し、正常な冷却
作用を行う。
When the refrigeration system is next started up, the bypass valve 38 is still open and no compression is performed at low torque of 300 rpm (approximately 9% of the synchronous speed of 3600 rpm), which is called the starting torque or pull-up torque of the electric element. , the speed of the electric element increases rapidly and the torque also increases rapidly. When the rotational speed of the electric element reaches a predetermined speed (25 to 60% of the synchronous speed), the bypass valve 38 closes and starts compression, but the electric element has sufficient torque and no failure to start occurs. The system will return to normal operation. When the rotary compressor 21 shifts to normal operation, the pressure in the suction line 18 decreases, the low pressure side valve device 30 opens, and the pressure in the low pressure circuit 16b decreases, so the bellows 22 extends downward and is connected to the bellows 22. The plunger 25 opens the high pressure side valve device 27. Therefore, the refrigerant discharged from the rotary compressor 11 is
It circulates again to the rotary compressor 11 from the condenser 14, the high pressure circuit 15a of the fluid control valve 15, the capillary tube 16, the evaporator 17, the low pressure circuit 15b of the fluid control valve 16, and the suction line 18, and performs a normal cooling action.

発明の効果 以上の説明からも明らかなように本発明の冷凍装置は流
体制御弁を備え、前記流体制御弁の高圧側弁装置はコン
デンサとキャピラリーチューブ等の減圧器の間に接続し
、チェックバルブ機能を有する低圧側弁装置はエバポレ
ータとロータリーコンプレッサの間のサクションライン
に接続し、高圧側弁装置は低圧回路の圧力が低い時に開
弁じ、高い時は閉弁するようにその圧力に応動するよう
にしているので冷凍装置の運転中は通常の冷媒循環を行
い、冷凍装置の停止中にはチェックパルプ機能を有する
低圧側弁装置がただちに閉弁すると同時に低圧回路の圧
力が急上昇し高圧側弁装置を閉弁するので、密閉容器内
およびコンデンサ内のスーパーヒートガスがサクション
ラインおよび減圧装置を介してエバポレークに流入する
のを防止する。いわゆる停止損失の低減であシ、特に密
閉容器内の高温高圧のスーパーヒートガスをエノくボレ
ータ内に流入防止する効果は非常に大きなものである。
Effects of the Invention As is clear from the above description, the refrigeration system of the present invention includes a fluid control valve, and the high pressure side valve device of the fluid control valve is connected between a condenser and a pressure reducer such as a capillary tube, and a check valve is connected between the condenser and a pressure reducer such as a capillary tube. A functional low-pressure side valve device is connected to the suction line between the evaporator and the rotary compressor, and a high-pressure side valve device responds to the pressure by opening when the pressure in the low-pressure circuit is low and closing when the pressure is high. When the refrigeration equipment is in operation, the refrigerant circulates normally, and when the refrigeration equipment is stopped, the low-pressure side valve device with a check pulp function immediately closes, and at the same time the pressure in the low-pressure circuit suddenly increases and the high-pressure side valve device closes immediately. Since the valve is closed, the superheated gas in the closed container and the condenser is prevented from flowing into the evaporation lake via the suction line and the pressure reducing device. In addition to reducing so-called stoppage loss, the effect of preventing the high-temperature, high-pressure superheat gas in the closed container from flowing into the volator is very large.

捷だ停止中は冷凍装置の各部圧力状態、冷媒状態を運転
中の状態で保持しているので再起動時の冷却の立上りが
非常に早くなシ、いわゆる起動損失の低減が図れる。ま
だ本流体制御弁は高圧側弁装置と低圧側圧装置を熱交換
的に一体的に形成しているのでエバポレータを流出した
排冷熱である温度の低いスーパーヒートガスによりコン
デンサより流出する液冷媒の過冷却を行い冷凍効果の増
大が図れ、更に若干の省電力化が図れる。
Since the pressure state and refrigerant state of each part of the refrigeration system are maintained in the operating state while the system is being shut down, the start-up of cooling upon restart is very quick, and so-called startup loss can be reduced. However, since this fluid control valve integrally forms the high-pressure side valve device and the low-pressure side pressure device for heat exchange, the liquid refrigerant flowing out from the condenser is overheated by the low-temperature superheat gas, which is the waste cooling heat flowing out of the evaporator. By performing cooling, the refrigeration effect can be increased, and further power consumption can be reduced to some extent.

またロータリーコンプレッサの高圧側と低圧側をバイパ
スするバイパス弁を備え、バイノくス弁はロータリーコ
ンプレッサが所定の回転数以上で閉路し、それ以下では
開路する構成であるので、ロータリーコンプレッサの起
動時にはバイパス弁の働きによシ無負荷状態での起動を
行うので安価な低起動トルク形モーターであるいわゆる
PSCモータ等が使用できるなどの効果が得られる。
In addition, it is equipped with a bypass valve that bypasses the high-pressure side and low-pressure side of the rotary compressor, and the binox valve is configured to close when the rotary compressor exceeds a predetermined rotation speed and open when the rotation speed is lower than that, so it is bypassed when the rotary compressor is started. Since the valve is activated in a no-load state, it is possible to use an inexpensive low-starting-torque motor such as a so-called PSC motor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の冷凍装置の冷凍サイクル図、第2図は本
発明の一実施例を示す冷凍装置の冷凍サイクル図、第3
図は第2図の冷凍装置が停止時の流体制御弁の状態図、
第4図は第2図のコンプレッサの要部断面図、第5図は
第4図のA部拡大断面図である。 11・・・・・・高圧容器型の密閉型圧縮機、14・・
・・・・コンデンサ、16・・・・・・減圧器、17・
・・・・工/くボレータ、18・・・・・・サクション
ライン、21・・・・・・流体制御弁、26・・・・・
・高圧弁、15a・・・・・・高圧回路、27・・・・
・・高圧側弁装置、28・・・・・低圧弁、15b・・
・・・低圧回路、30・・・・・・低圧側弁装置、38
・・・・・・バイパス弁。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 2 第2図 4 第3図 第4図 1 第5図
FIG. 1 is a refrigeration cycle diagram of a conventional refrigeration system, FIG. 2 is a refrigeration cycle diagram of a refrigeration system showing an embodiment of the present invention, and FIG.
The diagram shows the state of the fluid control valve when the refrigeration system in Figure 2 is stopped,
4 is a sectional view of a main part of the compressor shown in FIG. 2, and FIG. 5 is an enlarged sectional view of section A in FIG. 4. 11... High pressure container type hermetic compressor, 14...
... Capacitor, 16 ... Pressure reducer, 17.
・・・・・・Work/borator, 18...Suction line, 21...Fluid control valve, 26...
・High pressure valve, 15a... High pressure circuit, 27...
...High pressure side valve device, 28...Low pressure valve, 15b...
...Low pressure circuit, 30...Low pressure side valve device, 38
...Bypass valve. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 2 4 Figure 3 Figure 4 Figure 1 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 高圧容器型の密閉型圧縮機と、コンデンサと、減圧器ト
、エバポレークと、サクションラインと、流体制御弁等
より成り前記流体制御弁は高圧弁盤ひに高圧回路を含む
高圧側弁装置と、低圧弁並びに低圧回路を含む低圧側弁
装置を含み、前記高圧側弁装置は前記エバポレータの上
流側に、前記低圧側弁装置は前記エバポレータの下流側
に各々介在接続され、前記高圧弁は前記高圧回路と低圧
回路の圧力差にて作動し、かつ圧力接近時に閉鎖状態を
保持し、前記低圧弁は逆止弁動作とし、かつ前記高圧弁
は前記高圧回路と前記低圧回路との圧力差により、作動
する圧力応動体に一体的に連結され、前記圧力応動体は
バネにて前記高圧弁?閉じる方向に付勢し、前記密閉型
圧縮機は内部または外部の高圧側と低圧側の間に前記密
閉型圧縮機の所定回転数以上で閉路し、それ以下で開路
するバイパス弁を配設した冷凍装置。
The fluid control valve is comprised of a high-pressure container-type hermetic compressor, a condenser, a pressure reducer, an evaporator, a suction line, a fluid control valve, etc.; The high-pressure side valve device includes a low-pressure side valve device including a low-pressure valve and a low-pressure circuit, the high-pressure side valve device is connected to the upstream side of the evaporator, the low-pressure side valve device is connected to the downstream side of the evaporator, and the high-pressure valve is connected to the high-pressure side. The low pressure valve operates based on the pressure difference between the high pressure circuit and the low pressure circuit, and maintains a closed state when pressure approaches, the low pressure valve operates as a check valve, and the high pressure valve operates due to the pressure difference between the high pressure circuit and the low pressure circuit. The high pressure valve is integrally connected to the operating pressure responsive body, and the pressure responsive body is connected by a spring to the high pressure valve. The hermetic compressor is biased in the closing direction, and the hermetic compressor is provided with a bypass valve between an internal or external high-pressure side and a low-pressure side that closes at a predetermined rotation speed of the hermetic compressor or more and opens at a rotation speed lower than that. Refrigeration equipment.
JP57224370A 1982-12-20 1982-12-20 Refrigerator Pending JPS59115940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57224370A JPS59115940A (en) 1982-12-20 1982-12-20 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57224370A JPS59115940A (en) 1982-12-20 1982-12-20 Refrigerator

Publications (1)

Publication Number Publication Date
JPS59115940A true JPS59115940A (en) 1984-07-04

Family

ID=16812686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57224370A Pending JPS59115940A (en) 1982-12-20 1982-12-20 Refrigerator

Country Status (1)

Country Link
JP (1) JPS59115940A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02166355A (en) * 1988-12-16 1990-06-27 Ebara Corp Low temperature freezer and operation therefor
JP2011133208A (en) * 2009-12-25 2011-07-07 Sanyo Electric Co Ltd Refrigerating apparatus
US8997508B2 (en) 2009-12-25 2015-04-07 Panasonic Intellectual Property Management Co., Ltd. Refrigerating apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02166355A (en) * 1988-12-16 1990-06-27 Ebara Corp Low temperature freezer and operation therefor
JP2011133208A (en) * 2009-12-25 2011-07-07 Sanyo Electric Co Ltd Refrigerating apparatus
US8997508B2 (en) 2009-12-25 2015-04-07 Panasonic Intellectual Property Management Co., Ltd. Refrigerating apparatus

Similar Documents

Publication Publication Date Title
JP3173267B2 (en) Scroll compressor
JPS59115940A (en) Refrigerator
JPS59104050A (en) Refrigerator
JPS5852958A (en) Refrigerator
JPS5995346A (en) Refrigerator
JPS5899671A (en) Fluid control valve for refrigerator
JPH07301461A (en) Cooling cycle
JPS5896954A (en) Refrigerator
JPS5888577A (en) Fluid control valve for refrigerator
JPS6129657A (en) Refrigerator
JPS61191844A (en) Accumulator
JPH05172077A (en) Refrigerant compressor
JPH02130350A (en) Air conditioner
JPH08152210A (en) Refrigerating apparatus
JPS5899651A (en) Refrigerator
JPS6339827B2 (en)
JPS5899655A (en) Refrigerator
JPS6044773A (en) Starter for refrigerator
JPS5899653A (en) Refrigerator
JPS5852955A (en) Refrigerator
JPS6255065B2 (en)
JPS5899650A (en) Refrigerator
JPS5843362A (en) Refrigerating cycle of air conditioner
JPS63238366A (en) Refrigeration cycle device
JPS61237981A (en) Local chiller