JP2001074321A - Supercritical vapor compressing cycle device and pressure control valve with release valve - Google Patents

Supercritical vapor compressing cycle device and pressure control valve with release valve

Info

Publication number
JP2001074321A
JP2001074321A JP22494999A JP22494999A JP2001074321A JP 2001074321 A JP2001074321 A JP 2001074321A JP 22494999 A JP22494999 A JP 22494999A JP 22494999 A JP22494999 A JP 22494999A JP 2001074321 A JP2001074321 A JP 2001074321A
Authority
JP
Japan
Prior art keywords
pressure
radiator
refrigerant
evaporator
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22494999A
Other languages
Japanese (ja)
Other versions
JP4047497B2 (en
Inventor
Tomoo Okada
伴雄 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP22494999A priority Critical patent/JP4047497B2/en
Publication of JP2001074321A publication Critical patent/JP2001074321A/en
Application granted granted Critical
Publication of JP4047497B2 publication Critical patent/JP4047497B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/063Feed forward expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Landscapes

  • Safety Valves (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To operate a supercritical vapor compressing cycle device along the optimum control line upon a normal time and permit coping with a condition that a high driving force is necessitated in a case when an inner pressure of a diaphragm chamber is raised by a high outdoor air temperature when a cooling load is reduced. SOLUTION: In a supercritical vapor compressing cycle device, in which a refrigerant, such as carbon dioxide gas or the like, is circulated through a compressor 1, a radiator 2 and an evaporator 3 sequentially to effect operation in a supercritical area, a high-pressure control valve 7, controlling a pressure in the outlet port side of the radiator 2 by controlling the degree of communication with the radiator 2 and the evaporator 3 while sensing the pressure and temperature of the outlet port side of the radiator 2, and a release valve 8, opened when a pressure difference between the outlet port side pressure of the radiator 2 and the inlet port side pressure of the evaporator 3 is higher than a predetermined value, are provided in parallel to each other on the way of a refrigerant passage 5 from the radiator 2 to the evaporator 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は超臨界蒸気圧縮サ
イクル装置および逃し弁付き圧力制御弁に関するもので
ある。
The present invention relates to a supercritical vapor compression cycle device and a pressure control valve with a relief valve.

【従来の技術】近年では、オゾン層破壊を防ぐために、
冷媒としてフロンに代えて炭酸ガス(CO2 )を使用す
る研究が行われている。炭酸ガス冷媒を使用する冷凍サ
イクル装置では、フロン冷媒によるものとは異なって、
臨界温度が低く、超臨界域で運転されるため、このよう
な冷凍サイクルは超臨界蒸気圧縮サイクルと云われ、高
圧側で凝縮現象が行われず、その状況により成績係数
(動作係数)が左右されると共に、フロン冷媒によるも
のに比して圧力変動が生じ易いと云う特性を有してい
る。
2. Description of the Related Art In recent years, in order to prevent ozone layer depletion,
Research has been conducted using carbon dioxide (CO 2 ) instead of chlorofluorocarbon as a refrigerant. In a refrigeration cycle device using carbon dioxide gas refrigerant, unlike the one using fluorocarbon refrigerant,
Such a refrigeration cycle is called a supercritical vapor compression cycle because the operation is performed in a supercritical region with a low critical temperature, and the condensation coefficient does not occur on the high pressure side, and the coefficient of performance (operating coefficient) depends on the situation. In addition, it has the characteristic that pressure fluctuations are more likely to occur as compared with those using a chlorofluorocarbon refrigerant.

【0002】上述のような超臨界蒸気圧縮サイクル装置
では、特開平9−264622号公報に示されているよ
うに、冷媒封入のダイヤフラム室の内圧と放熱器出口側
の冷媒圧力との平衡関係により動作する圧力制御弁を放
熱器より蒸発器へ至る冷媒通路の途中に設け、圧力制御
弁によって放熱器の出口側の冷媒の圧力と温度とが最適
制御線に沿うように制御するものや、特開平10−97
19号公報に示されているように、蒸発器の入口側の冷
媒の圧力との差圧が所定値になるように、蒸発器の入口
側の冷媒の圧力に感応する減圧弁を放熱器より蒸発器へ
至る冷媒通路の途中に設けたものが知られている。
In the above-described supercritical vapor compression cycle apparatus, as disclosed in Japanese Patent Application Laid-Open No. 9-264622, the balance between the internal pressure of the diaphragm chamber filled with the refrigerant and the refrigerant pressure at the outlet of the radiator is disclosed. An operating pressure control valve is provided in the middle of the refrigerant passage from the radiator to the evaporator, and the pressure control valve controls the pressure and temperature of the refrigerant at the outlet side of the radiator along the optimal control line. Kaihei 10-97
As disclosed in Japanese Patent Publication No. 19, a pressure-reducing valve responsive to the pressure of the refrigerant at the inlet of the evaporator is moved from the radiator so that the pressure difference between the pressure of the refrigerant at the inlet of the evaporator and the refrigerant becomes a predetermined value. There is known one provided in the middle of a refrigerant passage leading to an evaporator.

【0003】[0003]

【発明が解決しようとする課題】特開平9−26462
2号公報に示されているように、冷媒封入のダイヤフラ
ム室の内圧と放熱器出口側の冷媒圧力との平衡関係によ
り動作する圧力制御弁によって最適制御するものでは、
高圧側の制御はできるが、この制御は、冷房負荷の大き
さに関係なく放熱器出口側の冷媒圧力で決定されるた
め、冷房負荷が少ない場合に高駆動力が必要であること
に対応できない。また、車載用空気調和装置において
は、高外気温時に空気調和装置が停止していると、ダイ
ヤフラム室内圧が高くなり、この状態で始動されても、
外気温度相当圧力以上にならないと、開弁せず、空気調
和装置を運転できず、高圧側の耐圧を超える虞れがあ
る。
Problems to be Solved by the Invention
As disclosed in Japanese Patent Application Publication No. 2 (1999) -2005, in the one controlled optimally by a pressure control valve which operates based on an equilibrium relationship between the internal pressure of the diaphragm chamber filled with the refrigerant and the refrigerant pressure on the radiator outlet side,
Although control on the high pressure side is possible, this control is determined by the refrigerant pressure on the radiator outlet side regardless of the size of the cooling load, so it cannot cope with the need for high driving force when the cooling load is small. . In addition, in the vehicle air conditioner, when the air conditioner is stopped at a high outside temperature, the diaphragm chamber pressure becomes high, even if started in this state,
If the pressure does not exceed the outside air temperature equivalent pressure, the valve will not open, the air conditioner cannot be operated, and the pressure on the high pressure side may be exceeded.

【0004】特開平10−9719号公報に示されてい
るように、蒸発器の入口側の冷媒の圧力との差圧が所定
値になるように、蒸発器の入口側の冷媒の圧力に感応す
る減圧弁を放熱器より蒸発器へ至る冷媒通路の途中に設
けたものでは、上述したように不具合は発生しないが、
放熱器の出口側の冷媒の圧力と温度とが最適制御線に沿
うようには制御されず、このため、成績係数が低い運転
となり、冷凍サイクル装置の経済性が低くなることを避
けられない。
As disclosed in Japanese Patent Application Laid-Open No. 10-9719, the pressure of the refrigerant on the inlet side of the evaporator is adjusted so that the pressure difference between the refrigerant and the inlet side of the evaporator becomes a predetermined value. In the case where the pressure reducing valve is provided in the middle of the refrigerant passage from the radiator to the evaporator, the problem does not occur as described above,
The pressure and temperature of the refrigerant on the outlet side of the radiator are not controlled so as to be along the optimal control line, so that the operation is performed with a low coefficient of performance and the economic efficiency of the refrigeration cycle device is inevitably reduced.

【0005】この発明は、上述の如き問題点を解消する
ためになされたもので、通常時は最適制御線に沿う運転
を行い、冷房負荷が少ない場合に高駆動力が必要である
ことや、高外気温によってダイヤフラム室内圧が高くな
っていることに対応でき、高圧側の安全性を図りつつ効
率のよい運転を行うことができる超臨界蒸気圧縮サイク
ル装置および逃し弁付き圧力制御弁を提供することを目
的としている。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems. The present invention operates normally along an optimal control line, and requires a high driving force when the cooling load is small. Provided is a supercritical vapor compression cycle device and a pressure control valve with a relief valve that can cope with an increase in the diaphragm chamber pressure due to a high outside temperature and can perform an efficient operation while ensuring safety on a high pressure side. It is intended to be.

【0006】[0006]

【課題を解決するための手段】上述の目的を達成するた
めに、請求項1に記載の発明による超臨界蒸気圧縮サイ
クル装置は、圧縮機と放熱器と蒸発器とを炭酸ガス等に
よる冷媒が順に循環し、超臨界域で運転される超臨界蒸
気圧縮サイクル装置において、前記放熱器より前記蒸発
器へ至る冷媒通路の途中に設けられ、前記放熱器の出口
側の冷媒の圧力および温度に感応して前記放熱器と前記
蒸発器との連通度を制御して放熱器出口側の圧力制御を
行う高圧制御弁と、前記放熱器より前記蒸発器へ至る冷
媒通路の途中に前記高圧制御弁と並列に設けられ、前記
放熱器の出口側の冷媒の圧力と蒸発器の入口側の冷媒の
圧力との差圧が所定値以上の場合に開弁する逃し弁とを
有しているものである。
In order to achieve the above object, a supercritical vapor compression cycle device according to the first aspect of the present invention comprises a compressor, a radiator, and an evaporator in which a refrigerant such as carbon dioxide is used. In a supercritical vapor compression cycle device that circulates sequentially and is operated in a supercritical region, the supercritical vapor compression cycle device is provided in the middle of a refrigerant passage from the radiator to the evaporator, and is sensitive to the pressure and temperature of the refrigerant at the outlet side of the radiator. A high-pressure control valve that controls the degree of communication between the radiator and the evaporator to control the pressure at the radiator outlet side, and the high-pressure control valve in the middle of a refrigerant passage from the radiator to the evaporator. A relief valve that is provided in parallel and that opens when the pressure difference between the pressure of the refrigerant on the outlet side of the radiator and the pressure of the refrigerant on the inlet side of the evaporator is equal to or higher than a predetermined value. .

【0007】また、上述の目的を達成するために、請求
項2に記載の発明による超臨界蒸気圧縮サイクル装置
は、圧縮機と放熱器と蒸発器とを炭酸ガス等による冷媒
が順に循環し、超臨界域で運転される超臨界蒸気圧縮サ
イクル装置において、前記放熱器より前記蒸発器へ至る
冷媒通路の途中に設けられ、前記放熱器より前記蒸発器
へ向かう冷媒の圧力および温度に感応する圧力・温度感
応手段により駆動されて前記放熱器と前記蒸発器との連
通・遮断ならびに連通度を制御し、放熱器出口側の圧力
制御を行う高圧制御弁と、前記放熱器より前記蒸発器へ
至る冷媒通路の途中に前記高圧制御弁と並列に設けら
れ、前記放熱器の出口側の冷媒の圧力と蒸発器の入口側
の冷媒の圧力との差圧が所定値以上の場合に開弁し、前
記圧力・温度感応手段が前記放熱器より前記蒸発器へ向
かう冷媒の流れ中に曝されるようにする逃し弁とを有し
ているものである。
In order to achieve the above-mentioned object, a supercritical vapor compression cycle device according to the second aspect of the present invention provides a compressor, a radiator, and an evaporator in which a refrigerant such as carbon dioxide gas circulates sequentially. In a supercritical vapor compression cycle device operated in a supercritical region, a pressure that is provided in the middle of a refrigerant passage from the radiator to the evaporator and is sensitive to the pressure and temperature of the refrigerant flowing from the radiator to the evaporator. A high-pressure control valve that is driven by the temperature sensing means to control the connection / disconnection and the degree of communication between the radiator and the evaporator, and controls the pressure at the radiator outlet side; and from the radiator to the evaporator. It is provided in parallel with the high-pressure control valve in the middle of the refrigerant passage, and opens when the pressure difference between the pressure of the refrigerant on the outlet side of the radiator and the pressure of the refrigerant on the inlet side of the evaporator is a predetermined value or more, The pressure / temperature sensitive means Those having a relief valve to be exposed in the flow of the refrigerant toward the evaporator from the radiator.

【0008】また、上述の目的を達成するために、請求
項3に記載の発明による逃し弁付き圧力制御弁は、圧力
制御用弁ポートと逃し用弁ポートとを並列の関係で有す
る弁ハウジングと、前記弁ハウジング内に設けられて圧
力および温度に感応する圧力・温度感応手段と、前記圧
力・温度感応手段により駆動され、圧力制御弁用弁ポー
トの開閉と開度設定を行う圧力制御弁体と、前記逃し弁
用弁ポートを開閉する逃し用弁体と、前記逃し用弁体を
閉弁方向に付勢する逃し圧設定ばねとを有しているもの
である。
According to another aspect of the present invention, there is provided a pressure control valve with a relief valve according to a third aspect of the present invention, comprising a valve housing having a pressure control valve port and a relief valve port in a parallel relationship. A pressure / temperature responsive means provided in the valve housing and responsive to pressure and temperature; and a pressure control valve element driven by the pressure / temperature responsive means for opening / closing a valve port for a pressure control valve and setting an opening degree. And a relief valve element for opening and closing the relief valve valve port, and a relief pressure setting spring for urging the relief valve element in the valve closing direction.

【0009】請求項4に記載の発明による逃し弁付き圧
力制御弁は、前記圧力・温度感応手段は前記逃し用弁ポ
ートより上流側に形成された圧力・温度感応室内に配置
され、前記逃し用弁体が開弁することにより前記圧力・
温度感応室に流体の流れが生じ、前記圧力・温度感応手
段が流体の流れ中に曝されるものである。
According to a fourth aspect of the present invention, in the pressure control valve with a relief valve, the pressure / temperature sensitive means is disposed in a pressure / temperature sensitive chamber formed upstream of the relief valve port. When the valve element opens, the pressure
The flow of the fluid is generated in the temperature sensitive chamber, and the pressure / temperature sensitive means is exposed to the flow of the fluid.

【0010】請求項5に記載の発明による逃し弁付き圧
力制御弁は、前記圧力・温度感応手段が密封型のベロー
ズ装置であるものである。
According to a fifth aspect of the present invention, in the pressure control valve with a relief valve, the pressure / temperature sensitive means is a sealed bellows device.

【0011】請求項6に記載の発明による逃し弁付き圧
力制御弁は、圧縮機と放熱器と蒸発器とを炭酸ガス等に
よる冷媒が順に循環し、超臨界域で運転される超臨界蒸
気圧縮サイクル装置において、前記放熱器より前記蒸発
器へ至る冷媒通路の途中に設けられ、前記放熱器の出口
側の冷媒の圧力および温度に感応して前記放熱器より前
記蒸発器へ流れる冷媒流量を制御する高圧制御弁と、前
記放熱器の出口側の冷媒の圧力と前記蒸発器の入口側の
冷媒の圧力との差圧が所定値以上の場合に開弁する逃し
弁との複合弁として使用されるものである。
A pressure control valve with a relief valve according to a sixth aspect of the present invention is a supercritical vapor compression system in which a refrigerant such as carbon dioxide gas circulates sequentially through a compressor, a radiator, and an evaporator to operate in a supercritical region. In the cycle device, the refrigerant flow is provided in the middle of the refrigerant passage from the radiator to the evaporator, and controls the flow rate of the refrigerant flowing from the radiator to the evaporator in response to the pressure and temperature of the refrigerant on the outlet side of the radiator. And a relief valve that opens when the pressure difference between the pressure of the refrigerant at the outlet of the radiator and the pressure of the refrigerant at the inlet of the evaporator is equal to or higher than a predetermined value. Things.

【0012】請求項1に記載の発明による超臨界蒸気圧
縮サイクル装置では、高圧制御弁が放熱器の出口側の冷
媒の圧力および温度に感応して放熱器と蒸発器との連通
度を制御して放熱器出口側の圧力を制御し、この制御に
よって通常時には最適制御線に沿う運転が行われ、放熱
器の出口側の冷媒の圧力と蒸発器の入口側の冷媒の圧力
との差圧が所定値以上になると、逃し弁が開弁すること
により、冷房負荷が少ない場合に省動力化が図れる超臨
界蒸気圧縮サイクル装置の運転を保証する。
In the supercritical vapor compression cycle device according to the first aspect of the present invention, the high pressure control valve controls the degree of communication between the radiator and the evaporator in response to the pressure and temperature of the refrigerant at the outlet of the radiator. The pressure at the outlet side of the radiator is controlled by this control.By this control, the operation along the optimal control line is normally performed, and the differential pressure between the pressure of the refrigerant at the outlet side of the radiator and the pressure of the refrigerant at the inlet side of the evaporator is obtained. When the pressure exceeds the predetermined value, the relief valve is opened to guarantee the operation of the supercritical vapor compression cycle device that can save power when the cooling load is small.

【0013】請求項2に記載の発明による超臨界蒸気圧
縮サイクル装置では、高圧制御弁が放熱器の出口側の冷
媒の圧力および温度に感応して放熱器と蒸発器との連通
・遮断ならびに連通度を制御して放熱器出口側の圧力を
制御し、この制御によって通常時には最適制御線に沿う
運転が行われ、放熱器の出口側の冷媒の圧力と蒸発器の
入口側の冷媒の圧力との差圧が所定値以上になると、逃
し弁が開弁することにより、冷房負荷が少ない場合に高
駆動力が必要であることに対応した超臨界蒸気圧縮サイ
クル装置の運転を保証し、また、逃し弁が開弁すれば、
高圧制御弁が閉弁していても、圧力・温度感応室に流体
の流れが生じ、圧力・温度感応手段が放熱器より蒸発器
へ向かう冷媒の流れ中に曝され、圧力・温度感応手段が
正規の温度に感応するようになる。
[0013] In the supercritical vapor compression cycle device according to the second aspect of the present invention, the high-pressure control valve communicates with the radiator and the evaporator in response to the pressure and temperature of the refrigerant at the outlet side of the radiator and shuts off and communicates. By controlling the pressure, the pressure at the outlet side of the radiator is controlled.By this control, the operation along the optimal control line is performed at normal times, and the pressure of the refrigerant at the outlet side of the radiator and the pressure of the refrigerant at the inlet side of the evaporator are controlled. When the differential pressure is equal to or higher than a predetermined value, the relief valve opens to ensure the operation of the supercritical vapor compression cycle device corresponding to the need for high driving force when the cooling load is small, If the relief valve opens,
Even when the high pressure control valve is closed, a fluid flow occurs in the pressure / temperature sensitive chamber, and the pressure / temperature sensitive means is exposed to the flow of the refrigerant from the radiator to the evaporator, and the pressure / temperature sensitive means is Becomes sensitive to regular temperature.

【0014】請求項3に記載の発明による逃し弁付き圧
力制御弁では、圧力制御弁体が圧力・温度感応手段によ
り駆動されて圧力制御弁用弁ポートの開閉と開度設定を
行い、逃し弁用弁ポート前後の差圧が逃し圧設定ばねに
より設定される逃し圧以上になると、逃し用弁体が開弁
し、圧力制御弁用弁ポートをバイパス形態で連通状態に
なる。
In the pressure control valve with a relief valve according to the third aspect of the present invention, the pressure control valve body is driven by the pressure / temperature sensitive means to open and close the valve port for the pressure control valve and to set the opening degree. When the differential pressure across the valve port exceeds the relief pressure set by the relief pressure setting spring, the relief valve body opens and the pressure control valve valve port communicates in a bypass configuration.

【0015】請求項4に記載の発明による逃し弁付き圧
力制御弁では、逃し弁が開弁すると、高圧制御弁が閉弁
していても、圧力・温度感応室に流体の流れが生じ、圧
力・温度感応手段が圧力・温度感応室の流体の流れ中に
曝され、圧力・温度感応手段が圧力・温度感応室を流れ
る流体の圧力、温度に感応するようになる。
In the pressure control valve with a relief valve according to the fourth aspect of the present invention, when the relief valve is opened, a flow of fluid is generated in the pressure / temperature sensitive chamber even if the high pressure control valve is closed. The temperature sensitive means is exposed to the flow of the fluid in the pressure / temperature sensitive chamber, and the pressure / temperature sensitive means becomes sensitive to the pressure and temperature of the fluid flowing in the pressure / temperature sensitive chamber;

【0016】請求項5に記載の発明による逃し弁付き圧
力制御弁では、圧力制御弁体が圧力・温度感応手段であ
る密封型のベローズ装置により駆動されて圧力制御弁用
弁ポートの開閉と開度設定を行う。
In the pressure control valve with a relief valve according to the fifth aspect of the present invention, the pressure control valve body is driven by a sealed bellows device which is a pressure / temperature sensitive means to open and close the valve port for the pressure control valve. Set the degree.

【0017】請求項6に記載の発明による逃し弁付き圧
力制御弁では、超臨界蒸気圧縮サイクル装置において、
放熱器の出口側の冷媒の圧力および温度に感応して放熱
器より蒸発器へ流れる冷媒流量を制御する高圧制御弁
と、放熱器の出口側の冷媒の圧力と蒸発器の入口側の冷
媒の圧力との差圧が所定値以上の場合に開弁する逃し弁
との複合弁として使用される。
According to a pressure control valve with a relief valve according to the invention of claim 6, in the supercritical vapor compression cycle device,
A high-pressure control valve that controls the flow rate of the refrigerant flowing from the radiator to the evaporator in response to the pressure and temperature of the refrigerant at the outlet of the radiator, and the pressure of the refrigerant at the outlet of the radiator and the refrigerant at the inlet of the evaporator. It is used as a combined valve with a relief valve that opens when the pressure difference from the pressure is greater than or equal to a predetermined value.

【0018】[0018]

【発明の実施の形態】以下に添付の図を参照してこの発
明の実施の形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0019】図1はこの発明による超臨界蒸気圧縮サイ
クル装置の一つの実施の形態を示している。この超臨界
蒸気圧縮サイクルは、圧縮機1と、放熱器(ガスクー
ラ)2と、蒸発器3が冷媒通路(配管)4、5、6によ
り閉ループ状に連通接続され、この閉ループを炭酸ガス
等による冷媒が循環する。
FIG. 1 shows an embodiment of a supercritical vapor compression cycle device according to the present invention. In this supercritical vapor compression cycle, a compressor 1, a radiator (gas cooler) 2, and an evaporator 3 are connected in a closed loop manner by refrigerant passages (pipes) 4, 5, and 6, and the closed loop is formed by carbon dioxide gas or the like. Refrigerant circulates.

【0020】放熱器2より蒸発器3へ至る冷媒通路5の
途中には、放熱器2の出口側の冷媒の圧力および温度に
感応して放熱器2と蒸発器3との連通・遮断および連通
度を定量的に制御して放熱器出口側の圧力制御を行う高
圧制御弁7と、放熱器2の出口側の冷媒の圧力と蒸発器
3の入口側の冷媒の圧力との差圧が所定値以上の場合に
開弁する逃し弁8とが互いに並列に設けられている。
In the middle of the refrigerant passage 5 from the radiator 2 to the evaporator 3, the communication between the radiator 2 and the evaporator 3 is controlled in response to the pressure and temperature of the refrigerant at the outlet side of the radiator 2. A high-pressure control valve 7 for quantitatively controlling the temperature and controlling the pressure on the outlet side of the radiator, and a differential pressure between the pressure of the refrigerant on the outlet side of the radiator 2 and the pressure of the refrigerant on the inlet side of the evaporator 3 is predetermined. A relief valve 8 that opens when the value is equal to or larger than the value is provided in parallel with each other.

【0021】高圧制御弁7と逃し弁8とは、図2に示さ
れているような、逃し弁付き圧力制御弁10により、一
つの複合弁として構成することができる。つぎに、この
逃し弁付き圧力制御弁10について説明する。逃し弁付
き圧力制御弁10は放熱器2あるいは蒸発器3の本体ホ
ディ11に形成された弁受入孔12内に装填されてい
る。逃し弁付き圧力制御弁10の弁ハウジング13に
は、弁ハウジング13にねじ止めされたエンド部材14
により画定されて放熱器2の出口側に連通する入口ポー
ト15、入口ポート15と直接連通しているハウジング
内通路16と、弁ハウジング13にねじ止めされたばね
リテーナ部材17により画定されて蒸発器3の入口側と
連通する出口ポート18と、出口ポート18と直接連通
している逃し弁室19と、ハウジング内通路16と逃し
弁室19とを連通する圧力制御用弁ポート20と、ハウ
ジング内通路16の下流側に連通している延長通路21
と逃し弁室19とを連通する逃し用弁ポート22とを有
し、圧力制御用弁ポート20と逃し用弁ポート22と
は、入口ポート15と出口ポート18との間に互いに並
列の関係になっている。
The high-pressure control valve 7 and the relief valve 8 can be formed as one composite valve by a pressure control valve 10 with a relief valve as shown in FIG. Next, the pressure control valve 10 with a relief valve will be described. The pressure control valve 10 with a relief valve is loaded in a valve receiving hole 12 formed in the main body 11 of the radiator 2 or the evaporator 3. An end member 14 screwed to the valve housing 13 is attached to the valve housing 13 of the pressure control valve 10 with a relief valve.
, An inlet port 15 communicating with the outlet side of the radiator 2, a passage 16 in the housing directly communicating with the inlet port 15, and a spring retainer member 17 screwed to the valve housing 13. An outlet port 18 communicating with the inlet side of the valve, a relief valve chamber 19 directly communicating with the outlet port 18, a pressure control valve port 20 communicating the passage 16 in the housing and the relief valve chamber 19, and a passage in the housing. Extension passage 21 communicating with the downstream side of 16
And a relief valve port 22 that communicates with the relief valve chamber 19. The pressure control valve port 20 and the relief valve port 22 are parallel to each other between the inlet port 15 and the outlet port 18. Has become.

【0022】ハウジング内通路16内には圧力・温度感
応手段として、超臨界状態の炭酸ガスが封入された密閉
型のベローズ装置23が配置されている。ベローズ装置
23は、上端部材24を一体に有するベローズ本体25
と、ベローズ本体25の下端を閉じるべくベローズ本体
25の下端に溶接された下端部材26と、下端部材26
に形成された注入孔27を閉じてベローズ内部を密閉す
るシール用ボール28と、上端を上端部材24に固定さ
れた内部ストッパ部材29と、内部ストッパ部材29の
上側フランジ部30と下端部材26との間に設けられた
圧縮コイルばね31により構成されている。
In the passage 16 in the housing, a closed bellows device 23 in which carbon dioxide in a supercritical state is sealed is disposed as a pressure / temperature sensitive means. The bellows device 23 includes a bellows body 25 having an upper end member 24 integrally therewith.
A lower end member 26 welded to the lower end of the bellows main body 25 to close the lower end of the bellows main body 25;
A sealing ball 28 that closes the bellows by closing the injection hole 27 formed in the inner stopper member 29, an internal stopper member 29 having an upper end fixed to the upper end member 24, an upper flange portion 30 and a lower end member 26 of the internal stopper member 29, And a compression coil spring 31 provided between them.

【0023】ベローズ装置23のベローズ室37の内部
には、超臨界状態の炭酸ガスが、運転を最適化する密度
で封入されており、このベローズ装置23は、ハウジン
グ内通路16内にあって放熱器2の出口側の冷媒温度に
感応し発生する圧力と、バイアスばねとして作用する圧
縮コイルばね31のばね力による圧力との合計に対す
る、放熱器2の出口側の冷媒圧力の平衡関係により動作
する。
In the bellows chamber 37 of the bellows device 23, a supercritical carbon dioxide gas is sealed at a density for optimizing the operation. It operates according to the balance of the refrigerant pressure at the outlet side of the radiator 2 with respect to the sum of the pressure generated in response to the refrigerant temperature at the outlet side of the heat sink 2 and the pressure due to the spring force of the compression coil spring 31 acting as a bias spring. .

【0024】ベローズ装置23の上端部分には弁保持部
材32が固定されており、弁保持部材32にボール弁体
による圧力制御用弁体33が固定されている。圧力制御
用弁体33は、ベローズ装置23によって駆動され、圧
力制御弁用弁ポート20の開閉と開度設定を行う。
A valve holding member 32 is fixed to an upper end portion of the bellows device 23, and a valve 33 for pressure control using a ball valve is fixed to the valve holding member 32. The pressure control valve element 33 is driven by the bellows device 23 to open / close and set the opening of the pressure control valve valve port 20.

【0025】逃し弁室19には逃し用弁ポート22を開
閉するボール弁体による逃し弁体34が設けられてい
る。また、逃し弁室19には、逃し弁体34に係合して
いるばねリテーナ部材35と弁ハウジング13にねじ止
めされたばねリテーナ部材17との間には逃し用弁体3
4を閉弁方向に付勢する圧縮コイルばねによる逃し圧設
定ばね36が設けられている。逃し弁体34の設定圧力
は、炭酸ガス冷媒の場合には、9MPa程度に設定すれ
ばよい。
The relief valve chamber 19 is provided with a relief valve element 34 composed of a ball valve element for opening and closing the relief valve port 22. Further, in the relief valve chamber 19, there is a relief valve element 3 between the spring retainer member 35 engaged with the relief valve element 34 and the spring retainer member 17 screwed to the valve housing 13.
A relief pressure setting spring 36 is provided by a compression coil spring for urging the valve 4 in the valve closing direction. The set pressure of the relief valve 34 may be set to about 9 MPa in the case of carbon dioxide refrigerant.

【0026】延長通路21はハウジング内通路16の下
流側に連通しているから、ハウジング内通路16は逃し
用弁ポート22より上流側にあり、逃し弁体34が開弁
すれば、圧力制御用弁体33が閉弁していても、ベロー
ズ本体25の外側に位置するハウジング内通路16に流
体(冷媒)の流れが生じ、ベローズ装置23が放熱器2
より蒸発器3へ向かう冷媒の流れ中に曝されるようにな
る。
Since the extension passage 21 communicates with the downstream side of the in-housing passage 16, the in-housing passage 16 is located upstream of the relief valve port 22, and when the relief valve body 34 is opened, the pressure control Even when the valve element 33 is closed, a flow of fluid (refrigerant) occurs in the passage 16 in the housing located outside the bellows body 25, and the bellows device 23
It is exposed to the refrigerant flowing toward the evaporator 3.

【0027】つぎに、上述の逃し弁付き圧力制御弁10
の動作について説明する。通常時は、逃し弁体34は逃
し圧設定ばね36のばね力より逃し用弁ポート22を閉
じており、ベローズ装置23が放熱器2の出口側の冷媒
の圧力および温度に感応して動作することで、圧力制御
用弁体33が高圧制御弁として動作し、放熱器2の出口
側の冷媒の圧力および温度に感応して放熱器2と蒸発器
3との連通度を制御する。これにより、放熱器2の出口
側の圧力が制御され、この制御によって、通常時には最
適制御線に沿う運転が行われ、高い成績係数による運転
が行われる。
Next, the above-described pressure control valve 10 with a relief valve is used.
The operation of will be described. Normally, the relief valve body 34 closes the relief valve port 22 by the spring force of the relief pressure setting spring 36, and the bellows device 23 operates in response to the pressure and temperature of the refrigerant at the outlet side of the radiator 2. Thus, the pressure control valve element 33 operates as a high-pressure control valve, and controls the degree of communication between the radiator 2 and the evaporator 3 in response to the pressure and temperature of the refrigerant on the outlet side of the radiator 2. As a result, the pressure on the outlet side of the radiator 2 is controlled, and by this control, the operation along the optimal control line is normally performed, and the operation with a high coefficient of performance is performed.

【0028】高圧側圧力が高い条件で冷房負荷が小さ
く、蒸発器3側の圧力が低いと、逃し圧設定ばね36の
ばね力に抗して逃し用弁ポート22が開弁し、圧力制御
弁用弁ポート20をバイパスして放熱器2と蒸発器3と
の連通度が増大する。これにより、冷房負荷が少ない場
合でも省動力化が図れる。
When the cooling load is small and the pressure on the side of the evaporator 3 is low under the condition that the high-pressure side pressure is high, the relief valve port 22 is opened against the spring force of the relief pressure setting spring 36 and the pressure control valve is opened. The communication between the radiator 2 and the evaporator 3 is increased by bypassing the valve port 20 for use. Thereby, power saving can be achieved even when the cooling load is small.

【0029】また、始動時において、圧力制御弁用弁ポ
ート20が閉じられている状態で、放熱器2と蒸発器3
との差圧、換言すれば、圧縮機1の吐出圧力と吸入圧力
との差が所定値以上になると、逃し圧設定ばね36のば
ね力に抗して逃し用弁ポート22が開弁し、圧力制御弁
用弁ポート20をバイパスして放熱器2と蒸発器3とが
連通し、ハウジング内通路16内を冷媒が流れるように
なる。これにより、ベローズ装置23が放熱器2の出口
側の正規の温度を検知し、これに応じて放熱器2と蒸発
器3との連通度が設定されるから、高外気温によってベ
ローズ装置23の内圧が高くなっていても、速やかに正
規の運転が行われるようになる。
At the time of startup, the radiator 2 and the evaporator 3 are closed with the pressure control valve valve port 20 closed.
In other words, when the difference between the discharge pressure and the suction pressure of the compressor 1 exceeds a predetermined value, the relief valve port 22 opens against the spring force of the relief pressure setting spring 36, The radiator 2 and the evaporator 3 communicate with each other bypassing the valve port 20 for the pressure control valve, and the refrigerant flows through the passage 16 in the housing. Thereby, the bellows device 23 detects the normal temperature at the outlet side of the radiator 2 and the communication between the radiator 2 and the evaporator 3 is set accordingly. Even if the internal pressure is high, normal operation can be performed promptly.

【0030】また、圧縮機1の回転数が高騰し、放熱器
2側の圧力が急激に上昇した場合も、逃し圧設定ばね3
6のばね力に抗して逃し用弁ポート22が開弁し、放熱
器2と蒸発器3とが連通するから、安全弁としての作用
も得られる。
Also, when the rotation speed of the compressor 1 rises and the pressure on the radiator 2 side rises sharply, the relief pressure setting spring 3
The relief valve port 22 is opened against the spring force of No. 6, and the radiator 2 and the evaporator 3 communicate with each other, so that a function as a safety valve can also be obtained.

【0031】[0031]

【発明の効果】以上の説明から理解される如く、請求項
1に記載の発明による超臨界蒸気圧縮サイクル装置によ
れば、高圧制御弁が放熱器の出口側の冷媒の圧力および
温度に感応して放熱器と蒸発器との連通度を制御して放
熱器出口側の圧力を制御し、この制御によって通常時に
は最適制御線に沿う運転が行われ、放熱器の出口側の冷
媒の圧力と蒸発器の入口側の冷媒の圧力との差圧が所定
値以上になると、逃し弁が開弁することにより、高圧側
圧力が高い条件で冷房負荷が少ない場合に省動力化が図
れる超臨界蒸気圧縮サイクル装置の適正運転が保証され
る。
As can be understood from the above description, according to the supercritical vapor compression cycle device according to the first aspect of the present invention, the high pressure control valve is sensitive to the pressure and temperature of the refrigerant at the outlet side of the radiator. By controlling the degree of communication between the radiator and the evaporator, the pressure at the outlet of the radiator is controlled, and this control normally operates along the optimal control line, and the pressure and evaporation of the refrigerant at the outlet of the radiator are controlled. When the pressure difference between the pressure of the refrigerant on the inlet side of the vessel and the pressure exceeds a predetermined value, the relief valve is opened to save power when the cooling load is small under high pressure on the high pressure side. Proper operation of the cycle device is guaranteed.

【0032】請求項2に記載の発明による超臨界蒸気圧
縮サイクル装置によれば、高圧制御弁が放熱器の出口側
の冷媒の圧力および温度に感応して放熱器と蒸発器との
連通・遮断ならびに連通度を制御して放熱器出口側の圧
力を制御し、この制御によって通常時には最適制御線に
沿う運転が行われ、放熱器の出口側の冷媒の圧力と蒸発
器の入口側の冷媒の圧力との差圧が所定値以上になる
と、逃し弁が開弁することにより、冷房負荷が少ない場
合に高駆動力が必要であることに対応した超臨界蒸気圧
縮サイクル装置の運転を保証し、また、逃し弁が開弁す
れば、高圧制御弁が閉弁していても、圧力・温度感応室
に流体の流れが生じ、圧力・温度感応手段が放熱器より
蒸発器へ向かう冷媒の流れ中に曝され、圧力・温度感応
手段が正規の温度に感応するようになり、高外気温時の
超臨界蒸気圧縮サイクル装置の速やかな始動が保証され
る。
[0032] According to the supercritical vapor compression cycle device according to the second aspect of the present invention, the high pressure control valve responds to the pressure and temperature of the refrigerant at the outlet side of the radiator to communicate and shut off the radiator and the evaporator. In addition, by controlling the degree of communication, the pressure at the outlet of the radiator is controlled, and by this control, the operation along the optimal control line is performed at normal times, and the pressure of the refrigerant at the outlet of the radiator and the refrigerant at the inlet of the evaporator are controlled. When the pressure difference with the pressure is equal to or greater than a predetermined value, the relief valve opens to guarantee the operation of the supercritical vapor compression cycle device corresponding to the need for a high driving force when the cooling load is small, Also, if the relief valve opens, even if the high-pressure control valve is closed, a fluid flow occurs in the pressure / temperature sensitive chamber, and the pressure / temperature sensitive means causes the flow of the refrigerant from the radiator to the evaporator to proceed. And the pressure and temperature sensitive means It comes to respond, quick start-up of the supercritical vapor compression cycle device during Kosoto temperature is ensured.

【0033】請求項3に記載の発明による逃し弁付き圧
力制御弁によれば、圧力制御弁体が圧力・温度感応手段
により駆動されて圧力制御弁用弁ポートの開閉と開度設
定を行い、逃し弁用弁ポート前後の差圧が逃し圧設定ば
ねにより設定される逃し圧以上になると、逃し用弁体が
開弁し、圧力制御弁用弁ポートをバイパス形態で連通状
態になり、コンパクトな複合弁が得られる。
According to the pressure control valve with the relief valve according to the third aspect of the present invention, the pressure control valve body is driven by the pressure / temperature sensitive means to open / close and set the opening of the pressure control valve port. When the differential pressure across the relief valve valve port exceeds the relief pressure set by the relief pressure setting spring, the relief valve body opens and the pressure control valve valve port is connected in a bypass form, making it compact. A composite valve is obtained.

【0034】請求項4に記載の発明による逃し弁付き圧
力制御弁によれば、逃し弁が開弁すると、高圧制御弁が
閉弁していても、圧力・温度感応室に流体の流れが生
じ、圧力・温度感応手段が圧力・温度感応室の流体の流
れ中に曝され、圧力・温度感応手段が圧力・温度感応室
を流れる流体の圧力、温度に感応するようになり、圧力
・温度感応手段を速やかに正規動作させることが可能に
なる。
According to the pressure control valve with the relief valve according to the fourth aspect of the present invention, when the relief valve is opened, a fluid flows in the pressure / temperature sensitive chamber even if the high pressure control valve is closed. The pressure / temperature sensitive means is exposed to the flow of the fluid in the pressure / temperature sensitive chamber, and the pressure / temperature sensitive means becomes sensitive to the pressure and temperature of the fluid flowing through the pressure / temperature sensitive chamber. The means can be operated normally immediately.

【0035】請求項5に記載の発明による逃し弁付き圧
力制御弁によれば、圧力制御弁体が圧力・温度感応手段
である密封型のベローズ装置により駆動され、圧力制御
弁用弁ポートの開閉と開度設定が長期間に亙って安定し
て行われる。
According to the pressure control valve with the relief valve according to the fifth aspect of the present invention, the pressure control valve body is driven by the sealed bellows device which is a pressure / temperature sensitive means, and the valve port for the pressure control valve is opened and closed. The opening is set stably over a long period of time.

【0036】請求項6に記載の発明による逃し弁付き圧
力制御弁によれば、超臨界蒸気圧縮サイクル装置におい
て、放熱器の出口側の冷媒の圧力および温度に感応して
放熱器より蒸発器へ流れる冷媒流量を制御する高圧制御
弁と、放熱器の出口側の冷媒の圧力と蒸発器の入口側の
冷媒の圧力との差圧が所定値以上の場合に開弁する逃し
弁との複合弁として使用され、通常時の最適制御線に沿
う運転と、冷房負荷が少ない場合に高駆動力が必要であ
ることや、ダイヤフラム室内やベローズ室内の内圧が高
外気温によって高くなっていることに対応した、超臨界
蒸気圧縮サイクル装置の適正運転とが両立する。
According to the pressure control valve with the relief valve according to the sixth aspect of the present invention, in the supercritical vapor compression cycle device, the radiator transfers from the radiator to the evaporator in response to the pressure and temperature of the refrigerant at the outlet side of the radiator. A composite valve comprising a high-pressure control valve for controlling the flow rate of the flowing refrigerant and a relief valve for opening when the pressure difference between the pressure of the refrigerant at the outlet of the radiator and the pressure of the refrigerant at the inlet of the evaporator is equal to or higher than a predetermined value. It can be used for normal operation along the optimal control line, high driving force is required when the cooling load is small, and the internal pressure in the diaphragm room and bellows room is high due to high outside temperature Thus, proper operation of the supercritical vapor compression cycle device is compatible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明による超臨界蒸気圧縮サイクル装置の
一つの実施の形態を示すブロック線図である。
FIG. 1 is a block diagram showing one embodiment of a supercritical vapor compression cycle device according to the present invention.

【図2】この発明による逃し弁付き圧力制御弁の一つの
実施の形態を示す断面図である。
FIG. 2 is a sectional view showing one embodiment of a pressure control valve with a relief valve according to the present invention.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 放熱器 3 蒸発器 7 高圧制御弁 8 逃し弁 10 逃し弁付き圧力制御弁 13 弁ハウジング 15 入口ポート 16 ハウジング内通路 18 出口ポート 19 逃し弁室 20 圧力制御用弁ポート 22 逃し用弁ポート 23 ベローズ装置 33 圧力制御用弁体 34 逃し弁体 36 逃し圧設定ばね 37 ベローズ室 DESCRIPTION OF SYMBOLS 1 Compressor 2 Radiator 3 Evaporator 7 High-pressure control valve 8 Relief valve 10 Pressure control valve with relief valve 13 Valve housing 15 Inlet port 16 Passage in housing 18 Outlet port 19 Relief valve chamber 20 Pressure control valve port 22 Relief valve Port 23 Bellows device 33 Pressure control valve element 34 Release valve element 36 Release pressure setting spring 37 Bellows chamber

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機と放熱器と蒸発器とを炭酸ガス等
による冷媒が順に循環し、超臨界域で運転される超臨界
蒸気圧縮サイクル装置において、 前記放熱器より前記蒸発器へ至る冷媒通路の途中に設け
られ、前記放熱器の出口側の冷媒の圧力および温度に感
応して前記放熱器と前記蒸発器との連通度を制御して放
熱器出口側の圧力制御を行う高圧制御弁と、 前記放熱器より前記蒸発器へ至る冷媒通路の途中に前記
高圧制御弁と並列に設けられ、前記放熱器の出口側の冷
媒の圧力と蒸発器の入口側の冷媒の圧力との差圧が所定
値以上の場合に開弁する逃し弁と、 を有していることを特徴とする超臨界蒸気圧縮サイクル
装置。
1. A supercritical vapor compression cycle device in which a refrigerant such as carbon dioxide gas circulates sequentially through a compressor, a radiator, and an evaporator, and is operated in a supercritical region. A high-pressure control valve that is provided in the middle of the passage and controls the degree of communication between the radiator and the evaporator in response to the pressure and temperature of the refrigerant at the outlet of the radiator to control the pressure at the radiator outlet. A pressure difference between the pressure of the refrigerant at the outlet of the radiator and the pressure of the refrigerant at the inlet of the evaporator, provided in parallel with the high-pressure control valve in the middle of the refrigerant passage from the radiator to the evaporator. A supercritical vapor compression cycle device, comprising: a relief valve that opens when is greater than or equal to a predetermined value.
【請求項2】 圧縮機と放熱器と蒸発器とを炭酸ガス等
による冷媒が順に循環し、超臨界域で運転される超臨界
蒸気圧縮サイクル装置において、 前記放熱器より前記蒸発器へ至る冷媒通路の途中に設け
られ、前記放熱器より前記蒸発器へ向かう冷媒の圧力お
よび温度に感応する圧力・温度感応手段により駆動され
て前記放熱器と前記蒸発器との連通・遮断ならびに連通
度を制御し、放熱器出口側の圧力制御を行う高圧制御弁
と、 前記放熱器より前記蒸発器へ至る冷媒通路の途中に前記
高圧制御弁と並列に設けられ、前記放熱器の出口側の冷
媒の圧力と蒸発器の入口側の冷媒の圧力との差圧が所定
値以上の場合に開弁し、前記圧力・温度感応手段が前記
放熱器より前記蒸発器へ向かう冷媒の流れ中に曝される
ようにする逃し弁と、 を有していることを特徴とする超臨界蒸気圧縮サイクル
装置。
2. A supercritical vapor compression cycle device in which a refrigerant such as carbon dioxide gas circulates sequentially through a compressor, a radiator, and an evaporator, and is operated in a supercritical region. It is provided in the middle of the passage, and is driven by pressure / temperature sensing means that senses the pressure and temperature of the refrigerant flowing from the radiator to the evaporator to control the communication / cutoff and the degree of communication between the radiator and the evaporator. A high-pressure control valve for controlling the pressure on the outlet side of the radiator; and a pressure controller for the refrigerant on the outlet side of the radiator, which is provided in parallel with the high-pressure control valve in the middle of the refrigerant passage from the radiator to the evaporator. The valve is opened when the differential pressure between the pressure and the pressure of the refrigerant on the inlet side of the evaporator is equal to or higher than a predetermined value, so that the pressure / temperature sensitive means is exposed to the refrigerant flowing from the radiator to the evaporator. Having a relief valve and A supercritical vapor compression cycle device characterized by the above-mentioned.
【請求項3】 圧力制御用弁ポートと逃し用弁ポートと
を並列の関係で有する弁ハウジングと、 前記弁ハウジング内に設けられて圧力および温度に感応
する圧力・温度感応手段と、 前記圧力・温度感応手段により駆動され、圧力制御弁用
弁ポートの開閉と開度設定を行う圧力制御弁体と、 前記逃し弁用弁ポートを開閉する逃し用弁体と、 前記逃し用弁体を閉弁方向に付勢する逃し圧設定ばね
と、 を有する逃し弁付き圧力制御弁。
3. A valve housing having a pressure control valve port and a relief valve port in a parallel relationship, a pressure / temperature responsive means provided in the valve housing and responsive to pressure and temperature; A pressure control valve element driven by the temperature sensing means to open and close the pressure control valve port and set the opening degree; a relief valve element for opening and closing the relief valve valve port; and closing the relief valve element A pressure control valve with a relief valve, comprising: a relief pressure setting spring that biases in a direction.
【請求項4】 前記圧力・温度感応手段は前記逃し用弁
ポートより上流側に形成された圧力・温度感応室内に配
置され、前記逃し用弁体が開弁することにより前記圧力
・温度感応室に流体の流れが生じ、前記圧力・温度感応
手段が流体の流れ中に曝されることを特徴とする請求項
3に記載の逃し弁付き圧力制御弁。
4. The pressure / temperature sensitive chamber is disposed in a pressure / temperature sensitive chamber formed upstream of the relief valve port, and the pressure / temperature sensitive chamber is opened when the relief valve element opens. 4. A pressure control valve with a relief valve according to claim 3, wherein a flow of fluid is generated in the fluid, and the pressure / temperature sensitive means is exposed to the flow of the fluid.
【請求項5】 前記圧力・温度感応手段は、密封型のベ
ローズ装置であることを特徴とする請求項3または4に
記載の逃し弁付き圧力制御弁。
5. The pressure control valve with a relief valve according to claim 3, wherein the pressure / temperature sensitive means is a sealed bellows device.
【請求項6】 圧縮機と放熱器と蒸発器とを炭酸ガス等
による冷媒が順に循環し、超臨界域で運転される超臨界
蒸気圧縮サイクル装置において、前記放熱器より前記蒸
発器へ至る冷媒通路の途中に設けられ、前記放熱器の出
口側の冷媒の圧力および温度に感応して前記放熱器より
前記蒸発器へ流れる冷媒流量を制御する高圧制御弁と、
前記放熱器の出口側の冷媒の圧力と前記蒸発器の入口側
の冷媒の圧力との差圧が所定値以上の場合に開弁する逃
し弁との複合弁として使用されることを特徴とする請求
項3〜5の何れかに記載の逃し弁付き圧力制御弁。
6. A supercritical vapor compression cycle device operated in a supercritical region in which a refrigerant such as carbon dioxide gas circulates in order through a compressor, a radiator, and an evaporator, and a refrigerant from the radiator to the evaporator. A high-pressure control valve that is provided in the middle of the passage and controls the flow rate of the refrigerant flowing from the radiator to the evaporator in response to the pressure and temperature of the refrigerant on the outlet side of the radiator;
It is used as a combined valve with a relief valve that opens when the pressure difference between the pressure of the refrigerant on the outlet side of the radiator and the pressure of the refrigerant on the inlet side of the evaporator is greater than or equal to a predetermined value. A pressure control valve with a relief valve according to any one of claims 3 to 5.
JP22494999A 1999-07-08 1999-08-09 Supercritical vapor compression cycle system and pressure control valve with relief valve Expired - Fee Related JP4047497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22494999A JP4047497B2 (en) 1999-07-08 1999-08-09 Supercritical vapor compression cycle system and pressure control valve with relief valve

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-194269 1999-07-08
JP19426999 1999-07-08
JP22494999A JP4047497B2 (en) 1999-07-08 1999-08-09 Supercritical vapor compression cycle system and pressure control valve with relief valve

Publications (2)

Publication Number Publication Date
JP2001074321A true JP2001074321A (en) 2001-03-23
JP4047497B2 JP4047497B2 (en) 2008-02-13

Family

ID=26508408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22494999A Expired - Fee Related JP4047497B2 (en) 1999-07-08 1999-08-09 Supercritical vapor compression cycle system and pressure control valve with relief valve

Country Status (1)

Country Link
JP (1) JP4047497B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003019089A1 (en) * 2001-08-24 2003-03-06 Zexel Valeo Climate Control Corporation Refrigerating cycle
JP2005257110A (en) * 2004-03-09 2005-09-22 Saginomiya Seisakusho Inc Refrigerating cycle device and electric control valve
EP1875142A1 (en) * 2005-03-18 2008-01-09 Carrier Commercial Refrigeration, Inc. Transcritical refrigeration with pressure addition relief valve
CN110865004A (en) * 2019-11-22 2020-03-06 西安理工大学 Device and method for measuring flow distribution characteristics of supercritical fluid in parallel pipes
CN115750016A (en) * 2022-11-17 2023-03-07 中国核动力研究设计院 Shutdown system and method of supercritical carbon dioxide recompression circulating system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003019089A1 (en) * 2001-08-24 2003-03-06 Zexel Valeo Climate Control Corporation Refrigerating cycle
JP2005257110A (en) * 2004-03-09 2005-09-22 Saginomiya Seisakusho Inc Refrigerating cycle device and electric control valve
EP1875142A1 (en) * 2005-03-18 2008-01-09 Carrier Commercial Refrigeration, Inc. Transcritical refrigeration with pressure addition relief valve
EP1875142A4 (en) * 2005-03-18 2008-05-14 Carrier Comm Refrigeration Inc Transcritical refrigeration with pressure addition relief valve
CN110865004A (en) * 2019-11-22 2020-03-06 西安理工大学 Device and method for measuring flow distribution characteristics of supercritical fluid in parallel pipes
CN115750016A (en) * 2022-11-17 2023-03-07 中国核动力研究设计院 Shutdown system and method of supercritical carbon dioxide recompression circulating system

Also Published As

Publication number Publication date
JP4047497B2 (en) 2008-02-13

Similar Documents

Publication Publication Date Title
JP2604882B2 (en) Motor cooling device
US6430950B1 (en) Expansion element and a valve unit usable therefor
JP3951840B2 (en) Refrigeration cycle equipment
JPH11193967A (en) Refrigerating cycle
US6351959B1 (en) Refrigerating cycle with a by-pass line
WO2009096442A1 (en) Supercritical refrigeration cycle
JPH11248272A (en) Supercritical refrigeration cycle
JP4348571B2 (en) Refrigeration cycle
JP2004142701A (en) Refrigeration cycle
JP2001074321A (en) Supercritical vapor compressing cycle device and pressure control valve with release valve
JP2002228282A (en) Refrigerating device
JPH1073328A (en) Cooler
JPH11108473A (en) Air conditioner
JP3712828B2 (en) Refrigeration system, refrigerant flow rate correction bypass valve and temperature expansion valve
JP2001201213A (en) Supercritical refrigeration cycle
JP3712827B2 (en) Refrigeration system, refrigerant flow rate correction bypass valve and temperature expansion valve
JP4096796B2 (en) Refrigeration cycle equipment
JP2000097523A (en) Inflation device of super-critical refrigeration cycle
JP2001263865A (en) Supercritical vapor compression refrigeration cycle and pressure control valve
US20030213516A1 (en) Outflow prevention device
JP4153203B2 (en) Cooling system
JP3505209B2 (en) Refrigeration equipment
JP2002349732A (en) Relief valve, high pressure control valve with relief valve, and supercritical vapor compression refrigeration cycle system
JP2001116399A (en) Refrigeration cycle
WO2001063185A1 (en) Refrigerating cycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071009

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees