JPS5896954A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS5896954A
JPS5896954A JP56194035A JP19403581A JPS5896954A JP S5896954 A JPS5896954 A JP S5896954A JP 56194035 A JP56194035 A JP 56194035A JP 19403581 A JP19403581 A JP 19403581A JP S5896954 A JPS5896954 A JP S5896954A
Authority
JP
Japan
Prior art keywords
pressure
circuit
valve
low
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56194035A
Other languages
Japanese (ja)
Other versions
JPH0120695B2 (en
Inventor
充 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP56194035A priority Critical patent/JPS5896954A/en
Publication of JPS5896954A publication Critical patent/JPS5896954A/en
Publication of JPH0120695B2 publication Critical patent/JPH0120695B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は高圧容器型の密閉型圧縮機を用いる冷蔵庫等の
小形冷凍装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a compact refrigeration device such as a refrigerator that uses a high-pressure container-type hermetic compressor.

一般的なロータリーコンプレッサの如(高圧容器型の密
閉圧縮機(以下ロータリーコンプレッサと呼ぶ)を採用
する小形冷凍装置においては、密閉容器内が高圧側にな
るために一般のレシプロコンプレッサの如く低圧容器型
の密閉圧縮機(以下レシプロコンプレッサと呼ぶ)に比
べて冷凍装置に封入する冷媒量が大巾に増加する。その
−例として、普及型冷凍冷蔵庫ではレシプロ型の冷媒封
入量160g程度に対して、ロータリー型では約250
g程度となり50%以上の大巾な増加となる。この冷媒
の増加分100gのうち一部は高温高圧のスーパーヒー
トガスとして、他は冷凍機油中に溶解して密閉容器中に
滞留しているこれらの高温高圧の冷媒は冷凍装置の温度
調節器の働きにより冷凍装置の停止時にはスーパーヒー
トガス状態で、冷凍機油中に溶解しているものは気化し
て密閉容器内の高温部分で加熱され、高温高圧のスーパ
ーヒートガスとなりエバポレータに流入する。
In small refrigeration equipment that uses a hermetic compressor (hereinafter referred to as a rotary compressor) of a high-pressure container type, such as a general rotary compressor, the inside of the hermetic container is on the high pressure side, so it is a low-pressure container type compressor like a general reciprocating compressor. Compared to a hermetic compressor (hereinafter referred to as a reciprocating compressor), the amount of refrigerant sealed in the refrigeration equipment increases significantly.As an example, in a popular refrigerator-freezer, the amount of refrigerant packed in a reciprocating type is about 160 g, Approximately 250 for rotary type
g, which is a large increase of more than 50%. Of this 100g increase in refrigerant, some of it is converted into high-temperature, high-pressure superheat gas, and the rest is dissolved in the refrigeration machine oil and remains in the sealed container. Due to this function, when the refrigeration equipment is stopped, it is in a superheated gas state, and what is dissolved in the refrigeration oil is vaporized and heated in the high-temperature part of the sealed container, becoming a high-temperature, high-pressure superheated gas that flows into the evaporator.

その第1流路として密閉容器→コンデンサ→キャピラリ
ーチューブ→エバボレー々へと流入し、コンデンサで放
熱されるので常温、のスーパーヒートガスとして流入す
るが、エバポレータとの温度差は非常に大きく、従って
エバポレータを加熱し大きな熱負荷となる欠点があった
。また、第2流路として密閉容器→圧縮要素のシリンダ
室→サクシ゛ ヨンライン→エハホレータへト高温高圧
のスーパーヒートガスのまま流入しエバポレータを加熱
し、これまた大きな熱負荷となる欠点があった。なおこ
の、密閉容器内の高温高圧ガスがシリンダ室に流入する
のは、現存するロータリコンプレッサが金属面接触によ
るメカニカルシールにてシリンダ室を構成しているため
である。すなわち、このロータリコンプレッサを用いた
冷凍装置は以上の如く高温高圧のスーパーヒートガスが
多量にエバポレータに流入して大きな熱負荷となるもの
であった。そのため従来のレシプロコンプレッサに比べ
て約20%程度効率の高いロータリーコンプレッサを実
際に冷凍冷蔵庫に取りつけてJIS  C96o7電気
冷蔵庫及び電気冷凍庫の消費電力試験にて測定した場合
には効果は大巾に減少し、約6%程度の節電量でしかな
いのであった。この消費電力量の低減量をロータリーコ
ンプレッサの効率向上相当分に引き上げるためには、前
記第1゜第2流路よりエバポレータに流入する多量のス
ーパーヒートガスを阻止することである。現在一部に用
いられている方法は前記第2流路を改善する方法で、冷
凍装置のサクションラインにチェックパルプを設ける方
法であるが、前記第1流路は未改良であるだめその効果
は小さく、消費電力量の低減は5%程度向上するのみで
合計10チ程度の効果である。また前記第1流路を改善
する方法として考えられる方法は、電磁弁をコンデンサ
出口に設は冷凍装置の運転に連動して開閉する手法があ
るが、電磁弁は高価であり、動作時に騒音が発生し、ま
たこの電磁弁の制御回路が必要で電気回路が複雑となり
、それ自身が電力を消費するなどの欠点を有しているも
のであった。
As the first flow path, it flows from the closed container to the condenser to the capillary tube to the evaporator, and as the heat is dissipated by the condenser, it flows in as superheated gas at room temperature, but the temperature difference with the evaporator is very large, so the evaporator This had the disadvantage of heating up the air, resulting in a large heat load. In addition, as a second flow path, the superheated gas flows at high temperature and high pressure into the evaporator from the closed container to the cylinder chamber of the compression element to the suction line to the evaporator and heats the evaporator, which also has the drawback of causing a large heat load. The high-temperature, high-pressure gas in the closed container flows into the cylinder chamber because the cylinder chamber of existing rotary compressors is configured with a mechanical seal using metal surface contact. That is, in the refrigeration system using this rotary compressor, a large amount of high-temperature, high-pressure superheat gas flows into the evaporator, resulting in a large heat load. Therefore, when a rotary compressor, which is about 20% more efficient than a conventional reciprocating compressor, is actually attached to a refrigerator-freezer and measured in a JIS C96o7 electric refrigerator and freezer power consumption test, the effectiveness is significantly reduced. , the amount of electricity saved was only about 6%. In order to increase the amount of reduction in power consumption equivalent to the efficiency improvement of the rotary compressor, it is necessary to prevent a large amount of superheat gas from flowing into the evaporator from the first and second flow paths. The method currently used in some cases is to improve the second flow path, which is to install check pulp in the suction line of the refrigeration equipment, but since the first flow path has not been improved, its effectiveness is limited. The reduction in power consumption is only about 5%, which is a total effect of about 10 inches. In addition, a possible method for improving the first flow path is to install a solenoid valve at the condenser outlet and open and close it in conjunction with the operation of the refrigeration equipment, but solenoid valves are expensive and generate noise during operation. Furthermore, a control circuit for the solenoid valve is required, which complicates the electric circuit, and the electric circuit itself consumes electric power.

本発明は以上の欠点に鑑みて、安価で、電気的な制御を
必要とせず、静粛で、かつロータリーコンプレッサ、単
体の効率向上と同等以上の高効率化を冷凍装置として図
らんとするための冷凍装置を提供せんとするものである
In view of the above drawbacks, the present invention aims to provide a refrigeration system that is inexpensive, does not require electrical control, is quiet, and has an efficiency equal to or higher than that of a rotary compressor alone. The aim is to provide refrigeration equipment.

以下に本発明の一実施例について説明する。1はロータ
リーコンプレッサ等の高圧容器タイプの密閉圧縮機(以
下ロータリーコンプレッサという)で、密閉容器2と圧
縮要素3と図示しない電動要素で構成されている。また
、このロータリーコンプレッサ1は内部に停止時低圧側
を閉略する逆止弁を備えていないものである。そして、
冷凍装置ハ、口→タリーコンプレッサ1、コンデンサ4
、冷凍装置用の流体制御弁6の高圧回路5a、キャピラ
リーチューブ6等の減圧器6(以下キャピラリーチュー
ブ6という)、エバポレータ7、逆止弁8、サクション
ライン9、ロータリーコンプレッサ1を順次環状に連結
して成る。流体制御弁6は高圧回路6aを含む高圧側弁
装置5Aと低圧回路5bを有し、低圧回路6bはサクシ
ョンライン9に連結している。そして、流体制御弁6は
各々独立した略中空円筒状の高圧側ケーシング10と、
これまた略中空円筒状の低圧側ケーシング11とで外殻
12を形成し両者9,1oを一体化して気密を保持して
いる。13は前記外殻12内において高圧回路5aと低
圧回路6bとに仕切シ、前記2回路の圧力に応動して伸
縮する圧力応動素子(以下ベローズという)である。ベ
ローズ13の下端中央部にはベローズ13を図中上方に
向って付勢するコイルバネ14を設けである。15はコ
イルバネ14の下端を保持する調節部材(以下リティナ
ーという)であり、ベローズ13の過度の動きを規制す
るとともに破損を防止する。このリティナ−16にはベ
ローズ13が低圧回路6bの圧力を正しく感知するため
の複数個の小孔16a。
An embodiment of the present invention will be described below. Reference numeral 1 denotes a high-pressure container type hermetic compressor (hereinafter referred to as a rotary compressor) such as a rotary compressor, which is composed of a hermetic container 2, a compression element 3, and an electric element (not shown). Further, this rotary compressor 1 does not have an internal check valve that closes the low pressure side when the compressor is stopped. and,
Refrigeration equipment c, mouth → tally compressor 1, condenser 4
, a high-pressure circuit 5a of a fluid control valve 6 for a refrigeration system, a pressure reducer 6 such as a capillary tube 6 (hereinafter referred to as capillary tube 6), an evaporator 7, a check valve 8, a suction line 9, and a rotary compressor 1 are sequentially connected in an annular manner. It consists of The fluid control valve 6 has a high pressure side valve device 5A including a high pressure circuit 6a and a low pressure circuit 5b, and the low pressure circuit 6b is connected to the suction line 9. The fluid control valves 6 each include an independent substantially hollow cylindrical high-pressure side casing 10;
This also forms an outer shell 12 with a substantially hollow cylindrical low pressure side casing 11, and both 9 and 1o are integrated to maintain airtightness. Reference numeral 13 denotes a pressure-responsive element (hereinafter referred to as bellows) which partitions the outer shell 12 into a high-pressure circuit 5a and a low-pressure circuit 6b and expands and contracts in response to the pressure of the two circuits. A coil spring 14 is provided at the center of the lower end of the bellows 13 to bias the bellows 13 upward in the figure. Reference numeral 15 denotes an adjustment member (hereinafter referred to as a retainer) that holds the lower end of the coil spring 14, and restricts excessive movement of the bellows 13 and prevents damage. This retainer 16 has a plurality of small holes 16a for the bellows 13 to correctly sense the pressure of the low pressure circuit 6b.

15a・・・・・・および外周部にはネジ15bが設け
である。このリティナ−15は高圧側ケーシング10の
内面に設けたネジ部10 aにねじ込んで前記コイルバ
ネ14の付勢力の所定の値に調節した後適当な方法で固
定している。一方、高圧側ケーシング10は入口管10
aと出口管10bと弁座10cを有し、略中夫には円柱
状のプランジャ16が上下に摺動自在に収納されている
。前記プランジャ16の上端中央部にはボール弁よりな
る高圧弁17がカシメにより固定され高圧側弁装置5A
を形成している。プランジャ16の下端にはプランジャ
16とベローズ13とを連結的に取り付けるための凹部
15aを設け・、ベローズ13をサイジング加工にて連
結的に挟着支持している。なお、前記サイジングは高圧
弁17の弁座10cへの求心のため隙間16bを設けて
サイジング加工を行なっている。また低圧側ケーシング
11にも入口管11a1を有している。
15a... and screws 15b are provided on the outer periphery. This retainer 15 is screwed into a threaded portion 10a provided on the inner surface of the high-pressure side casing 10, and after adjusting the biasing force of the coil spring 14 to a predetermined value, it is fixed by an appropriate method. On the other hand, the high pressure side casing 10 has an inlet pipe 10
A, an outlet pipe 10b, and a valve seat 10c, and a cylindrical plunger 16 is housed in the shaft so as to be slidable up and down. A high pressure valve 17 made of a ball valve is fixed to the center of the upper end of the plunger 16 by caulking, and is connected to the high pressure side valve device 5A.
is formed. A recess 15a is provided at the lower end of the plunger 16 for connecting the plunger 16 and the bellows 13, and the bellows 13 is connected and supported by sizing processing. Note that the sizing process is performed by providing a gap 16b for centripeting the high pressure valve 17 to the valve seat 10c. The low pressure side casing 11 also has an inlet pipe 11a1.

次に上記流体制御弁を冷凍装置に組み込んだときの作用
について述べる。第1図は冷凍装置が運転中の状態図を
表わしたもので、冷凍装置の高圧側は通常の高圧力であ
り、低圧側も通常の低圧力であるため流体制御弁5のベ
ローズ13は高圧回路5aと低圧回路5bとの圧力差に
よpてコイルバネ14を押し下げ、リティナ−15に当
るまで伸張している。従って高圧弁17はベローズ13
に一体的に取りつけられたプランジャ16によシ、弁座
10cに高圧回路5aとエバポレータ7内の圧力差とコ
イルバネ14の付勢力の和によって吸着されていたのが
引き離されて高圧側弁装置6Aは開路状態になっている
。一方、逆止弁8はエバポレータ7より流入するガス流
により開路状態となっている。従って、ロータリーコン
プレッサ1より吐出された冷媒ガスはコンデンサ4、流
体制御弁6の高圧回路5a、キャピラリーチューブ6、
エバポレータ7、逆止弁8、サクシランライン9、ロー
タリーコンプレッサ1へと支障なく流れて冷凍作用を行
う。
Next, the operation when the above fluid control valve is incorporated into a refrigeration system will be described. Figure 1 shows a state diagram when the refrigeration system is in operation.The high-pressure side of the refrigeration system is at normal high pressure, and the low-pressure side is also at normal low pressure, so the bellows 13 of the fluid control valve 5 is under high pressure. Due to the pressure difference between the circuit 5a and the low pressure circuit 5b, the coil spring 14 is pushed down and expanded until it hits the retainer 15. Therefore, the high pressure valve 17 has a bellows 13
Due to the sum of the pressure difference between the high pressure circuit 5a and the evaporator 7 and the biasing force of the coil spring 14, the valve seat 10c is pulled away by the plunger 16 integrally attached to the valve seat 10c, and the high pressure side valve device 6A is pulled away. is in an open state. On the other hand, the check valve 8 is in an open state due to the gas flow flowing in from the evaporator 7. Therefore, the refrigerant gas discharged from the rotary compressor 1 is transferred to the condenser 4, the high pressure circuit 5a of the fluid control valve 6, the capillary tube 6,
It flows without any problem to the evaporator 7, check valve 8, saxilane line 9, and rotary compressor 1 to perform the refrigeration action.

次に冷凍装置の停止中の状態について第2図を用いて説
明する。ロータリーコンプレッサ1の停止により密閉容
器2内の高温高圧ガスが圧縮要素3の図示しないシリン
ダ室を経てサクションライン9に流入し、逆流状態とな
るので逆止弁8は閉路状態となる。その結果、ロータリ
ーコンプレッサ1よりスーパーヒートガスがエバポレー
タ7へと逆流、流入するのを防止する。更に時間が経過
するとサクションライン9に連結された流体制御弁6の
低圧回路6bに流入する(図中矢印とで示す)ので低圧
回路5b内の圧力は急激に上昇し、高圧回路6aの圧力
と近似となる。前記両回路5a、5bの圧力が近似にな
るとベローズ13の下方に設けたコイルバネ14の付勢
力が両回路sa、sbの圧力差によりベローズ13に発
生する力に打ち勝ってプランジャ16が押し上げられ高
圧側弁装置6Aは閉路状態となり、コンデンサ4よりの
スーパーヒートガスのエバポレータ7への流入を防止す
る。
Next, the state in which the refrigeration system is stopped will be explained using FIG. 2. When the rotary compressor 1 is stopped, the high-temperature, high-pressure gas in the closed container 2 flows into the suction line 9 through the cylinder chamber (not shown) of the compression element 3, resulting in a reverse flow state, and therefore the check valve 8 becomes in a closed circuit state. As a result, superheat gas from the rotary compressor 1 is prevented from flowing backward into the evaporator 7. As more time passes, the fluid flows into the low pressure circuit 6b of the fluid control valve 6 connected to the suction line 9 (indicated by an arrow in the figure), so the pressure in the low pressure circuit 5b increases rapidly and becomes equal to the pressure in the high pressure circuit 6a. This is an approximation. When the pressures in both the circuits 5a and 5b become approximate, the biasing force of the coil spring 14 provided below the bellows 13 overcomes the force generated in the bellows 13 due to the pressure difference between the circuits sa and sb, and the plunger 16 is pushed up to move to the high pressure side. The valve device 6A is closed and prevents superheat gas from flowing into the evaporator 7 from the condenser 4.

更にベローズ13を上方に付勢するコイルバネ14と前
記コイルバネの付勢力を調節するリティナ−15の作用
について第3図の冷凍装置の圧力変化図を用いて説明す
る。図において、ロータリーコンプレッサ1が停止する
と同時に逆止弁8は閉路状態となりロータリーコンプレ
ッサ1より逆流するスーパーヒートガスにより低圧回路
6bの圧力は急激に上昇する。この時、高圧側弁装置5
Aはまだ開路状態でありコンデンサ4と高圧側弁装置6
Aの出口管10bの圧力は等しく徐々に降下する。この
停止後の微小時間tが経過するとベローズ13に作用す
る高圧回路、Haと低圧回路5bとの差圧ΔPとベロー
ズ13の有効面積Sによって発生する力Ep (Ep 
=ΔPxS)に対してコイルバネ14の付勢力FCが大
きくなりプランジャ16が押し上げられ高圧側弁装置5
Aは閉路状態となる。この時点より高圧回路5aに流入
する冷媒か停止するので高圧側弁装置5Aの出口管10
bの圧力は急激に低下する。この圧力低下により高圧弁
17は更に弁座10Cに吸着され、洩れは低減する。な
おロータリーコンプレッサ1が停止後は高圧側弁装置6
Aが閉路する迄の微小時間tは約3o秒以下である必要
がある。この30秒以下というのは冷凍装置の大きさや
、ロータリーコンプレッサ1の大きさによるものが冷凍
装置が停止後より約45秒〜1程度度はコンデンサ4で
凝縮されだ液冷媒がキャビラリ−チュープロへ流入し正
常な冷凍作用を行うので、それ以前に高圧側弁装置5A
を閉弁すれば良いためである。そのためには、前記微小
時間tをできるだけ小さくすることが必要であり、この
ためには前記差圧ΔPが大きな時に高圧側弁装置6Aを
閉弁させることである。しかし前記高圧側弁装置6Aを
閉弁させる差圧ΔPを大きく設定しすぎると、冬季の如
く気温の低い時には運転中のコンデンサ4の圧力とエバ
ポレータ7の圧力との差は小さいので高圧側弁装置5A
を開弁させるに十分な圧力差が得られず、前記高圧側弁
装置6Aはロータリコンプレッサ1の運転いかんにかか
わらず閉弁したままとなり冷凍作用不能状態となってし
まう。家庭用冷凍冷蔵庫での理想的な差圧ΔPの設定値
は2±0.2ζ程度と非常に小さい範囲である。従って
コイルバネ14のバネ定数にの製造上のバラツキに対応
する付勢力の調節が必要である。また冷凍装置の起動時
には低回路6bの圧力は瞬時に低圧となりベローズ13
は下方に引き下げられ、プランジャ16を介してベロー
ズ13に一体となった高圧弁17は下降し、高圧側弁装
置6Aが開弁じ正常な冷凍作用を行う。
Furthermore, the functions of the coil spring 14 that urges the bellows 13 upward and the retainer 15 that adjusts the urging force of the coil spring will be explained using the pressure change diagram of the refrigeration system shown in FIG. In the figure, the check valve 8 is closed at the same time as the rotary compressor 1 stops, and the pressure in the low pressure circuit 6b rapidly increases due to the superheat gas flowing back from the rotary compressor 1. At this time, the high pressure side valve device 5
A is still in an open state, and the capacitor 4 and high pressure side valve device 6
The pressure in the outlet pipe 10b of A drops equally and gradually. When a minute time t has elapsed after this stop, a force Ep (Ep
= ΔPxS), the biasing force FC of the coil spring 14 increases, the plunger 16 is pushed up, and the high pressure side valve device 5
A becomes a closed circuit state. From this point on, the refrigerant flowing into the high pressure circuit 5a stops, so the outlet pipe 10 of the high pressure side valve device 5A
The pressure at b drops rapidly. This pressure drop causes the high pressure valve 17 to be further attracted to the valve seat 10C, reducing leakage. Note that after the rotary compressor 1 stops, the high pressure side valve device 6
The minute time t required for A to close must be approximately 30 seconds or less. This period of 30 seconds or less depends on the size of the refrigeration system and the size of the rotary compressor 1. However, after the refrigeration system stops, it takes about 45 seconds to 1 degree for the liquid refrigerant to condense in the condenser 4 and flow into the cavity tube. Since normal refrigeration is performed, the high pressure side valve device 5A is
This is because it is sufficient to close the valve. For this purpose, it is necessary to make the minute time t as small as possible, and for this purpose, the high pressure side valve device 6A is closed when the pressure difference ΔP is large. However, if the differential pressure ΔP that closes the high pressure side valve device 6A is set too large, the difference between the pressure of the condenser 4 and the pressure of the evaporator 7 during operation is small when the temperature is low such as in winter, so the high pressure side valve device 5A
A sufficient pressure difference to open the valve cannot be obtained, and the high-pressure side valve device 6A remains closed regardless of whether the rotary compressor 1 is operating or not, resulting in a state in which refrigeration cannot be performed. The ideal setting value of the differential pressure ΔP in a household refrigerator-freezer is within a very small range of about 2±0.2ζ. Therefore, it is necessary to adjust the biasing force in response to manufacturing variations in the spring constant of the coil spring 14. Furthermore, when the refrigeration system is started, the pressure in the low circuit 6b instantly becomes low and the bellows 13
is pulled down, the high-pressure valve 17 integrated with the bellows 13 descends via the plunger 16, and the high-pressure side valve device 6A opens to perform a normal refrigeration action.

以上の様に本発明の冷凍装置はキャピラリチューブ等の
減圧器の上流側に前記流体制御弁の高圧回路を含む高圧
側弁装置を接続し、逆止弁をエバポレータの下流側に接
続し、流体制御弁の低圧回路は前記逆止弁の下流側に接
続し、高圧側弁装置は低回路の圧力が低い時に開弁し、
高い時は閉弁するようにその圧力に応動するようにして
いるので冷凍装置が運転中は通常の冷媒循環を行い、冷
凍装置が停止時には逆止弁がただちに閉弁すると同時に
低圧回路の圧力が急上昇し高圧側弁装置を液冷媒が減圧
装置へ流出している微小時間中に閉弁するので、密閉容
器内およびコンデンサ内のスーパーヒートガスがサクシ
ョンラインおよび減圧装置を介してエバポレータに流入
するのを防止する。従って流体制御弁の無いものに比べ
て節電効果を大とすることができロータリーコンプレッ
サの効率向上に見合った冷凍装置としての効率向上が実
現できる。また電磁弁で制御するものに比べて安価であ
り、さらに、制御する電力も必要とせず、電気的な制御
回路も不要で余分な電気配線も必要とせず、又なめらか
な動作を行うので騒音が発生しないなどの特徴を有する
ものである。
As described above, the refrigeration system of the present invention connects the high pressure side valve device including the high pressure circuit of the fluid control valve to the upstream side of a pressure reducer such as a capillary tube, connects the check valve to the downstream side of the evaporator, and The low pressure circuit of the control valve is connected to the downstream side of the check valve, and the high pressure side valve device opens when the pressure in the low circuit is low;
When the pressure is high, the valve closes in response to the pressure, so normal refrigerant circulation occurs when the refrigeration system is in operation, and when the refrigeration system is stopped, the check valve closes immediately and the pressure in the low pressure circuit is reduced. Since the high-pressure side valve device is closed during a short period of time when the liquid refrigerant is flowing out to the pressure reducing device, the superheated gas in the sealed container and condenser will not flow into the evaporator via the suction line and the pressure reducing device. prevent. Therefore, the power saving effect is greater than that of a system without a fluid control valve, and the efficiency of the refrigeration system can be improved commensurate with the efficiency improvement of the rotary compressor. It is also less expensive than those controlled by solenoid valves, does not require electric power to control, does not require an electrical control circuit, does not require extra electrical wiring, and operates smoothly, making it less noisy. It has the characteristics that it does not occur.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の冷凍装置の一実施例を示す断面図、第
2図は第1図相当の停止中の流体制御弁の要部断面図、
第3図は第1図の冷凍装置の圧力変化図である。 1・・・・・・密閉圧縮機、4・・・・・・コンデンサ
、6・・・・・・減圧器、7・・・・・・エバポレータ
、8・・・・・・逆止弁、9・・・・・・サクションラ
イン、5・・・・・・流体制御弁、5b・・・・・・低
圧回路、5a・・・・・・高圧回路、6A・・・・・・
高圧側弁装置、13・・・・・・圧力応動素子、16・
・・・・・調整部材、14・・・・・・バネ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 4 第2図
FIG. 1 is a sectional view showing an embodiment of the refrigeration system of the present invention, FIG. 2 is a sectional view of the main part of a stopped fluid control valve corresponding to FIG. 1,
FIG. 3 is a pressure change diagram of the refrigeration system shown in FIG. 1. 1... Hermetic compressor, 4... Condenser, 6... Pressure reducer, 7... Evaporator, 8... Check valve, 9...Suction line, 5...Fluid control valve, 5b...Low pressure circuit, 5a...High pressure circuit, 6A...
High pressure side valve device, 13... Pressure responsive element, 16.
...adjustment member, 14...spring. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 4 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 高圧容器形の密閉圧縮機、コンデンサ、減圧器、エバポ
レータ、逆止弁を介設した文りシミンライン、並びに流
体制御弁を備え、前記流体制御弁は低圧回路と、高圧側
弁装置を有する高圧回路と、前記高圧回路と前記低圧回
路を区画し、かつ両回踏圧力差にて作動する圧力応動素
子と、を有し前記高圧側弁装置は前記圧力応動素子に連
結され、前記圧力応動素子は調節部材を介して支持した
バネにより前記高圧側弁装置を閉鎖する方向に付勢され
ており、また前記低圧回路は逆止弁の下流側に、前記高
圧回路は前記減圧装置の上流側に連通してなる冷凍装置
It is equipped with a hermetic compressor in the form of a high-pressure container, a condenser, a pressure reducer, an evaporator, a check valve interposed therein, and a fluid control valve, the fluid control valve having a low-pressure circuit and a high-pressure circuit having a high-pressure side valve device. and a pressure-responsive element that partitions the high-pressure circuit and the low-pressure circuit and operates based on the difference in pressure applied both times, the high-pressure side valve device is connected to the pressure-responsive element, and the pressure-responsive element The high-pressure side valve device is biased in a direction to close by a spring supported via an adjustment member, and the low-pressure circuit communicates with the downstream side of the check valve, and the high-pressure circuit communicates with the upstream side of the pressure reducing device. Refrigeration equipment.
JP56194035A 1981-12-02 1981-12-02 Refrigerator Granted JPS5896954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56194035A JPS5896954A (en) 1981-12-02 1981-12-02 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56194035A JPS5896954A (en) 1981-12-02 1981-12-02 Refrigerator

Publications (2)

Publication Number Publication Date
JPS5896954A true JPS5896954A (en) 1983-06-09
JPH0120695B2 JPH0120695B2 (en) 1989-04-18

Family

ID=16317848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56194035A Granted JPS5896954A (en) 1981-12-02 1981-12-02 Refrigerator

Country Status (1)

Country Link
JP (1) JPS5896954A (en)

Also Published As

Publication number Publication date
JPH0120695B2 (en) 1989-04-18

Similar Documents

Publication Publication Date Title
US5329788A (en) Scroll compressor with liquid injection
JP3413385B2 (en) Switching valve for refrigerant flow path
US7260951B2 (en) Pressure equalization system
US4646533A (en) Refrigerant circuit with improved means to prevent refrigerant flow into evaporator when rotary compressor stops
JPS5896954A (en) Refrigerator
JPS6353463B2 (en)
JPS5888577A (en) Fluid control valve for refrigerator
JPS5899671A (en) Fluid control valve for refrigerator
JP3505209B2 (en) Refrigeration equipment
JP2624767B2 (en) Refrigeration equipment
JP2576309B2 (en) Screw refrigeration equipment
JPS59115940A (en) Refrigerator
JPS5895172A (en) Fluid control valve for refrigerator
JPS6325260B2 (en)
JPS5899649A (en) Refrigerator
JPH0217198Y2 (en)
JPS5899674A (en) Refrigerator
JP2508811B2 (en) Air conditioner
JPS5899653A (en) Refrigerator
JPS5899651A (en) Refrigerator
JPS6325257B2 (en)
JPH04184B2 (en)
JPS6016268A (en) Cooling device
JPS5862463A (en) Refrigerator
JPS5899656A (en) Refrigerator