JPS5888577A - Fluid control valve for refrigerator - Google Patents

Fluid control valve for refrigerator

Info

Publication number
JPS5888577A
JPS5888577A JP56187640A JP18764081A JPS5888577A JP S5888577 A JPS5888577 A JP S5888577A JP 56187640 A JP56187640 A JP 56187640A JP 18764081 A JP18764081 A JP 18764081A JP S5888577 A JPS5888577 A JP S5888577A
Authority
JP
Japan
Prior art keywords
pressure
valve
valve device
fluid control
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56187640A
Other languages
Japanese (ja)
Other versions
JPH0138234B2 (en
Inventor
充 森田
秀樹 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP56187640A priority Critical patent/JPS5888577A/en
Publication of JPS5888577A publication Critical patent/JPS5888577A/en
Publication of JPH0138234B2 publication Critical patent/JPH0138234B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Safety Valves (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は高圧容器型の密閉型圧縮機を用い゛る冷蔵庫等
の冷凍装置用の流体制御弁に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fluid control valve for a refrigeration device such as a refrigerator that uses a high-pressure container-type hermetic compressor.

一般的なロータリーコンプレッサの如く高圧容器型の密
閉圧縮機(以下ロータリーコンブレラ9すと呼ぶ)を採
用する小形冷凍装置においては、密閉容器内が高圧側に
なるために一般のレシプロコンプレッサの如く低圧容器
型の密閉圧縮機(以下レシプロコンプレッサと呼ぶ)に
比べて冷凍装置に封入する冷媒量が大巾に増加する。そ
の−例として、普及型冷凍冷蔵庫ではレシプロ型の冷媒
封入量150g程度に対して、ローダリー型では約25
0”;!9程度となり50チ以上の大巾な増加となる。
In small refrigeration equipment that uses a high-pressure container-type hermetic compressor (hereinafter referred to as a rotary combiner) like a general rotary compressor, the inside of the closed container is on the high-pressure side, so the pressure is low like a general reciprocating compressor. Compared to a container-type hermetic compressor (hereinafter referred to as a reciprocating compressor), the amount of refrigerant sealed in the refrigeration system is significantly increased. As an example, in a popular refrigerator-freezer, the amount of refrigerant filled in is about 150g for a reciprocating type, while for a loader type it is about 25g.
0'';!9, which is a large increase of more than 50 inches.

この冷媒の増加分100gのうち一部は高温高圧のスー
パーヒートガスとして、一部は冷凍機油中に溶解して密
閉容器中に滞留しているのである。これらの高温高圧の
冷媒は冷凍装置の温度調節器の働きによシ冷凍装置の停
止時にはスーパーヒートガスはガス状態で、冷凍機油中
に溶解しているものは気化して密閉容器内の高温部分で
加熱2され、高温高圧のスーパーヒートガスとなシエバ
ポレータに流入する。その第1流路として密閉容器→コ
ンデンサ→キャピラリーチューブ→エバポレータへと流
入し、コンディサで放熱されるので常温のスーパーヒー
トガスとして流入するが、エバポレータとの温度差は非
常に大きく、従ってエバポレータを加熱し大きな熱負荷
となる欠点があった。また、第2流路として密閉容器−
圧縮要素のシリンダ室→サクションライン→エバポレー
タへと高温高圧のスーパーヒートガスのまま流入しエバ
ポレータを加熱し、これまた大きな熱負荷となる欠点が
あった。なおこの、密閉容器内の高温高圧ガスがシリン
ダ室に流入するのは、現存するロータリーコンプレッサ
が金属面接触によるメカニカルシールにてシリンダ室を
構成しているためである。すなわち、このロータリーコ
ンプレッサを用いた冷凍装置は以上の如く高温高圧のス
ーパーヒートガスが多量にエバポレータに流入して大き
な熱負荷となるものであった。そのため従来のレシプロ
コンプレッサに比べて約20チ程度効率の高いロータリ
ーコンプレッサを実際に冷凍冷蔵庫に取りつけてJIS
  C9607電気冷蔵庫及び電気冷凍庫の消費電力試
験にて測定した場合には効果は大巾に減少し、約6係程
度の節電量でしかないものであった。この消費電力量の
低減量をロータリーコンプレッサの効率向上相当分に引
き上げるためには、前記第1.第2流路よりエバポレー
タに流入する多量のスーパーヒートカスを阻止すること
である。現在一部に用いられている方法は前記第2流路
を改善する方法で、冷凍装置のサクションラインにチェ
ックパルプを設ける方法であるが、前記第1流路は未改
良であるためその効果は小さく、消費電力量の低減は6
チ程度向上するのみで合計10チ程度の効果である。ま
た前記第1流路を改善する方法として考えられる方法は
、電磁弁をコンデンサ出口に設は冷凍装置の運転に連動
して開閉する手法があるが、電磁弁は、高価であシ、動
作時に騒音が発生し、またこの電磁弁の制御回路が必要
で電気回路が複雑となシ、それ自身が電力を消費するな
どの欠点を有しているものであった。
Of this 100 g increase in refrigerant, a portion is converted into high-temperature, high-pressure superheat gas, and a portion is dissolved in the refrigerating machine oil and remains in the closed container. These high-temperature, high-pressure refrigerants are controlled by the temperature controller of the refrigeration system.When the refrigeration system is stopped, the superheat gas is in a gas state, and the dissolved gas in the refrigeration oil is vaporized and released into the high-temperature area inside the closed container. The gas is heated at 2 and flows into the evaporator as a superheated gas at high temperature and high pressure. As the first flow path, it flows from the sealed container → condenser → capillary tube → evaporator, and the heat is dissipated by the condenser, so it flows as room temperature superheat gas, but the temperature difference with the evaporator is very large, so it heats the evaporator. However, it had the disadvantage of causing a large heat load. In addition, as the second flow path, a closed container -
There was a drawback that the high temperature, high pressure superheat gas flowed from the cylinder chamber of the compression element to the suction line to the evaporator and heated the evaporator, resulting in a large heat load. The high-temperature, high-pressure gas in the closed container flows into the cylinder chamber because the cylinder chamber of existing rotary compressors is configured with a mechanical seal made of metal surface contact. That is, in the refrigeration system using this rotary compressor, a large amount of high-temperature, high-pressure superheat gas flows into the evaporator, resulting in a large heat load. Therefore, we installed a rotary compressor, which is about 20 cm more efficient than a conventional reciprocating compressor, in a refrigerator and refrigerator.
When measured in a power consumption test of the C9607 electric refrigerator and electric freezer, the effect was significantly reduced, and the power saving amount was only about 6 factors. In order to increase the amount of reduction in power consumption equivalent to the efficiency improvement of the rotary compressor, it is necessary to The purpose is to prevent a large amount of super heat scum from flowing into the evaporator from the second flow path. The method currently used in some cases is to improve the second flow path, which is to install check pulp in the suction line of the refrigeration equipment, but since the first flow path has not been improved, its effectiveness is limited. Small and reduces power consumption by 6
This is an effect of about 10 inches in total, with only a slight improvement in the number of points. In addition, a possible method for improving the first flow path is to install a solenoid valve at the outlet of the condenser and open and close it in conjunction with the operation of the refrigeration equipment, but solenoid valves are expensive and This has the disadvantages of generating noise, requiring a control circuit for the solenoid valve, requiring a complicated electrical circuit, and consuming power itself.

本発明は以上の欠点に鑑みて、安価で、電気的な制御を
必要とせず、静粛で、かつロータリーコンプレッサ半休
の効率向上と同等以上の高効率化を冷凍装置として図ら
んとするための流体制御弁を提供せんとするものである
In view of the above-mentioned drawbacks, the present invention provides a fluid that is inexpensive, does not require electrical control, is quiet, and aims to achieve high efficiency as a refrigeration system that is equivalent to or higher than that of a rotary compressor. The purpose is to provide a control valve.

以下に本発明の一実施例について説明する。1は口〜タ
リーコンプレッサで、密閉容器2と圧縮要素3と図示し
ない電動要素で構成されている。
An embodiment of the present invention will be described below. Reference numeral 1 denotes a port-to-tally compressor, which is composed of a closed container 2, a compression element 3, and an electric element (not shown).

tた、このロータリーコンプレッサ1は内部に逆止弁を
備えていないものである。そして、冷凍装置は、ロータ
リーコンプレッサ1、コンデンサ4、本発明の冷凍装置
用流体制御弁5(以下単に流体制御弁という)の高圧回
路5a、キャピラリーチューブ6、エバポレータ7、流
体制御弁5の低圧回路5b、サクションライン8、ロー
タリーコンプレッサ1を順次環状に連結して成る。流体
制御弁5は高圧回路6aを含む上方に位置した第1の弁
装置5Aと低圧回路6bを含む下方に位置したり第2の
弁装置5Bを略垂直に配設している。そして、流体制御
弁6は各々独立した略中空円筒状の高圧側ケーシング9
と、これまた略中空円筒状の低圧側ケーシング10とで
外殻11−を形成し両者9.10を一体化して気密を保
持している。12は前記外殻11内において高圧回路5
aと低圧回路5bとに仕切り、前記2回路の圧力に応動
して伸縮する圧力応動素子(以下ベローズという)であ
る。ベローズ12の下端中央部にはベローズ12を図中
上方に向って付勢するコイルノ(ネ13を設けである。
Additionally, this rotary compressor 1 is not equipped with a check valve inside. The refrigeration system includes a rotary compressor 1, a condenser 4, a high pressure circuit 5a of a fluid control valve 5 for a refrigeration system of the present invention (hereinafter simply referred to as a fluid control valve), a capillary tube 6, an evaporator 7, and a low pressure circuit of the fluid control valve 5. 5b, suction line 8, and rotary compressor 1 are sequentially connected in an annular manner. The fluid control valve 5 includes a first valve device 5A located above including a high pressure circuit 6a, and a second valve device 5B located below including a low pressure circuit 6b, which are arranged substantially vertically. The fluid control valves 6 each have an independent substantially hollow cylindrical high pressure side casing 9.
and the low-pressure side casing 10, which is also approximately hollow and cylindrical, form an outer shell 11-, and the two are integrated to maintain airtightness. 12 is a high voltage circuit 5 inside the outer shell 11.
It is a pressure-responsive element (hereinafter referred to as a bellows) that is partitioned into a low-pressure circuit 5b and a low-pressure circuit 5b, and expands and contracts in response to the pressure of the two circuits. A coil nozzle 13 is provided at the center of the lower end of the bellows 12 to urge the bellows 12 upward in the figure.

14はコイルバネ13の下端を保持する調節部材(以下
リテイナ゛−という)であシ、ベローズ12の過度の動
きを規制するとともに破損を防止する。このリテイナ−
14にはベローズ12が低圧回路6bの圧力を正しく感
知するための複数個の小孔14a、14a・・・・・・
および外周部にはネジ14bが設けである。このリテイ
ナ−14はケーシング9の内面に設けたネジ部9dにね
じ込んで前記バネ13の付勢力の所定の値に一節した後
適当な方法で固定している。一方、高圧側ケーシング9
は入口管9aと出口管9bと弁座9cを有し、略中夫に
は円柱状のプランジャ16が上下に摺動自在に収納され
ている。前記プランジャ16の上端中央部にはボール弁
よりなる高圧弁16がカシメによシ固定され高圧側弁装
置17を形成してい石。プラン−ジャ16の下端にはプ
ランジャ15とベローズ12とを連結的に取りつけるた
めの凹部15aを設け、ベローズ12をサイジング加工
にて連結的に挟着支持している。なお、前記サイジング
ヒ高圧弁16の弁座9Cへの求心のため隙間16bを設
けてサイジング加工を行なっている0また低圧側ケーシ
ング10にも入口管10a、出口管10b、弁座10C
を有し、略中夫には外縁部にガス通路を形成する切り欠
き18aを設けたり一フ弁よりなる低圧弁18を移動自
在に収納している。前記低圧弁18の上方には低圧弁1
8の過度の動きを規制するストッパ19を低圧側ケーシ
ング1oに圧入固定して低圧側弁装置2oを形成してい
る。
Reference numeral 14 is an adjustment member (hereinafter referred to as a retainer) that holds the lower end of the coil spring 13, and restricts excessive movement of the bellows 12 and prevents damage. This retainer
14 has a plurality of small holes 14a, 14a... for the bellows 12 to correctly sense the pressure of the low pressure circuit 6b.
A screw 14b is provided on the outer periphery. This retainer 14 is screwed into a threaded portion 9d provided on the inner surface of the casing 9, and after the biasing force of the spring 13 is adjusted to a predetermined value, it is fixed by an appropriate method. On the other hand, the high pressure side casing 9
The valve has an inlet pipe 9a, an outlet pipe 9b, and a valve seat 9c, and a cylindrical plunger 16 is housed in the shaft so as to be slidable up and down. A high pressure valve 16 made of a ball valve is fixed to the center of the upper end of the plunger 16 by caulking to form a high pressure side valve device 17. A recess 15a is provided at the lower end of the plunger 16 for connecting the plunger 15 and the bellows 12, and the bellows 12 is connected and supported by sizing. In addition, the sizing process is performed by providing a gap 16b for centripeting the high-pressure valve 16 to the valve seat 9C.The low-pressure side casing 10 also has an inlet pipe 10a, an outlet pipe 10b, and a valve seat 10C.
A notch 18a for forming a gas passage is provided at the outer edge of the shaft, and a low pressure valve 18 consisting of a one-flange valve is movably housed. Above the low pressure valve 18 is a low pressure valve 1.
A stopper 19 for regulating excessive movement of the valve 8 is press-fitted and fixed into the low-pressure side casing 1o to form a low-pressure side valve device 2o.

次に上記流体制御弁を冷凍装置に組み込んだときの作用
に゛ついて述べる。第1図は冷凍装置が運転中の状態図
を表わしたもので、冷凍装置の高圧側は通常の高圧力で
あり、低圧側も通常の低圧力であるため流体制御弁5の
ベローズ12は高圧回路6aと低圧回路6bとの圧力差
によってコイルバネ13を押し下げ、リティ、ナー14
に当るまで伸張している。従って高圧弁16はベローズ
12に一体的に取りつけられたプランジャ16により、
−弁座9Cに高圧回路5aとエバポレータ7内の圧力差
とコイルバネ13の付勢力の和によって吸着されてい、
たのが引き離されて高圧側弁装置17は開路状態に、な
っている。一方低圧側弁装置20の低圧弁18はエバポ
レータ7より流入するガス流により吹き上げられて弁座
1oCと離れ、ストッパ19に当接する。ガスは低圧弁
18の外縁部の切り欠き18aとストッパ19の隙間よ
り図中矢印aで示す如く支障なく流れ低圧側弁装置2o
は開路状態となっている。従って、ロータリーコンプレ
ッサ1よシ吐出された冷媒ガ冬はコンデンサ4、流体制
御弁6の高圧回路5a、キャピラリーナユープ6、エバ
ポレータ7、流体制御弁6の低圧回路sb、サクショノ
ライン8、ロータリーコンプレッサ1へと支障なく流れ
て冷凍作用を行う。
Next, the operation when the above-mentioned fluid control valve is incorporated into a refrigeration system will be described. Figure 1 shows a state diagram when the refrigeration system is in operation.The high-pressure side of the refrigeration system is at normal high pressure, and the low-pressure side is also at normal low pressure, so the bellows 12 of the fluid control valve 5 is under high pressure. The pressure difference between the circuit 6a and the low pressure circuit 6b pushes down the coil spring 13,
It extends until it hits. Therefore, the high pressure valve 16 is operated by the plunger 16 integrally attached to the bellows 12.
- is attracted to the valve seat 9C by the sum of the pressure difference between the high pressure circuit 5a and the evaporator 7 and the biasing force of the coil spring 13;
The high pressure side valve device 17 is now in an open state. On the other hand, the low pressure valve 18 of the low pressure side valve device 20 is blown up by the gas flow flowing in from the evaporator 7, separates from the valve seat 1oC, and comes into contact with the stopper 19. The gas flows without any problem from the gap between the notch 18a on the outer edge of the low pressure valve 18 and the stopper 19 as shown by the arrow a in the figure, and the low pressure side valve device 2o.
is in an open state. Therefore, the refrigerant discharged from the rotary compressor 1 is transferred to the condenser 4, the high pressure circuit 5a of the fluid control valve 6, the capillary valve 6, the evaporator 7, the low pressure circuit sb of the fluid control valve 6, the suction line 8, and the rotary It flows to the compressor 1 without any trouble and performs the refrigeration action.

次に冷凍装置の停止中の状態について第2図を用いて説
明する。ロータリーコンプレッサ1の停止によりエバポ
レータ7よりのガス流が停止するので、流体制御弁6の
偏圧回路5b内の低圧弁18は自重で落下し弁座10C
に当接して低圧側弁装置20を閉路状態にする。その結
果、ロータリーコンプレッサ1よりのスーパーヒートガ
スがエノ(ボレータフへと逆流、流入するのを防止する
。更に時間が経過すると密閉容器2内のスーツ(−ヒー
トガスは圧縮要素3の図示しないシリンダ室に流入し、
さらにサクションライン8へと流入し、流体制御弁5の
低圧回路6bに流入する(図中矢印すで示す)ので低圧
回路5b内の圧力は急激に上昇し、高圧回路5aの圧力
と近似となる0前記両回路5a 、5bの圧力が近似に
なるとベローズ12の下方に設けたコイルバネ13の付
勢力が両回路sa、sbの圧力差によシペローズ12に
発生す締力に打ち勝ってプランジャ16が押し上げられ
高圧側弁装置17は閉路状態となり、コンデンサ4より
のスーパーヒートガスのエバポレ〜り7への流入を防止
する。
Next, the state in which the refrigeration system is stopped will be explained using FIG. 2. When the rotary compressor 1 stops, the gas flow from the evaporator 7 stops, so the low pressure valve 18 in the partial pressure circuit 5b of the fluid control valve 6 falls under its own weight, and the valve seat 10C
The low pressure side valve device 20 is brought into a closed state. As a result, the superheat gas from the rotary compressor 1 is prevented from flowing back into the eno (bore tuff). As time passes, the super heat gas in the sealed container 2 flows into the cylinder chamber (not shown) of the compression element 3. inflow,
Further, it flows into the suction line 8 and into the low pressure circuit 6b of the fluid control valve 5 (as indicated by the arrow in the figure), so the pressure in the low pressure circuit 5b rises rapidly and becomes similar to the pressure in the high pressure circuit 5a. 0 When the pressures in both circuits 5a and 5b become approximate, the biasing force of the coil spring 13 provided below the bellows 12 overcomes the clamping force generated in the piperose 12 due to the pressure difference between the two circuits sa and sb, and the plunger 16 is pushed up. As a result, the high pressure side valve device 17 enters a closed circuit state, and prevents superheat gas from flowing into the evaporator port 7 from the condenser 4 .

更にベローズ12を上方に付勢するコイルバネ13の作
用について第3図の冷凍装置の圧力変化図を用いて説明
する。図において、ロータリーコンプレッサ1が停止す
ると同時に低圧側弁装置20は閉路状態となりロータリ
ーコンプレッサ1より逆流するスーパーヒートガスによ
シ低圧回路6bの圧力は急激に上昇する。この時、高圧
側弁装置17は字だ開路状態でありコンデンサ4と高圧
回路5aの圧力は等しく徐々に降下する。この停止後の
微小時間tが経過するとベローズ12に作用する高圧回
路6aと低圧回路6bとの差圧JPとベローズ12の有
効面積Sによって発生する力FP(FP=JPxS )
に対してコイルバネ13の付勢力FCが大きくなシブラ
ンジャ16が押し上げられ高圧側弁装置17は閉路状態
となる0この時点より高圧回路5aに流入する冷媒が停
止するので高圧回路5aの出口管9aの圧力は急激に低
下する。この圧力低下によりボール弁16は更に弁座9
Cに吸着され、洩れは低減する。なおロータリーコンプ
レッサ1が停止後は高圧側弁装置17が閉路する迄の微
小時間tは約30秒以下で、ある必要がある。この30
秒以下というのは冷凍装置の大きさや、ロータリーコン
プレッサ1の大きさにもよるが冷凍装置が停止後より約
46秒〜1分根度はコンデンサ4で凝縮された液冷媒が
キャピラリーチー−プロへ流入し正常な゛冷凍作用を行
うので、それ以前に高圧側弁装置17を閉弁すれば良い
ためである。そのためには、前記微小時間tをできるだ
け小さくすることが必要であり、このためには前記差圧
dPが大きな時に高圧側弁装置17を閉弁させることで
ある。しかし前記高圧側弁装置17を閉弁させる差圧d
Pを大きく設定しすぎると、冬季の如く気温の低い時に
は運転中のコンデンサ4の圧力とエバポレータ7の圧力
との差は小さいので高圧側弁装置17を開弁させるに十
分な圧力差が得られず、前記高圧側弁装置17はロータ
リーコンプレッサ1の運転いかんにかかわらず閉弁した
ままとなり冷凍作用不能状態となってしまう。家庭用冷
凍冷蔵庫での理想的な差圧dPの設定値は2±0.2%
程度と非常に小さい範囲である。従ってコイルバネ13
のバネ定数に製造上のバラツキに対応する付勢力の調1
節と製造工程における精密は調整検査が必要であるが、
これについては第4図を用いて後述する。また冷凍装置
の起動時には低圧回路5bの圧力は瞬時に低圧となりベ
ローズ12は下方に引き下げられ、プランジャ15を介
してベローズ12に一体となったボールサ16は下降し
、高圧側弁装置17が開弁し正常な冷凍作用を行う。
Furthermore, the action of the coil spring 13 that urges the bellows 12 upward will be explained using the pressure change diagram of the refrigeration system shown in FIG. In the figure, at the same time as the rotary compressor 1 stops, the low-pressure side valve device 20 becomes closed, and the pressure in the low-pressure circuit 6b rapidly increases due to the superheat gas flowing back from the rotary compressor 1. At this time, the high-pressure side valve device 17 is in an open state, and the pressures in the capacitor 4 and the high-pressure circuit 5a gradually drop equally. When a minute time t has elapsed after this stop, a force FP (FP=JPxS) is generated due to the differential pressure JP between the high-pressure circuit 6a and the low-pressure circuit 6b acting on the bellows 12 and the effective area S of the bellows 12.
On the other hand, the biasing force FC of the coil spring 13 pushes up the shiblunger 16, and the high pressure side valve device 17 is closed. From this point on, the refrigerant flowing into the high pressure circuit 5a stops, so that the outlet pipe 9a of the high pressure circuit 5a is closed. The pressure drops rapidly. This pressure drop causes the ball valve 16 to further move to the valve seat 9.
C is adsorbed, and leakage is reduced. Note that the short time t required for the high pressure side valve device 17 to close after the rotary compressor 1 stops is approximately 30 seconds or less. These 30
Less than a second depends on the size of the refrigeration equipment and the size of the rotary compressor 1, but from about 46 seconds to 1 minute after the refrigeration equipment has stopped, the liquid refrigerant condensed in the condenser 4 flows into the capillary Q-Pro. This is because the high-pressure side valve device 17 can be closed before the inflow and the normal refrigeration action is performed. For this purpose, it is necessary to make the minute time t as small as possible, and for this purpose, the high pressure side valve device 17 is closed when the differential pressure dP is large. However, the differential pressure d that causes the high pressure side valve device 17 to close
If P is set too large, the difference between the pressure of the condenser 4 and the pressure of the evaporator 7 during operation is small when the temperature is low such as in winter, so a pressure difference sufficient to open the high pressure side valve device 17 will not be obtained. First, the high-pressure side valve device 17 remains closed regardless of the operation of the rotary compressor 1, resulting in a state in which refrigeration cannot be performed. The ideal differential pressure dP setting value for a household refrigerator-freezer is 2 ± 0.2%.
The extent is very small. Therefore, the coil spring 13
Key 1 of the biasing force corresponding to manufacturing variations in the spring constant of
Precision in the joints and manufacturing process requires adjustment inspection,
This will be described later using FIG. 4. Furthermore, when the refrigeration system is started, the pressure in the low pressure circuit 5b instantly becomes low, the bellows 12 is pulled down, the ball sensor 16 integrated with the bellows 12 via the plunger 15 is lowered, and the high pressure side valve device 17 is opened. and performs normal freezing action.

次に本発明の主要旨をなすコイルバネ13の付勢力の調
節と製造工程における精密な調整、検査について第4図
を用いて説明する。30は検査用圧縮空気を製造するエ
アポンプで圧力調整弁31、流体制御弁5の高圧側弁装
置17、抵抗管33、流量計34を順次連結し、圧力調
節装置31と高圧側弁装置17との間に圧力計32を連
結してな凱流体制御弁5は低圧側弁装置20を組み込ん
でいない半完成品である。この装置にて前記差圧dPの
設定値2±0.2化にて高圧側弁装置17が開閉するよ
うにリティナ−14を調節する。−例を説明すると圧力
調節装量13により圧力計32の圧力を2.2%−Gに
調整し、リティナ−14の回転調整により流量計34に
所定流量が流れることにより弁開を確認し、次に圧力調
整装置31により圧力を1.8〜に下げて流量計34の
流量が規定値以下となシ弁閉を確認すれば調整完了とな
る。
Next, the adjustment of the biasing force of the coil spring 13, precise adjustment and inspection in the manufacturing process, which are the main points of the present invention, will be explained using FIG. Reference numeral 30 denotes an air pump for producing compressed air for inspection, and the pressure regulating valve 31, the high pressure side valve device 17 of the fluid control valve 5, the resistance pipe 33, and the flow meter 34 are connected in sequence, and the pressure regulating device 31 and the high pressure side valve device 17 are connected in sequence. The fluid control valve 5 with the pressure gauge 32 connected therebetween is a semi-finished product that does not incorporate the low pressure side valve device 20. With this device, the retainer 14 is adjusted so that the high pressure side valve device 17 opens and closes when the differential pressure dP reaches the set value of 2±0.2. - To explain an example, the pressure of the pressure gauge 32 is adjusted to 2.2%-G by the pressure adjustment unit 13, and the predetermined flow rate flows to the flow meter 34 by adjusting the rotation of the retainer 14, thereby confirming that the valve is open. Next, the pressure is lowered to 1.8~ by the pressure regulator 31, and the adjustment is completed when the flow rate of the flowmeter 34 is below the specified value and the valve is closed.

以上の様に完成前に精密な差圧ΔPの調節と検査を行な
える。
As described above, the differential pressure ΔP can be precisely adjusted and inspected before completion.

以上の様に本発明の流体制御弁はコンデンサとキャピラ
リーチューブ等の減圧器の間に前記流体制御弁の高圧側
弁装置を接続し、チェツクノ(ルプ機能を有する低圧側
弁装置はエバポレータとロータリーコンプレッサの間の
サクシロンラインに接続し、前記高圧側弁装置は低圧回
路の圧力が低い時に開弁じ、高い時は閉弁するようにそ
の圧力に応動するようにしているので冷凍装置が運転中
は、通常の冷媒循環を行い、冷凍装置が停止中にはチ 
As described above, in the fluid control valve of the present invention, the high pressure side valve device of the fluid control valve is connected between the condenser and a pressure reducer such as a capillary tube, and the low pressure side valve device having a check loop function is connected to the evaporator and the rotary compressor. The high-pressure side valve device opens when the pressure in the low-pressure circuit is low and closes when the pressure is high, so that when the refrigeration equipment is in operation, , perform normal refrigerant circulation, and shut off when the refrigeration equipment is stopped.
.

ニックパルプ機能を有する低圧側弁装置がただちに閉弁
すると同時に低圧回路の圧力が急上昇し高圧側弁装置を
液冷媒が減圧装置へ流出している微小時間中に閉弁する
ので、密閉容器内およびコンデンサ内のスーパーヒート
ガスがサクションラインおよび減圧装置を介してエバポ
レータに流入するのを防止する。従って流体制御弁の無
いものに比べて節電効果を大とすると共に、前記両弁装
置を熱交換的に一体に形成しているのでエバポレータを
流出した排冷熱である温度の低いスーパーヒートガスに
よりコンデンサより流出する液冷媒の過冷却を行い冷凍
効果の増大が図れ、更に若干の省電力化となる。また電
磁弁で制御するものに比べて安価であり、さらに、制御
する電力も必要とせず、制御回路も不要で余分な電気配
線も必要と−せず二叉なめらかな動作を行うので騒音が
発生しないなどの特徴を有するものである。
The low-pressure side valve device, which has a nick pulp function, closes immediately, and at the same time, the pressure in the low-pressure circuit suddenly increases, and the high-pressure side valve device closes during a short period of time when liquid refrigerant flows out to the pressure reducing device. Prevent superheated gas in the condenser from flowing into the evaporator via the suction line and pressure reducing device. Therefore, the power saving effect is greater than that of a device without a fluid control valve, and since both valve devices are integrally formed for heat exchange, the low-temperature superheat gas, which is the waste cold heat flowing out of the evaporator, is used to condense the capacitor. By supercooling the liquid refrigerant flowing out, the refrigeration effect can be increased, and power consumption can be further reduced. In addition, it is cheaper than those controlled by solenoid valves, and it also does not require electric power to control, does not require a control circuit, and does not require any extra electrical wiring.It operates smoothly and generates noise. It has the characteristics that it does not.

更にまた、流体制御弁の高圧回路と低圧回路の差圧dP
により高圧側弁装置の開閉を規制する差圧ゞ燗整は圧力
応動素子および高圧側弁装置が一体的に取り付けられた
外殻に設けられ、低圧側弁装置、が組み込まれていない
状態で調節、検査が可能なので非常に正確に、簡便に差
圧dPが設定できるのでロータリーコンプレッサが停止
直後のコンデンサより液冷媒が流出中に必ず高圧側弁装
置を閉弁し、スーパーヒートガスがエバボレータニ混入
流出するような恐れは全くないなどの利点を有するもの
である。
Furthermore, the differential pressure dP between the high pressure circuit and the low pressure circuit of the fluid control valve
The differential pressure adjustment that regulates the opening and closing of the high-pressure side valve device is provided in the outer shell where the pressure-responsive element and the high-pressure side valve device are integrally attached, and can be adjusted without the low-pressure side valve device being incorporated. Since inspection is possible, the differential pressure dP can be set very accurately and easily, so the high pressure side valve device must be closed while the liquid refrigerant is flowing out from the condenser immediately after the rotary compressor has stopped, and superheat gas can be mixed in with the evaporator. This has the advantage that there is no fear of leakage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の冷凍装置用流体制御弁を用いた冷凍装
置の一実施例を示す断面図、第2図は第1図相当の停止
中の流体制御弁の要部断面図、第3図は第1図の冷凍装
置の圧力変化図、第4図は流体制御弁の高圧側弁装置の
バネ付勢力の調整、検査方法の一例を示す図である。 5・・・・・・冷凍装置用流体制御弁、5A・・・・・
・第1の弁装置、5B・・・・・・第2の弁装置、12
・・・・・・圧力応動素子(ベロー□ズ)、13・・・
・−/(ネ、14・・・・・・調節部材(リティナー)
′、15b・・・A・・隙間、16・・・・・・高圧弁
。 第1図 第 2 図 !s3図 片間− 第4図
FIG. 1 is a sectional view showing an embodiment of a refrigeration system using a fluid control valve for a refrigeration system according to the present invention, FIG. 2 is a sectional view of a main part of a stopped fluid control valve corresponding to FIG. The figure is a pressure change diagram of the refrigeration system shown in FIG. 1, and FIG. 4 is a diagram showing an example of a method for adjusting and inspecting the spring biasing force of the high-pressure side valve device of the fluid control valve. 5... Fluid control valve for refrigeration equipment, 5A...
・First valve device, 5B...Second valve device, 12
...Pressure responsive element (bellows), 13...
・-/(ne, 14...adjustment member (retainer)
', 15b...A...Gap, 16...High pressure valve. Figure 1 Figure 2! s3 diagram Katama - Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)各々独立した第1の弁装置と第2の弁装置を一体
的に構成し、前記第1の弁装置と前記第2の弁装置は圧
力応動素子にて区画され、前記第1の弁装置の高圧弁は
前記圧力応動素子に連結され、前記圧力応動素子は前記
第1の弁装置に設けた調節部材を介して支持したバネに
より、前記高圧弁を閉鎖する方向に付勢されておシ、前
記第2の弁装置は逆止弁動作を行なう冷凍装置用流体制
御弁。
(1) A first valve device and a second valve device, each independent of each other, are integrally configured, the first valve device and the second valve device are separated by a pressure responsive element, and the first valve device and the second valve device are separated by a pressure responsive element, and A high-pressure valve of the valve device is connected to the pressure-responsive element, and the pressure-responsive element is biased in a direction to close the high-pressure valve by a spring supported via an adjustment member provided on the first valve device. The second valve device is a fluid control valve for a refrigeration system that performs a check valve operation.
(2)前記第1の弁装置を上部に、前記第2の弁装置を
下部に配設し、前記第2の弁装置は板状弁またはボール
弁などの重量による付勢によシ逆止弁動作を行なう特許
請求の範囲第1項記載の冷凍装置用流体制御弁。
(2) The first valve device is disposed at the top, the second valve device is disposed at the bottom, and the second valve device is a non-return valve that is biased by the weight of a plate valve, a ball valve, or the like. A fluid control valve for a refrigeration system according to claim 1, which performs a valve operation.
(3)前記高圧弁と前記圧力応動素子とは極力な隙間を
設けて連結した特許請求の範囲第1項記載の冷凍装置用
流0体制御弁。
(3) The fluid control valve for a refrigeration system according to claim 1, wherein the high-pressure valve and the pressure-responsive element are connected with each other with as much clearance as possible.
JP56187640A 1981-11-20 1981-11-20 Fluid control valve for refrigerator Granted JPS5888577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56187640A JPS5888577A (en) 1981-11-20 1981-11-20 Fluid control valve for refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56187640A JPS5888577A (en) 1981-11-20 1981-11-20 Fluid control valve for refrigerator

Publications (2)

Publication Number Publication Date
JPS5888577A true JPS5888577A (en) 1983-05-26
JPH0138234B2 JPH0138234B2 (en) 1989-08-11

Family

ID=16209647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56187640A Granted JPS5888577A (en) 1981-11-20 1981-11-20 Fluid control valve for refrigerator

Country Status (1)

Country Link
JP (1) JPS5888577A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60138173U (en) * 1984-02-23 1985-09-12 松下冷機株式会社 Pressure on-off valve
JPS60211279A (en) * 1984-04-04 1985-10-23 株式会社 鷺宮製作所 Manufacture of differential-pressure on-off valve
JP2016038089A (en) * 2014-08-12 2016-03-22 株式会社不二越 Direct relief valve

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60138173U (en) * 1984-02-23 1985-09-12 松下冷機株式会社 Pressure on-off valve
JPS60211279A (en) * 1984-04-04 1985-10-23 株式会社 鷺宮製作所 Manufacture of differential-pressure on-off valve
JP2016038089A (en) * 2014-08-12 2016-03-22 株式会社不二越 Direct relief valve

Also Published As

Publication number Publication date
JPH0138234B2 (en) 1989-08-11

Similar Documents

Publication Publication Date Title
US4399663A (en) Mechanical control system for preventing compressor lubrication pump cavitation in a refrigeration system
JPS5888577A (en) Fluid control valve for refrigerator
JP3125824B2 (en) Scroll compressor with overheat prevention device
US4646533A (en) Refrigerant circuit with improved means to prevent refrigerant flow into evaporator when rotary compressor stops
JPS6353463B2 (en)
JP2508842B2 (en) Air conditioner
JPS5899671A (en) Fluid control valve for refrigerator
JP3505209B2 (en) Refrigeration equipment
JPH11337194A (en) Chiller
JPS5895172A (en) Fluid control valve for refrigerator
JP2582128B2 (en) Hermetic and semi-hermetic electric compressor unit for refrigeration
JP2624767B2 (en) Refrigeration equipment
JPS5899649A (en) Refrigerator
JP2576309B2 (en) Screw refrigeration equipment
JPS5896954A (en) Refrigerator
JPH0217198Y2 (en)
JPS6325260B2 (en)
JPS6016268A (en) Cooling device
US2137761A (en) Refrigerating apparatus
JPS6325257B2 (en)
USRE26161E (en) Thermostatic expansion valve with an auxiliary port
KR910000678B1 (en) Refrigeration system
JPH05172077A (en) Refrigerant compressor
JPS6132208Y2 (en)
JPS5899674A (en) Refrigerator