JPS5895172A - Fluid control valve for refrigerator - Google Patents

Fluid control valve for refrigerator

Info

Publication number
JPS5895172A
JPS5895172A JP56194030A JP19403081A JPS5895172A JP S5895172 A JPS5895172 A JP S5895172A JP 56194030 A JP56194030 A JP 56194030A JP 19403081 A JP19403081 A JP 19403081A JP S5895172 A JPS5895172 A JP S5895172A
Authority
JP
Japan
Prior art keywords
pressure
valve
valve device
fluid control
responsive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56194030A
Other languages
Japanese (ja)
Other versions
JPS6325258B2 (en
Inventor
充 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP56194030A priority Critical patent/JPS5895172A/en
Publication of JPS5895172A publication Critical patent/JPS5895172A/en
Publication of JPS6325258B2 publication Critical patent/JPS6325258B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Safety Valves (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は高圧容器型の密閉圧縮機を用いる冷凍装置の流
体制御弁に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fluid control valve for a refrigeration system using a high-pressure container-type hermetic compressor.

一般的なロータリーコンプレツサの如く高圧容器型の密
閉圧縮機(以下ロータリーコンプレッサと呼ぶ)を採用
する小形冷凍装置においては、密閉容器内が高圧側にな
るために一般のレシプロコンプレッサの如く低圧容器型
の密閉圧縮機(以下レシプロコンプレッサと呼ぶ)に比
べて冷凍装置に封入する冷媒量が大巾に増加する。その
−例として、普及型冷凍冷蔵庫ではレシプロ型の冷媒封
入量1602程度に対して、ロータリー型では約260
を程度となり60%以上の大巾な増加となる。この冷媒
の増加分1002のうち一部は高温高圧のスーパーし一
トガスとして、一部は冷凍機油中に溶解して密閉容器中
に滞留しているのである。これらの高温高圧の冷媒は冷
凍装置の温度調節器の働きにより冷凍装置の停止時には
スーツ<−ヒートガスはガス状態で、冷凍機油中に、溶
解しているものは気化して密閉容器内の高温部分で加熱
され、高温高圧のスーパーヒートガスとなりエバポレー
タに流入する。その第1流路として密閉容器−コンデン
サーキャビラ’)−fz−ブーエバポレータへと流入し
、コンデンサで放熱されるので常温のスーパー町−トガ
スとして流入するが、エバポレータとの温度差は非常に
大きく、従ってエバポレータを加熱し大きな熱負荷とな
る欠点があった。また、第2流路として密閉容器−圧縮
要素のシリンダ室−サクションラインーエバポレータへ
と高温高圧のスーパー仁−トガスのまま流入しエバポレ
ータを加熱し、これまた大きな熱負荷となる欠点があっ
た。なおこの、密閉容器内の高温高圧ガスがシリンダ室
に流入するのは、現存するロータリーコンプレッサが金
属面接触によるメカニカルシールにてシリンダ室を構成
しているためである。すなわち、このロータリーコンプ
レッサを用いた冷凍装置は以上の如く高温高圧のスーパ
ーヒートガスが多量にエバポレータに流入して大きな熱
負荷となるものであった。そのため従来のレシプロコン
プレッサーに比べて約20%程度効率の高いロータリー
コンプレッサを実際に冷凍冷蔵庫に取りつけてJIS 
 C9607電気冷蔵庫及び電気冷凍庫の消費電力試験
にて測定した場合にも効果は大巾に減少し、約65%程
度の節電量でしかないものであった。この消費電力量の
低減量をロータリーコンプレッサの効率向上相当分に引
き上げるためには、前記第1.第2流路よりエバポレー
タに流入する多量のスーパーヒートガスを阻止すること
である。現在一部に用いられている方法は前記第2流路
を改善する方法で、冷凍装置のサクションラインにチェ
ックパルプを設ける方法やロータリーコンプレッサ内・
部にチェックバルブを設ける方法であるが、前記第1流
路は未改良であるためその効果は小さく、消費電力量の
低減は6チ程度向上する゛のみで合計10%程度の効果
である。また前記第1流路を改善する方法として考えら
れる方法は、電磁弁をコンデンサ出口に設は冷凍装置の
運転に連動して開閉する手法があるが、電磁弁は高価で
あり、動作時に騒音が発゛生し、またこの電磁弁の制御
回路が必要で電気回路が複雑となり、それ自身が電力を
消費するなどの欠点を有しているものであった。
In small refrigeration equipment that uses a high-pressure container type hermetic compressor (hereinafter referred to as a rotary compressor) like a general rotary compressor, the inside of the closed container is on the high pressure side, so it is a low-pressure container type like a general reciprocating compressor. Compared to a hermetic compressor (hereinafter referred to as a reciprocating compressor), the amount of refrigerant sealed in the refrigeration system is significantly increased. As an example, in a popular refrigerator-freezer, the amount of refrigerant filled is about 1602 for a reciprocating type, while for a rotary type it is about 260.
This is a significant increase of more than 60%. Part of this increase in refrigerant 1002 becomes high-temperature, high-pressure super gas, and part dissolves in the refrigerating machine oil and remains in the closed container. These high-temperature, high-pressure refrigerants are activated by the temperature controller of the refrigeration equipment, and when the refrigeration equipment is stopped, the heat gas is in a gas state, and the dissolved material in the refrigeration oil is vaporized and released into the high-temperature area in the closed container. The gas is heated and becomes a high-temperature, high-pressure superheat gas that flows into the evaporator. As the first flow path, it flows into the sealed container - condenser cabil') - fz - evaporator, and as the heat is dissipated by the condenser, it flows as gas at room temperature, but the temperature difference with the evaporator is very large. Therefore, there was a drawback that the evaporator was heated, resulting in a large heat load. Further, as a second flow path, the high-temperature, high-pressure super-fuel gas flows into the closed container, the cylinder chamber of the compression element, the suction line, and the evaporator as a high-temperature, high-pressure super gas, heating the evaporator, which also has the disadvantage of causing a large heat load. The high-temperature, high-pressure gas in the closed container flows into the cylinder chamber because the cylinder chamber of existing rotary compressors is configured with a mechanical seal made of metal surface contact. That is, in the refrigeration system using this rotary compressor, a large amount of high-temperature, high-pressure superheat gas flows into the evaporator, resulting in a large heat load. Therefore, we actually installed a rotary compressor, which is about 20% more efficient than a conventional reciprocating compressor, in a refrigerator/freezer.
When measuring the power consumption of C9607 electric refrigerators and electric freezers, the effect was significantly reduced, and the amount of power saved was only about 65%. In order to increase the amount of reduction in power consumption equivalent to the efficiency improvement of the rotary compressor, it is necessary to The purpose is to prevent a large amount of superheat gas from flowing into the evaporator from the second flow path. Currently, some methods are used to improve the second flow path, such as providing check pulp in the suction line of the refrigeration equipment, or in the rotary compressor.
However, since the first flow path has not been improved, the effect is small, and the reduction in power consumption is only about 6 inches, which is a total effect of about 10%. In addition, a possible method for improving the first flow path is to install a solenoid valve at the condenser outlet and open and close it in conjunction with the operation of the refrigeration equipment, but solenoid valves are expensive and generate noise during operation. Furthermore, a control circuit for this solenoid valve is required, which complicates the electric circuit, and the valve itself has disadvantages such as consuming electric power.

本発明は以上の欠点に鑑みて、安価で、電気的な制御を
必要とせず、静粛で、かつロータリーコンプレッサ単体
の効率向上と同等以上の高効率化を冷凍装置として図ら
んとする省エネルギー形の冷凍装置用の流体制御弁を提
供せんとするものである。
In view of the above drawbacks, the present invention is an energy-saving refrigeration system that is inexpensive, does not require electrical control, is quiet, and has an efficiency equal to or higher than that of a rotary compressor alone. It is an object of the present invention to provide a fluid control valve for a refrigeration system.

以下に本発明の一実施例について説明する。1はロータ
リーコンプレッサで、密閉容器2と圧縮要素3と図示し
ない電動要素で構成されている。
An embodiment of the present invention will be described below. A rotary compressor 1 is composed of a closed container 2, a compression element 3, and an electric element (not shown).

また、このロータリーコンプレッサ1は内部に逆止弁を
備えていないものである。そして、冷凍装置ハ、ロータ
リーコンプレッサ1、コンデンサ4、本発明の冷凍装置
用流体制御弁6(以下単に流体制御弁という)の第1の
弁装置5a、キャピラリーチー−プロ、エバポレータ7
、前記流体制御弁6の第2の弁装置sb、サクションラ
イン8、ロータリーコンプレッサ1を順次環状に連結し
て成る。前記流体制御弁5は高圧回路A側に介在される
上方に位置した第1の弁装置5aと、低圧回路B側に介
在される下方に位置した第2の弁装置5bを略垂直に配
設している。また流体制御弁5は略中空円筒状の高圧側
ケーシング9と、これまた略中空円筒状の低圧側ケーシ
ング1oとで外殻11を形成し両者9,1oを一体化し
気密を保持している。12は前記外殻11内において第
1の弁装置6aと第2の弁装置6bとに仕切り、前記高
低回路A、Bの圧力に応動して上下動するダイヤスラム
(以下圧力応動素子という)である。
Moreover, this rotary compressor 1 is not equipped with a check valve inside. The refrigeration system C, the rotary compressor 1, the condenser 4, the first valve device 5a of the refrigeration system fluid control valve 6 of the present invention (hereinafter simply referred to as the fluid control valve), the capillary Q-Pro, and the evaporator 7
, the second valve device sb of the fluid control valve 6, the suction line 8, and the rotary compressor 1 are sequentially connected in an annular manner. The fluid control valve 5 includes a first valve device 5a located above, interposed on the high pressure circuit A side, and a second valve device 5b located below, interposed on the low pressure circuit B side, which are arranged substantially vertically. are doing. Further, the fluid control valve 5 has an outer shell 11 formed by a high-pressure side casing 9 having a substantially hollow cylindrical shape and a low-pressure side casing 1o also having a substantially hollow cylindrical shape, and both 9 and 1o are integrated to maintain airtightness. Reference numeral 12 denotes a diamond slam (hereinafter referred to as a pressure responsive element) which is partitioned into a first valve device 6a and a second valve device 6b within the outer shell 11 and moves up and down in response to the pressure of the elevation circuits A and B. be.

前記圧力応動素子12の下面中央部には圧力応動素子1
2を図中上方に向って付勢するコイルバネ13を設けで
ある。14はコイルバネ13の下端を保持するリティナ
ーであり、圧力応動素子12の過度の動酋を規制すると
ともに破損を防止する。このリティカ−14には冷媒流
路を形成するだめの複数個の小孔14a、14a、、、
、、aが設けである。またこのリティナ−14は後述の
弁座体1oCに一体的に圧入固定されている。次に上記
した第1の弁装置5aと第2の弁装置5bについて説明
する。高圧側ケーシング9は高圧回路Aの入口管9aと
出口管9bと弁座体9cを有し、この弁座体9cと後述
する高圧弁16とで高圧弁装置としての第′1゛の弁装
置6aを形成するもの卆ある。すなわち詳しくは圧力応
動素子12の路中、央には第3図の如く貫通穴12a、
を設け、連結部材16(以下ホルダという)の突起15
aを挿入して圧着密封し、このホルダ16の上端中央部
に形成した底部が平坦な凹部15bにボール弁よりなる
高圧弁16をホルダ16と僅かの間隙15cを設けて僅
かに移動自在にカシメにより固定したものである。すな
わち間隙150は弁座体9cに対して高圧弁16の調芯
作用を成す。また低圧側ケーシング1oにも入口管10
a、出口管10b。
A pressure-responsive element 1 is provided at the center of the lower surface of the pressure-responsive element 12.
A coil spring 13 is provided which urges the coil 2 upward in the figure. A retainer 14 holds the lower end of the coil spring 13, and prevents excessive movement of the pressure-responsive element 12 and prevents damage. This refrigerant 14 has a plurality of small holes 14a, 14a, . . . that form a refrigerant flow path.
,,a are provided. Further, this retainer 14 is integrally press-fitted and fixed to a valve seat body 1oC, which will be described later. Next, the above-described first valve device 5a and second valve device 5b will be explained. The high-pressure side casing 9 has an inlet pipe 9a, an outlet pipe 9b, and a valve seat body 9c of the high-pressure circuit A, and the valve seat body 9c and a high-pressure valve 16, which will be described later, form a '1st valve device as a high-pressure valve device. There are some books that form 6a. Specifically, in the center of the path of the pressure responsive element 12, there is a through hole 12a as shown in FIG.
, and the protrusion 15 of the connecting member 16 (hereinafter referred to as holder)
A is inserted and crimped and sealed, and a high pressure valve 16 made of a ball valve is placed in a recess 15b with a flat bottom formed in the center of the upper end of the holder 16, and is crimped so as to be slightly movable with a slight gap 15c between the holder 16 and the holder 16. It is fixed by That is, the gap 150 serves to align the high pressure valve 16 with respect to the valve seat body 9c. Also, the inlet pipe 10 is also connected to the low pressure side casing 1o.
a, outlet pipe 10b.

弁座体10cを有し、この弁座体10cと後述する低圧
弁18とで低圧側弁装置としての第2の弁装置6bを形
成するもので条る。すなわち詳しくは弁座体10cの路
中夫には外縁部にガス通路を形成する切り欠き18aを
設けたリーフ弁よりなる低圧弁18を移動自在に収納し
たものである。
It has a valve seat body 10c, and the valve seat body 10c and a low pressure valve 18, which will be described later, form a second valve device 6b as a low pressure side valve device. More specifically, a low pressure valve 18 made of a leaf valve having a notch 18a forming a gas passage at its outer edge is movably housed in the middle of the valve seat body 10c.

さらに前記低圧弁18の上方には低圧弁18の過度の動
きを規制し、前記コイルバネ13を保持するリティナ−
14を弁座体10cに圧入固定している。なお前記低圧
側ケーシング10と前記弁座体10aは第4図の如く弁
座体10 cに形成したネジ10dにて固定し、前記ネ
ジ10dの回転により゛前記コイルバネ13の付勢力を
調節した後ロウ付などにより密封し気密を保持している
Furthermore, a retainer is provided above the low pressure valve 18 to restrict excessive movement of the low pressure valve 18 and to hold the coil spring 13.
14 is press-fitted and fixed to the valve seat body 10c. The low-pressure side casing 10 and the valve seat body 10a are fixed with a screw 10d formed on the valve seat body 10c as shown in FIG. It is sealed and kept airtight by brazing.

次に上記流体制御弁6を冷凍装置に組みこんだ時の作用
について述べる。第1図は冷凍装置が運転中の状態図を
表わしたもので、冷凍装置の高圧側は通常の高圧力であ
り、低圧側も通常の低圧力であるため流体制御弁6の圧
力応動素子12は高圧回路Aと低圧回路Bとの圧力差に
よってコイルバネ13を押し下げ、リティナ−14に当
るまで変形している。従って高圧弁16は圧力応動素子
12に一体的に取9つりられたホルダ15により、弁座
体9Cに高圧回路Aとエバポレータ7に連通ずる低圧回
路Bとの圧力差による力がコイルバネ13の付勢力に打
ち勝って第1の弁装置6aは開路状態になっている。一
方、第2の弁装置5bの低圧弁18はエバポレータ7よ
り流入するガス流により吹き上げられて弁座体10cと
離れ、リティナ−14に当接する。ガスは低圧弁18の
外縁部の切り欠き18aとリティナ−14の隙間より第
1図中矢印へで示゛す如く支障なく流れ第2の弁装置s
 bは開路状態となっている。従っテ、ロータリーコン
プレッサ1より吐出された冷媒ガスはコンデンサ4、流
体制御弁6の第1の弁装置6a。
Next, the operation when the fluid control valve 6 is incorporated into a refrigeration system will be described. FIG. 1 shows a state diagram when the refrigeration system is in operation. The high pressure side of the refrigeration system is at normal high pressure, and the low pressure side is also at normal low pressure, so the pressure responsive element 12 of the fluid control valve 6 The coil spring 13 is pushed down by the pressure difference between the high voltage circuit A and the low voltage circuit B, and is deformed until it hits the retainer 14. Therefore, the high-pressure valve 16 is attached to the pressure-responsive element 12 by the holder 15 that is integrally suspended, so that the force due to the pressure difference between the high-pressure circuit A and the low-pressure circuit B communicating with the evaporator 7 is applied to the valve seat body 9C by the coil spring 13. The force is overcome and the first valve device 6a is in an open state. On the other hand, the low pressure valve 18 of the second valve device 5b is blown up by the gas flow flowing in from the evaporator 7, separates from the valve seat body 10c, and comes into contact with the retainer 14. The gas flows from the gap between the notch 18a on the outer edge of the low pressure valve 18 and the retainer 14 without any hindrance as shown by the arrow in FIG. 1 to the second valve device s.
b is in an open state. Therefore, the refrigerant gas discharged from the rotary compressor 1 is passed through the condenser 4 and the first valve device 6a of the fluid control valve 6.

キャピラリーチューブ6、エバポレータ7、流体制御弁
6の第2の弁装置6b、サクションライン8、ロータリ
ーコンプレッサ1へと支障なく流れて冷凍作用を行う。
It flows without any problem to the capillary tube 6, the evaporator 7, the second valve device 6b of the fluid control valve 6, the suction line 8, and the rotary compressor 1 to perform the refrigeration action.

次に冷凍装置の停止中の状態について第2図を用いて説
明する。ロータリーコンプレッサ1の停止によりエバポ
レータ7よりのガス流が停止するので、流体制御弁5の
第2の弁装置5bの低圧弁18は自重で意下し弁座体1
0cに当接して第2の弁装置6bを閉路状態にする。そ
の結果、ロータリーコンプレッサ1よりのスーパーヒー
トガスがエバポレータ7へと逆流、流入するのを防止す
る。更に時間が経過すると密閉容器2内のスーパーヒー
トガスは圧縮袋゛素3の図示しないシリンダ室に流入し
、さらにサクションライン8へと流入し、流体制御弁6
の低圧側ケーシング1o内に流入する・(図中矢印すで
示す)ので該ケーシング1o内の圧力は急激に上昇し、
高圧側ケーシング9内の圧力と近似となる。前記両ケー
シング9゜10内の圧力が近似になると圧力応動素子1
2の下方に設けたコイルバネ13の付勢力が両ケーンン
グ9,1o内の圧力差により、圧力応動素子12に発生
する力に打ち勝ってホルダ15が押し上げられ第1の弁
装置6aは閉路状態となり、コンデンサ4よりのスーパ
ーヒートガスのエバポレータ了への流入を防止する。
Next, the state in which the refrigeration system is stopped will be explained using FIG. 2. Since the gas flow from the evaporator 7 is stopped due to the stoppage of the rotary compressor 1, the low pressure valve 18 of the second valve device 5b of the fluid control valve 5 is lowered by its own weight and the valve seat body 1
0c to close the second valve device 6b. As a result, the superheat gas from the rotary compressor 1 is prevented from flowing backward into the evaporator 7. As time further elapses, the superheated gas in the closed container 2 flows into the cylinder chamber (not shown) of the compression bag element 3, and further flows into the suction line 8, and the fluid control valve 6
flows into the low-pressure side casing 1o (as indicated by the arrow in the figure), so the pressure inside the casing 1o rises rapidly,
This approximates the pressure inside the high-pressure side casing 9. When the pressures in both the casings 9 and 10 become approximate, the pressure responsive element 1
The biasing force of the coil spring 13 provided below the caning 2 overcomes the force generated in the pressure responsive element 12 due to the pressure difference between the canings 9 and 1o, and the holder 15 is pushed up, and the first valve device 6a is brought into a closed state. This prevents superheat gas from flowing into the evaporator from the condenser 4.

更に圧力応動素子12を上方に付勢するコイルバネ13
の作用について第6図の冷凍装置の圧力変化図を用いて
説明する。図において、ロータリーコンプレッサ1が停
止すると同時に第2の弁装置6bは閉路状態となりロー
タリーコンブレツサ1より逆流するスーパーヒートガス
により低圧回路Bのサクションライン8の圧力は急激に
上昇する。この時、第1の弁装置6aは1だ開路状態で
ありコンデンサ4と高圧回路Aの圧力は等しく徐々に降
下する。この停止後の微小時間tが経過すると圧力応動
素子12に作用する高圧側ケーシング9内と低圧側ケー
シング1o内との差圧ΔPと圧力応動素子12の有効面
積Sによって発生する力Fp (Fp =ΔPxS)に
対してコイルバネ13の付勢力FCが大きくなりホルダ
16が押し上げられ第1の弁装置6aは閉路状態となる
。この時点より高圧側ケーシング9内に流入する冷媒が
停止するので高圧回路Aの出口管9bの圧力は急激に低
下する。この圧力低下により高圧弁16は更に弁座体9
cに吸着され、洩れは低減する。なおロータリーコンプ
レッサ1が停止後は第1の弁装置6aが閉路する迄の微
小時間tは約30秒以下である必要がある。この30秒
以下というのは冷凍装置の大きさや、ロータリーコンプ
レッサ1の大きさにもよるが冷凍装置が停止後より約4
6秒〜1程度度はコンデンサ4で凝縮されだ液冷媒をキ
ャピラリーチー−プロへ流入し正常な冷凍作用を行うの
で、それ以前に第1の弁装置5aを閉弁すれば良いため
である。そのためには、前記微小時間tをできるだけ小
さくすることが必要であり、このためには前記差圧ΔP
が大きな時に第1の弁装置6aを閉弁させることである
。一方低外気温時の高圧側ケーシング9内と低圧側ケー
シング10の圧力差はだんだんと小さくなり前記差圧Δ
Pを大きく設定すると冷凍装置が運転状態でも第1の弁
装置6aは閉弁状態となり冷凍作用が行なわれなくなる
。以上より前記差圧ΔPは2 K//ca前後に設定し
ている。冷凍装置の起動時には低圧回路Bの圧力は瞬時
に低圧となり圧力応動素子12は下方に引き下げられ、
ホルダ16を介して圧力応動素子12に一体となった高
圧弁16は下降し、第1の弁装置6a−が開弁し正常な
冷凍作用を行う。そして特に上下動す′る圧力応動部材
12に設けられた連結部材16及びこの連結部材16に
設けられた高圧弁16と、弁座体9cの関係において、
圧力応動素子12の変異あるいは、ボルダ15と弁座体
9cの取付誤差に対して高圧弁16が移動可能であるの
で弁座体9cを確実に閉弁することができる。またホル
ダ15は圧力応動素子12に対して突起部16aを貫通
穴1.2aに圧着固定したので、組立に際して圧力応動
素子12の熱変形等を生じることがなく特性の変化をも
たらすことがない。更にコイルバネ13の付勢力を調節
する調節装置を弁座体10cに一体的に設けているので
ネジ1odの回転により差圧ΔPの設定が正確に行なえ
ると共に、構造簡単にして安価な調節装置である。
A coil spring 13 further urges the pressure responsive element 12 upward.
The effect will be explained using the pressure change diagram of the refrigeration system shown in FIG. In the figure, the second valve device 6b is closed at the same time as the rotary compressor 1 stops, and the pressure in the suction line 8 of the low pressure circuit B rapidly increases due to the superheat gas flowing back from the rotary compressor 1. At this time, the first valve device 6a is in an open state, and the pressures in the capacitor 4 and the high pressure circuit A gradually drop to the same extent. When a minute time t has elapsed after this stop, a force Fp (Fp = The biasing force FC of the coil spring 13 increases relative to ΔPxS), the holder 16 is pushed up, and the first valve device 6a is brought into a closed state. From this point on, the refrigerant flowing into the high-pressure side casing 9 stops, so the pressure in the outlet pipe 9b of the high-pressure circuit A drops rapidly. This pressure drop causes the high pressure valve 16 to further move to the valve seat body 9.
c, and leakage is reduced. Note that the short time t required for the first valve device 6a to close after the rotary compressor 1 is stopped must be about 30 seconds or less. This 30 seconds or less depends on the size of the refrigeration equipment and the size of the rotary compressor 1, but it takes about 4 seconds after the refrigeration equipment stops.
This is because the liquid refrigerant condensed in the condenser 4 flows into the capillary Q-Pro for about 6 seconds to about 1 degree to perform normal refrigeration, so it is sufficient to close the first valve device 5a before that time. For this purpose, it is necessary to make the minute time t as small as possible, and for this purpose, the differential pressure ΔP
is to close the first valve device 6a when the value is large. On the other hand, when the outside temperature is low, the pressure difference between the inside of the high pressure side casing 9 and the low pressure side casing 10 gradually decreases, and the pressure difference Δ
If P is set large, the first valve device 6a will be in a closed state even when the refrigeration system is in operation, and no refrigeration action will be performed. From the above, the differential pressure ΔP is set to around 2 K//ca. When the refrigeration system is started, the pressure in the low pressure circuit B instantly becomes low, and the pressure responsive element 12 is pulled downward.
The high-pressure valve 16 integrated with the pressure-responsive element 12 via the holder 16 is lowered, and the first valve device 6a- opens to perform normal refrigeration. In particular, regarding the relationship between the connecting member 16 provided on the pressure responsive member 12 that moves up and down, the high pressure valve 16 provided on this connecting member 16, and the valve seat body 9c,
Since the high pressure valve 16 is movable in response to variations in the pressure responsive element 12 or mounting errors between the boulder 15 and the valve seat body 9c, the valve seat body 9c can be reliably closed. Further, since the holder 15 has the protrusion 16a of the pressure-responsive element 12 crimped and fixed in the through hole 1.2a, the pressure-responsive element 12 will not be thermally deformed during assembly, and its characteristics will not change. Furthermore, since the adjusting device for adjusting the biasing force of the coil spring 13 is integrally provided on the valve seat body 10c, the differential pressure ΔP can be set accurately by rotating the screw 1od, and the adjusting device is simple in structure and inexpensive. be.

以上の説明からも明らかな如く、本発明の冷凍装置用流
体制御弁は高圧回路側に介在、される第1の弁装置と、
低圧回路側に介在される第2の弁装置とを有し、前記第
1の弁装置と第2の弁装置とを前記高圧回路と低圧回路
の圧力差にて応動する圧力応動素子にて区画し、前記第
1の弁装置を前記高圧回路を開閉する高圧弁と、前記圧
力応動素子に連結され前記高圧弁を保持する連結部材と
で構成し、前記第2の弁装置を逆止弁動作を行なうよう
構成するとともに、前記圧力応動素子を前記圧力差が所
定値以下の時前記第1の弁装置が閉塞するように成し、
さらに前記連結部材に保持された高圧弁がわずかの距離
で移動可能にしたものであるから、第1の弁装置は低圧
回路の圧力が低い時に開弁し、高い時は閉弁するように
その圧力に応動するようにしているので冷凍装置が運転
中は通常の冷媒循環を行い、冷凍装置が停止中には逆止
弁機能を有する第2の弁装置がただちに閉弁すると同時
に低圧回路の圧力が急上昇し第1の弁装置を液冷媒が減
圧装置へ流出している微小時間中に閉弁するので、密閉
容器内およびコンデンサ内のスーパーヒートガスがサク
ションラインおよび減圧装置を介してエバポレータに流
入するのを防止する。従って流体制御弁の無いものに比
べて節電効果を大とすると共に電磁弁で制御するものに
比べて安価であり、さらに、制御する電力も必要とせず
、制御回路も不要で余分な電気配線も必要とせず、又な
めらかな動作を行うので騒音が発生しないなどの特徴を
有するものである。また高圧弁はホルダに僅かな間隙を
持って移動自在に固定されているので弁座体とホルダに
嘔付誤差が生じていても高圧弁は弁座体に求心的に閉弁
するので洩れの少い弁機能を保持することができる。又
、第1の弁装置については、圧力応動素子に貫通穴を設
けてホルダの突起部を挿入した後圧着密封しているので
、溶接やロウ付にて固定するのに比べて熱による特性変
化がなく簡便で安価であると共に気密も確実に保持でき
る。
As is clear from the above description, the fluid control valve for a refrigeration system of the present invention includes a first valve device interposed on the high pressure circuit side;
a second valve device interposed on the low pressure circuit side, and the first valve device and the second valve device are partitioned by a pressure responsive element that responds to a pressure difference between the high pressure circuit and the low pressure circuit. The first valve device is configured with a high-pressure valve that opens and closes the high-pressure circuit, and a connecting member that is connected to the pressure responsive element and holds the high-pressure valve, and the second valve device is configured to operate as a check valve. and the pressure responsive element is configured to close the first valve device when the pressure difference is below a predetermined value,
Furthermore, since the high-pressure valve held by the connecting member is movable over a short distance, the first valve device opens when the pressure in the low-pressure circuit is low and closes when the pressure is high. Since it is designed to respond to pressure, normal refrigerant circulation occurs when the refrigeration system is in operation, and when the refrigeration system is stopped, the second valve device, which has a check valve function, immediately closes and simultaneously reduces the pressure in the low-pressure circuit. The temperature rises rapidly and the first valve device is closed during the minute period when the liquid refrigerant is flowing out to the pressure reducing device, so the superheated gas in the sealed container and condenser flows into the evaporator via the suction line and the pressure reducing device. prevent Therefore, it has a greater power saving effect than a type without a fluid control valve, and is cheaper than a type controlled by a solenoid valve.Furthermore, it does not require power for control, does not require a control circuit, and requires no extra electrical wiring. It is characterized by not requiring any noise, and because it operates smoothly, it does not generate noise. In addition, the high-pressure valve is movably fixed to the holder with a small gap, so even if there is a misalignment between the valve seat body and the holder, the high-pressure valve will close centripetally to the valve seat body, preventing leakage. Less valve function can be retained. In addition, for the first valve device, the pressure-responsive element is made with a through hole, the protrusion of the holder is inserted, and then the holder is crimped and sealed, so there is less change in characteristics due to heat compared to fixing by welding or brazing. It is simple, inexpensive, and can reliably maintain airtightness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の冷凍装置用流体制御弁を備
えた冷凍装置の冷凍サイクル図で運転中の要部断面図、
第2図は第1図相当の停止中の流体制御弁の要部断面図
、第3図は高圧弁部の要部断面図、第4図はバネ付勢力
調節装置の要部断面図、第5図は第1図の冷凍装置の圧
力変化図である。 A・・・・・・高圧回路SB・・・・・・低圧回路16
・・・・・・・・・流体制御弁・6a・・・・・・第1
の弁装置、5b・・・・・・第2の弁装置)12・・・
・・・圧力応動素子為15 、、、、、、ホルダー(連
結部材)、15 c 、、、、。 間隙−16・・・・・・高圧弁0 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 q 第2図 第3図 〆a
FIG. 1 is a refrigeration cycle diagram of a refrigeration system equipped with a fluid control valve for a refrigeration system according to an embodiment of the present invention, and is a sectional view of the main parts during operation;
Fig. 2 is a sectional view of the main part of the fluid control valve at rest, equivalent to Fig. 1, Fig. 3 is a sectional view of the main part of the high pressure valve section, Fig. 4 is a sectional view of the main part of the spring biasing force adjustment device, FIG. 5 is a pressure change diagram of the refrigeration system shown in FIG. 1. A...High voltage circuit SB...Low voltage circuit 16
......Fluid control valve 6a...1st
valve device, 5b... second valve device) 12...
...Pressure responsive element 15, holder (connecting member), 15c, . Gap -16...High pressure valve 0 Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure q Figure 2 Figure 3〆a

Claims (2)

【特許請求の範囲】[Claims] (1)高圧回路側に介在される第1の弁装置とや低圧回
路側に介在される第2の弁装置とを有し、前記第1の弁
装置と第2の弁装置とを前記高圧回路と低圧回路の圧力
差にて応動する圧力応動素子にて区画し、前記第1の弁
装置を前記高圧回路を開閉する高圧弁と、前記圧力応動
素子に連結され前記高圧弁を保持する連結部材とで構成
し、前記第2の弁装置を逆止弁動作を行なうよう構成す
るとともに、前記圧力応動素子を前記圧力差が所定値以
下の時前記第1の弁装置が一閉塞するように成し、さら
に前記連結部材に保持された高圧弁がわずかの距離で移
動可能にした冷凍装置用流体制御弁。
(1) It has a first valve device interposed on the high pressure circuit side and a second valve device interposed on the low pressure circuit side, and the first valve device and the second valve device are connected to the high pressure circuit side. A high-pressure valve that opens and closes the high-pressure circuit, and a connection that is connected to the pressure-responsive element and holds the high-pressure valve, dividing the first valve device with a pressure-responsive element that responds to a pressure difference between the circuit and the low-pressure circuit. The second valve device is configured to perform a check valve operation, and the pressure responsive element is configured to cause the first valve device to close when the pressure difference is below a predetermined value. A fluid control valve for a refrigeration system, wherein the high pressure valve held by the connecting member is movable over a short distance.
(2)前記連結部材は突起部を有し、この突起部を前記
圧力応動素子に設けた貫通穴に挿入し圧着固定した特許
請求の範囲第1項記載の冷凍装置用流体制御弁。
(2) The fluid control valve for a refrigeration system according to claim 1, wherein the connecting member has a protrusion, and the protrusion is inserted into a through hole provided in the pressure responsive element and fixed by pressure.
JP56194030A 1981-12-02 1981-12-02 Fluid control valve for refrigerator Granted JPS5895172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56194030A JPS5895172A (en) 1981-12-02 1981-12-02 Fluid control valve for refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56194030A JPS5895172A (en) 1981-12-02 1981-12-02 Fluid control valve for refrigerator

Publications (2)

Publication Number Publication Date
JPS5895172A true JPS5895172A (en) 1983-06-06
JPS6325258B2 JPS6325258B2 (en) 1988-05-24

Family

ID=16317765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56194030A Granted JPS5895172A (en) 1981-12-02 1981-12-02 Fluid control valve for refrigerator

Country Status (1)

Country Link
JP (1) JPS5895172A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR811326A (en) * 1936-01-21 1937-04-12 Sulzer Ag Compression refrigeration machine
US2326093A (en) * 1940-05-29 1943-08-03 Detroit Lubricator Co Refrigerating system
JPS5438931U (en) * 1977-08-24 1979-03-14

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51148520A (en) * 1975-06-16 1976-12-20 Tokyo Shibaura Electric Co Circuit for energizing seat indicating lamp of group answer analyzer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR811326A (en) * 1936-01-21 1937-04-12 Sulzer Ag Compression refrigeration machine
US2326093A (en) * 1940-05-29 1943-08-03 Detroit Lubricator Co Refrigerating system
JPS5438931U (en) * 1977-08-24 1979-03-14

Also Published As

Publication number Publication date
JPS6325258B2 (en) 1988-05-24

Similar Documents

Publication Publication Date Title
JP4173869B2 (en) Overheat prevention device for scroll compressor
JP3125824B2 (en) Scroll compressor with overheat prevention device
US4646533A (en) Refrigerant circuit with improved means to prevent refrigerant flow into evaporator when rotary compressor stops
JPS5895172A (en) Fluid control valve for refrigerator
JPS6353463B2 (en)
JPS5888577A (en) Fluid control valve for refrigerator
JPS6353461B2 (en)
JPH0217198Y2 (en)
JP3505209B2 (en) Refrigeration equipment
JPS5896954A (en) Refrigerator
JPS6325260B2 (en)
JPS5899649A (en) Refrigerator
JP2624767B2 (en) Refrigeration equipment
JP2508811B2 (en) Air conditioner
JPS6016268A (en) Cooling device
JPH0221509B2 (en)
JPS5862463A (en) Refrigerator
JPS6325257B2 (en)
JPS6325262B2 (en)
JPS5898692A (en) Rotary compressor
JPS5852957A (en) Refrigerator
JPS5896969A (en) Refrigerator
JPH0536699B2 (en)
JPS5862471A (en) Refrigerator
JPS5899651A (en) Refrigerator