JPS5899653A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS5899653A
JPS5899653A JP56198062A JP19806281A JPS5899653A JP S5899653 A JPS5899653 A JP S5899653A JP 56198062 A JP56198062 A JP 56198062A JP 19806281 A JP19806281 A JP 19806281A JP S5899653 A JPS5899653 A JP S5899653A
Authority
JP
Japan
Prior art keywords
pressure
valve
condenser
compressor
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56198062A
Other languages
Japanese (ja)
Inventor
均 那須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP56198062A priority Critical patent/JPS5899653A/en
Publication of JPS5899653A publication Critical patent/JPS5899653A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は冷凍装置の改良に関する。[Detailed description of the invention] The present invention relates to improvements in refrigeration equipment.

従来の一般的な冷凍装置は第5図に示す如く、圧縮機2
1.凝縮器22.絞り装置23.蒸発装置24を順次連
結して冷凍サイクルを構成している。前記冷凍サイクル
に於てはサーモスタット(図示せず)により圧縮機21
が運転制御されておシ、このサーモスタットのro F
 F J中には凝縮器22内に滞留している冷凍効果の
ない過熱冷媒ガスが絞り装置23を介して蒸発器24内
に流入して前記蒸発器24を加熱して圧縮機21の運転
率を増加させ、消費電力量が増大するという欠点を有し
ている。前記欠点を除去するため最近の冷凍装置では第
6図に示す如く凝縮器31と絞り装置32の間に電磁弁
33を設け、前記電磁弁33をす咄スタットが「ON」
中の冷凍装置が作動中は開路状態とし、またサーモスタ
ットが「0FFJ中の冷凍装置が停止中は閉路状態とす
ることにより凝縮器31内に滞留している過熱冷媒ガス
が蒸発器34内に流入するのを防止し、蒸発器34の温
度上昇を防ぎ消費電力量の低減を図っているのが知られ
ている。尚35は圧縮機でろる。、 しかし前記の電磁弁33を使用する冷凍装置では出力1
00W前後の小型冷凍装置では電磁弁33が消費する6
〜6Wの電力により消費電力量の低減が相殺されたり、
逆に消費電力が増大する等の欠点を有していた。
A conventional general refrigeration system has a compressor 2 as shown in FIG.
1. Condenser 22. Squeezing device 23. The evaporators 24 are successively connected to form a refrigeration cycle. In the refrigeration cycle, the compressor 21 is controlled by a thermostat (not shown).
The operation is controlled by this thermostat.
During FJ, superheated refrigerant gas that has no refrigerating effect and remains in the condenser 22 flows into the evaporator 24 via the throttle device 23, heats the evaporator 24, and increases the operating rate of the compressor 21. This has the disadvantage of increasing power consumption. In order to eliminate the above-mentioned drawbacks, recent refrigeration systems include a solenoid valve 33 between the condenser 31 and the throttle device 32 as shown in FIG.
The circuit is open when the refrigeration equipment inside is operating, and the circuit is closed when the refrigeration equipment is stopped at 0FFJ, so that the superheated refrigerant gas remaining in the condenser 31 flows into the evaporator 34. It is known that the temperature rise of the evaporator 34 is prevented and power consumption is reduced.The refrigeration system using the solenoid valve 33 described above is Then output 1
In small refrigeration equipment around 00W, the solenoid valve 33 consumes 6
~6W of power offsets the reduction in power consumption,
On the contrary, it had drawbacks such as increased power consumption.

上記欠点に鑑み1本発明は圧縮機運転中の高圧回路と絞
り装置中間との圧力差にょシ圧カ応動素子を変位せしめ
て凝縮器と蒸発器間に介在せる弁装置を閉略し、前記圧
縮機の停止にょシ前記圧カ差の略同−による圧力応動素
子の変位にて前記弁装置を閉路することにより凝縮器内
の高温冷媒が蒸発器に流入することを防止し得るもので
ある。
In view of the above-mentioned drawbacks, the present invention is designed to displace a pressure-responsive element due to the pressure difference between the high-pressure circuit and the intermediate part of the throttle device during operation of the compressor, thereby closing the valve device interposed between the condenser and the evaporator, and When the machine is stopped, the high temperature refrigerant in the condenser can be prevented from flowing into the evaporator by closing the valve device by the displacement of the pressure responsive element due to substantially the same pressure difference.

以下図面に従い、本発明一実施例について説明する。An embodiment of the present invention will be described below with reference to the drawings.

1は圧縮機、2は凝縮器、3は第1の絞り装置、4は該
第1絞シ装置よシ流路抵抗の小さい第2の絞シ装置、6
は蒸発器であり流体制御弁6の弁装置7を前記第1.第
2の絞シ装置3,4間に介在している。
1 is a compressor, 2 is a condenser, 3 is a first throttle device, 4 is a second throttle device whose flow path resistance is smaller than that of the first throttle device, 6
is an evaporator, and the valve device 7 of the fluid control valve 6 is connected to the first. It is interposed between the second diaphragm devices 3 and 4.

前記流体制御弁6は上ケーシング8.下ケーシング9に
て外殻を構成し、内部を圧力応動素子1゜にて高圧室1
1と弁室1♀に区画している。前記高圧室11は導圧管
13にて前記圧縮機1と凝縮器2間に連通している。前
記弁室12には前記第1絞り装置3出口と接続した入口
バイブ14、前記第2の絞り装置4人口と接続した出口
バイブ16間に弁装置7を設け、該弁装置7は弁座体1
6と前記圧力応動素子1oと連結した弁体17により構
成している。また前記弁体17はスプリング18の付勢
力にて前記弁装置7を閉止する方向に付勢している。つ
まり、前記スプリング18の付勢力と応力応動素子10
の圧力作用面積との関係を高圧室11圧力と弁室12圧
力との圧力差が設定圧力差ΔP0 より大きくなると弁
装置7を閉略し、設定圧力差ΔP0 より小さくなると
きに前記弁装置7を閉略するよう構成しているものであ
る。具体的には上記設定圧力差ΔPoは運転中の高圧室
11と弁室12の圧力差の最も/」・さくなる運転条件
時の圧力差ΔP1  より小さく設定しである。尚、1
9は弁体17の過度の動きを防止するストッパーである
The fluid control valve 6 is connected to the upper casing 8. The lower casing 9 constitutes an outer shell, and the inside is a high pressure chamber 1 with a pressure responsive element 1°.
It is divided into valve chamber 1 and valve chamber 1♀. The high pressure chamber 11 communicates between the compressor 1 and the condenser 2 through a pressure guiding pipe 13. A valve device 7 is provided in the valve chamber 12 between an inlet vibrator 14 connected to the outlet of the first throttle device 3 and an outlet vibrator 16 connected to the second throttle device 4, and the valve device 7 is connected to a valve seat body. 1
6 and a valve body 17 connected to the pressure responsive element 1o. Further, the valve body 17 is urged in a direction to close the valve device 7 by the urging force of a spring 18. In other words, the biasing force of the spring 18 and the stress-responsive element 10
When the pressure difference between the high pressure chamber 11 pressure and the valve chamber 12 pressure becomes larger than the set pressure difference ΔP0, the valve device 7 is closed; It is designed to be closed. Specifically, the set pressure difference ΔPo is set to be smaller than the pressure difference ΔP1 under operating conditions where the pressure difference between the high pressure chamber 11 and the valve chamber 12 is the lowest during operation. Furthermore, 1
9 is a stopper that prevents excessive movement of the valve body 17.

次に上記構成による冷凍装置の動作について説明する。Next, the operation of the refrigeration system having the above configuration will be explained.

第1図は冷凍装置の運転中の状態図であり、第3図で示
す圧力変化図においてイに相当する。高圧回路の圧力は
圧縮機1出口で第3図口の実線で示す圧力であり、凝縮
器2出口では圧力損失のため第3図すの一点破線で示す
圧力となる、また第1゜第2絞9装置3,4間の圧力は
第1絞り装置3により減圧されて第3図Cの二点破線で
示す圧力を示す。また第3図口の実線は蒸発器6内の圧
力を示す。この図から明らかなように運転時は圧縮機1
出口と第1.第2絞シ装置3,4間の圧力差は前記した
最も小さくなる運転条件時の圧力差ΔP1より大きいΔ
P2 となシ、圧縮機1出口と導圧管13にて連通した
流体制御弁6の高圧室11内圧力と前記第1.第2絞り
装置3,4間に介在した弁室12内圧力の圧力差も同じ
くΔP2 である。
FIG. 1 is a state diagram during operation of the refrigeration system, and corresponds to A in the pressure change diagram shown in FIG. The pressure in the high pressure circuit is the pressure shown by the solid line in Figure 3 at the compressor 1 outlet, and the pressure at the condenser 2 outlet is shown by the dotted line in Figure 3 due to pressure loss. The pressure between the throttle 9 devices 3 and 4 is reduced by the first throttle device 3 and shows the pressure shown by the two-dot broken line in FIG. 3C. Further, the solid line at the beginning of FIG. 3 indicates the pressure inside the evaporator 6. As is clear from this figure, during operation, compressor 1
Exit and 1st. The pressure difference between the second throttling devices 3 and 4 is greater than the pressure difference ΔP1 at the minimum operating condition mentioned above.
P2, the pressure inside the high pressure chamber 11 of the fluid control valve 6 which communicates with the outlet of the compressor 1 through the pressure guiding pipe 13 and the first. The pressure difference in the internal pressure of the valve chamber 12 interposed between the second throttle devices 3 and 4 is also ΔP2.

前記弁装置7の設定圧力差ΔP0はΔP0くΔP1  
となるよう設定しているため、圧力応動素子10は下方
へ付勢され、弁装置7を閉略している。これによシ、冷
媒は圧縮機1→凝縮器2→第1絞り装置3→流体制御弁
6の弁装置7→第2絞り装置4→蒸発器6→圧縮機1と
いう正常な流れを示し、正規冷凍作用を行なっている。
The set pressure difference ΔP0 of the valve device 7 is ΔP0 minus ΔP1
Since the pressure responsive element 10 is set so as to be biased downward, the valve device 7 is closed. As a result, the refrigerant exhibits a normal flow of compressor 1 → condenser 2 → first throttle device 3 → valve device 7 of fluid control valve 6 → second throttle device 4 → evaporator 6 → compressor 1, Regular refrigeration is performed.

次に、停止後の動作について説明する。停止後の圧力変
化は第3図口に示す変化である。周知のように圧縮機1
の運転が停止すると絞り装置3゜4は均圧管となるが本
発明のような2つの絞り装置3,4を直列に接続してな
り、高圧側の第1絞り装置3の流路抵抗をイ氏圧側の第
2絞り装置4より小さく設定しているものにあっては、
その均圧する速度において、第1絞り装置9前後圧力の
均圧が行なわれ、次いで第2絞り装置4前後圧力が均圧
することが知られている。従って、停止すると先づ凝縮
器2−の圧力損失の影響がなくなり圧縮機1出口と凝縮
器2出口の圧力(第3図a、b)が停止と同時に同一と
なる。次いで第1.第2絞り装置3,4間の圧力とバラ
ンスするよう降下し、微少時間後肢圧縮機1出口及びこ
れと連通せる高圧室11内圧力と前記第1.第2絞り装
置3,4間の圧力Cつま9弁室12内圧力との圧力差が
ΔPo以下となる(第3図A)。これによシ圧力応動素
子10は上方へ付勢せしめられ、該圧力応動素子1oと
連結した弁体17は弁座体16へ付勢され、弁装置7を
閉路する。従って、冷凍装置の圧力はこの状態のまま維
持する(第3図ハ)。
Next, the operation after stopping will be explained. The pressure change after stopping is the change shown in Figure 3. As is well known, compressor 1
When the operation of the throttling device 3-4 is stopped, the throttling device 3.4 becomes a pressure equalizing pipe, but it is constructed by connecting two throttling devices 3 and 4 in series as in the present invention, and the flow path resistance of the first throttling device 3 on the high pressure side is equalized. For those that are set smaller than the second throttle device 4 on the pressure side,
It is known that at this pressure equalization speed, the pressure across the first throttle device 9 is equalized, and then the pressure across the second throttle device 4 is equalized. Therefore, when the compressor is stopped, the influence of the pressure loss of the condenser 2- is first eliminated, and the pressures at the compressor 1 outlet and the condenser 2 outlet (Fig. 3 a, b) become the same at the same time as the stop. Next, the first. The pressure decreases to balance the pressure between the second expansion devices 3 and 4, and the pressure inside the high pressure chamber 11 communicating with the outlet of the hind leg compressor 1 and the pressure inside the first. The pressure difference between the pressure C between the second throttle devices 3 and 4 and the pressure inside the valve chamber 12 becomes ΔPo or less (FIG. 3A). As a result, the pressure-responsive element 10 is urged upward, and the valve body 17 connected to the pressure-responsive element 1o is urged toward the valve seat body 16, thereby closing the valve device 7. Therefore, the pressure of the refrigeration system is maintained in this state (FIG. 3C).

次に再起動時の動作について説明する。圧縮機1の運転
により蒸発器6に残留している冷媒を吸入圧縮され、高
圧側圧力は上昇する(第3図工)。
Next, the operation at restart will be explained. As the compressor 1 operates, the refrigerant remaining in the evaporator 6 is sucked and compressed, and the pressure on the high pressure side increases (see Figure 3).

しかし、この時の圧力上昇速度は圧縮機1から離れる程
遅くなる。つまシ圧縮機1出口及びこれと近接して連通
した流体制御弁6の高圧室11圧力は急激に上昇し、凝
縮器2出口圧力は徐々に上昇する。また第1.第2絞り
装置3,4間圧力は更に上昇が遅い。従って、前記流体
制御弁6の高圧室11と弁室12の圧力差も増加し、4
20以上となる点(第3図B)にて圧力応動素子1oは
下方へ変位し、弁装置7を開略するものである。
However, the rate of pressure increase at this time becomes slower as the distance from the compressor 1 increases. The pressure of the high pressure chamber 11 of the fluid control valve 6 at the outlet of the block compressor 1 and in close communication therewith rises rapidly, and the pressure at the outlet of the condenser 2 gradually rises. Also number 1. The pressure between the second throttle devices 3 and 4 rises even more slowly. Therefore, the pressure difference between the high pressure chamber 11 and the valve chamber 12 of the fluid control valve 6 also increases.
20 or more (FIG. 3B), the pressure-responsive element 1o is displaced downward and the valve device 7 is opened.

従って、運転開始微少時間後、前記流体制御弁6の弁装
置7を開略し、運転中は該弁装置アを開路に維持し、停
止微少時間後肢弁装置7を閉路し、停止中は該弁装置7
の閉路を維持するものであり。
Therefore, after a short period of time after the start of operation, the valve device 7 of the fluid control valve 6 is opened, the valve device is kept open during the operation, the hind leg valve device 7 is closed for a short period of time when the stop is stopped, and the valve device 7 of the fluid control valve 6 is kept open during the operation. Device 7
It maintains a closed circuit.

前記微少時間は冷凍装置の冷却運転に殆んど悪影響を及
ぼさないものである。
The short time has almost no adverse effect on the cooling operation of the refrigeration system.

以上の説(社)為らも明らかなように本発明による冷凍
装置は圧力応動素子にて内部を2室に区画し、該圧力応
動素子の変位により該圧力応動素子と連結した弁装置を
開閉せしめる流体制御弁、圧縮機、凝縮器、直列に構成
する第1.第2の絞り装置、蒸発器等より構成し、前記
流体制御弁の内部の一室に高圧回路側圧力を連通させ、
他室に、前記第1、第2の絞シ装置間の圧力を連通させ
ると共に、前記流体6制御弁の弁装置を凝縮器と蒸発器
間に介在し、前記2室の圧力の略均圧時に前記弁装置を
閉止するものであるから、電気エネルギーを必要とせず
に運転とほぼ同時に弁装置を開略し、運転中は開路を維
持するため冷凍作用に対しては何ら防げとならず、停止
とほぼ同時に前記弁装置を閉路し、停止中は閉路を維持
するものであるため凝縮器内の高温ガスが蒸発器に流入
して熱負荷を増加させることがなく、また、停止中に高
圧側を高圧に、かつ、低圧側を低圧に維持しているため
、起動後間時にして正規冷凍作用が開始され、従来のよ
うな無効運転時間を排除することが可能となり、非常に
大きな省エネルギー化が図れる。さらに、第1の絞り装
置の流路抵抗を第2の絞り装置のそれより大きくしであ
るため、停止後弁装置を閉路するための圧力バランスが
速く、低圧回路との圧力差は大きく保持できるため、前
記効果をより大きく発揮できるものである。
As is clear from the above theory, the refrigeration system according to the present invention uses a pressure-responsive element to divide the interior into two chambers, and the displacement of the pressure-responsive element opens and closes the valve device connected to the pressure-responsive element. A first fluid control valve, a compressor, and a condenser configured in series. It is composed of a second throttle device, an evaporator, etc., and communicates the high pressure circuit side pressure with a chamber inside the fluid control valve,
The pressure between the first and second throttling devices is communicated with another chamber, and the valve device of the fluid 6 control valve is interposed between the condenser and the evaporator, so that the pressure in the two chambers is approximately equalized. Since the valve device is closed at times, the valve device is opened almost at the same time as operation without requiring electrical energy, and the circuit is kept open during operation, so there is no protection against refrigeration, and there is no need to stop the valve device. Since the valve device is closed almost at the same time and maintained closed during the stop, high-temperature gas in the condenser does not flow into the evaporator and increase the heat load, and the high-pressure side Because the pressure on the low pressure side is maintained at high pressure and the low pressure side at low pressure, regular refrigeration begins shortly after startup, making it possible to eliminate the idle operation time required in the past, resulting in significant energy savings. can be achieved. Furthermore, since the flow path resistance of the first throttle device is greater than that of the second throttle device, the pressure balance for closing the valve device after stopping is quick, and a large pressure difference with the low pressure circuit can be maintained. Therefore, the above-mentioned effects can be exhibited to a greater extent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による冷凍装置の運転時の要部断面図、
第2図は第1図に相当する停止時の断面図、第3図は本
発明による冷凍装置の圧力変化間第4図は従来の冷凍装
置概略図、第6図は従来改良冷凍装置の概略図をそれぞ
れ示す。 1・・・・・・圧縮機、2・・・・・・凝縮器、3・・
・・・・第1の絞り装置、4・・・・・・第2の絞り装
置、6・・・・・・蒸発器、6・・・・・・流体制御弁
、7・・・・・・弁装置。 10・・・・・・圧力応動素子、11.12・・・・・
・室。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名11
図 2 第2図 ? 第3図 Pljz− 184図 2 4 第5図 \ μ
FIG. 1 is a sectional view of the main parts of the refrigeration system according to the present invention during operation;
Fig. 2 is a cross-sectional view of the refrigeration system when it is stopped, which corresponds to Fig. 1, Fig. 3 shows the pressure change of the refrigeration system according to the present invention, Fig. 4 is a schematic diagram of a conventional refrigeration system, and Fig. 6 is a schematic diagram of a conventional improved refrigeration system. Figures are shown respectively. 1... Compressor, 2... Condenser, 3...
...First throttle device, 4...Second throttle device, 6...Evaporator, 6...Fluid control valve, 7...・Valve device. 10...Pressure responsive element, 11.12...
・Room. Name of agent: Patent attorney Toshio Nakao and 1 other person11
Figure 2 Figure 2? Figure 3 Pljz- 184 Figure 2 4 Figure 5\μ

Claims (2)

【特許請求の範囲】[Claims] (1)圧力応動素子にて内部を2室に区画し、該圧力応
動素子の変位により該圧力応動素子と連結した弁装置を
開閉せしめる流体制御弁、圧縮機、凝縮器、直列に構成
する第1.第2の絞り装置、蒸発器等を環状に接続して
構成し、前記流体制御弁の内部の一室に高圧回路側圧力
を連通させ、他室に、前記第1を第2の絞り装置間の圧
力を連通させると共に、前記流体制御弁の弁装置を凝縮
器と蒸発器間に介在し、前記2室の圧力の略均圧時に前
記弁装置を閉止するよう構成した冷凍装置。
(1) A pressure-responsive element divides the interior into two chambers, and a fluid control valve that opens and closes a valve device connected to the pressure-responsive element according to the displacement of the pressure-responsive element, a compressor, a condenser, and a chamber configured in series. 1. A second throttling device, an evaporator, etc. are connected in an annular manner, and one chamber inside the fluid control valve is communicated with the high-pressure circuit side pressure, and the first and second throttling devices are connected to the other chamber. , and a valve device of the fluid control valve is interposed between a condenser and an evaporator, and the refrigeration device is configured to close the valve device when the pressures in the two chambers are substantially equalized.
(2)前記絞り装置は上流側の第1の絞り装置の流路抵
抗を下流側の第2の絞り装置のそれより大きくした特許
請求の範囲第1項記載の冷凍装置。
(2) The refrigeration system according to claim 1, wherein the flow path resistance of the first throttle device on the upstream side is greater than that of the second throttle device on the downstream side.
JP56198062A 1981-12-08 1981-12-08 Refrigerator Pending JPS5899653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56198062A JPS5899653A (en) 1981-12-08 1981-12-08 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56198062A JPS5899653A (en) 1981-12-08 1981-12-08 Refrigerator

Publications (1)

Publication Number Publication Date
JPS5899653A true JPS5899653A (en) 1983-06-14

Family

ID=16384889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56198062A Pending JPS5899653A (en) 1981-12-08 1981-12-08 Refrigerator

Country Status (1)

Country Link
JP (1) JPS5899653A (en)

Similar Documents

Publication Publication Date Title
JP2604882B2 (en) Motor cooling device
US4267702A (en) Refrigeration system with refrigerant flow controlling valve
US3060699A (en) Condenser pressure regulating system
JPS5899653A (en) Refrigerator
JPS6353463B2 (en)
JPS61213553A (en) Refrigerant circuit for refrigerator
JP2001074321A (en) Supercritical vapor compressing cycle device and pressure control valve with release valve
JPH05172407A (en) Refrigerator
JPH0221509B2 (en)
JPS5899674A (en) Refrigerator
JPS5899671A (en) Fluid control valve for refrigerator
JPS5896954A (en) Refrigerator
JPS5888577A (en) Fluid control valve for refrigerator
JPH0345304B2 (en)
GB898327A (en) High side pressure control for refrigerating systems
JPS5852955A (en) Refrigerator
JPH0522756Y2 (en)
JPH0442682Y2 (en)
JPS5899649A (en) Refrigerator
JPS5862463A (en) Refrigerator
JPS5899652A (en) Refrigerator
JPS60120155A (en) Refrigeration cycle device
JPS5816167A (en) Refrigerator
JPS61191835A (en) Gas-liquid separator of chilling unit for automobile
JPS5899655A (en) Refrigerator