WO2001063185A1 - Refrigerating cycle - Google Patents

Refrigerating cycle Download PDF

Info

Publication number
WO2001063185A1
WO2001063185A1 PCT/JP2000/001081 JP0001081W WO0163185A1 WO 2001063185 A1 WO2001063185 A1 WO 2001063185A1 JP 0001081 W JP0001081 W JP 0001081W WO 0163185 A1 WO0163185 A1 WO 0163185A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
pressure
expansion device
compressor
valve
Prior art date
Application number
PCT/JP2000/001081
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuhiko Suzuki
Original Assignee
Zexel Valeo Climate Control Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zexel Valeo Climate Control Corporation filed Critical Zexel Valeo Climate Control Corporation
Priority to PCT/JP2000/001081 priority Critical patent/WO2001063185A1/en
Publication of WO2001063185A1 publication Critical patent/WO2001063185A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/325Expansion valves having two or more valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/063Feed forward expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/07Exceeding a certain pressure value in a refrigeration component or cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a refrigeration cycle using a supercritical refrigerant, for example, carbon dioxide (C 0 2 ) as a refrigerant.
  • a supercritical refrigerant for example, carbon dioxide (C 0 2 ) as a refrigerant.
  • a refrigeration cycle disclosed in Japanese Patent Publication No. 7-18602 is known. This refrigeration cycle is composed of at least a compressor, a cooling device, a throttling means, and an evaporator.
  • the high-pressure pressure rapidly reacts and rapidly rises simultaneously with the start of the compressor because the refrigerant in the cycle is in a critical state.
  • the refrigerant temperature at the inlet of the expansion valve does not react as quickly as the pressure and does not drop sharply.
  • the temperature sensor and the expansion valve temperature sensing portion have their own heat capacity, the decrease in the refrigerant temperature is further delayed. For this reason, when the compressor is started, the expansion valve is kept closed, and high-pressure pressure cannot be released through the expansion valve, so that a burst is likely to occur on the cycle (the rupture disk is not safe). The bursting of the rupture disk occurs with the device installed, and the operation of the cycle is stopped by the operation of the high-pressure cut switch).
  • the applicant has set up a relief valve that connects the high-pressure line and the low-pressure line when the high-pressure line reaches a predetermined pressure or higher, so that the high-pressure pressure does not exceed the predetermined pressure.
  • the refrigerant will be relieved before reaching the expansion valve if the high-pressure line exceeds a predetermined pressure. Since the refrigerant is bypassed to the low-pressure line via the valve, it is not possible to supply sufficient cold refrigerant to the expansion valve, and the closed state of the expansion valve may not be released.
  • the main object of the present invention is to prevent an abnormal increase in pressure that occurs when the compressor is started from a high load stop state in a refrigeration cycle using a supercritical fluid as a refrigerant. Another object is to promote cooling of the expansion device at start-up, release the blockage of the expansion device after the compressor starts, and ensure accurate startup of the cycle. Disclosure of the invention
  • a refrigeration cycle includes a compressor that pressurizes a refrigerant to a supercritical region, a radiator that cools the refrigerant that has reached the supercritical region, and a radiator that cools the refrigerant.
  • An expansion device for decompressing the refrigerant later, an evaporator for evaporating the refrigerant decompressed by the expansion device, and an internal heat exchanger for exchanging heat between the refrigerant flowing out of the evaporator and the refrigerant in the supercritical region.
  • a pressure-reducing control valve that controls an opening degree of the expansion device based on a refrigerant temperature and a refrigerant pressure on an inflow side; and a decompression control valve when the refrigerant pressure on the inflow side becomes a predetermined pressure or more.
  • a relief valve communicating with the outflow side is provided, and the pressure reducing control valve is provided on a path through which the refrigerant flowing into the expansion device reaches the relief valve.
  • the relief valve provided in the expansion device opens, and the high pressure line from the compressor discharge side to the expansion valve and the high pressure line from the expansion valve to the compressor suction side Communicates with the low-pressure line, allowing the pressure in the high-pressure line to escape to the low-pressure line at once.
  • the pressure reducing valve is provided on the path through which the refrigerant flowing into the expansion device reaches the relief valve, even when the refrigerant in the high pressure line flows to the low pressure line via the relief valve, the pressure of the refrigerant can be reduced. Since the gas flows around the valve, cooling of the pressure reducing control valve is promoted, and a situation in which the expansion device is closed after starting can be avoided.
  • the pressure reducing valve is provided in the relief valve, and when the refrigerant pressure on the inflow side becomes equal to or higher than a predetermined pressure, the relief valve is adjusted.
  • the valve may be opened by being displaced integrally with the valve.
  • the relief valve provided in the expansion device opens integrally with the control valve, and the high-pressure line and the low-pressure line communicate with each other. Pressure can be released to the low pressure line at once.
  • the pressure reducing valve is provided in the relief valve, even when the refrigerant in the high pressure line flows to the low pressure line through the relief valve, the refrigerant flows around the pressure reducing valve. Cooling of the pressure reducing valve is promoted, and the situation where the expansion device is closed after starting can be avoided.
  • the refrigerant discharge amount of the compressor may be changed, and when starting the compressor, the refrigerant discharge amount of the compressor may be controlled so that the refrigerant pressure in the high-pressure line is equal to or lower than a predetermined pressure. Since the high pressure increases when the compressor is started, controlling the compressor displacement prevents the pressure at the start from exceeding the burst pressure.
  • the high pressure control at the time of such a start is an electric type in which the degree of opening of the expansion device can be arbitrarily controlled by an external control signal, and the refrigerant pressure of the high pressure line is set to a predetermined pressure or less when the compressor is started. It can also be realized by controlling the amount of pressure reduction by the expansion device.
  • FIG. 1 is a diagram showing a configuration example of a refrigeration cycle according to the present invention.
  • FIG. 2 is a characteristic diagram showing an optimal control region of the refrigeration cycle shown in FIG.
  • FIG. 3 is a diagram showing an expansion device used in the refrigeration cycle shown in FIG.
  • FIG. 4 is a diagram showing another expansion device used in the refrigeration cycle shown in FIG.
  • FIG. 5 is a flowchart showing an example of a control operation of the discharge capacity when the compressor is started under a high load.
  • FIG. 6 is a flowchart showing an example of the control operation of the expansion device when starting the compressor at a high load.
  • a refrigeration cycle 1 includes a compressor 2 for compressing the refrigerant, a radiator 3 for cooling the refrigerant, an internal heat exchanger 4 for exchanging heat between the high-pressure line and the low-pressure line, and a decompression of the refrigerant.
  • Expansion device 5 evaporator for evaporating and evaporating refrigerant 6. It has an accumulator 7 for gas-liquid separation of the refrigerant flowing out of the evaporator.
  • the discharge side of the compressor 2 is connected to the high-pressure passage 4a of the internal heat exchanger 4 via the radiator 3, and the discharge side of the high-pressure passage 4a is connected to the expansion device 5,
  • the path from the discharge side of 2 to the expansion device 5 is a high-pressure line 8.
  • the outlet side of the expansion device 5 is connected to an evaporator 6, and the outlet side of the evaporator 6 is connected to a low-pressure passage 4b of the internal heat exchanger 4 via an accumulator.
  • the outflow side of the low-pressure passage 4 b is connected to the suction side of the compressor 2, and the path from the outflow side of the expansion device 5 to the compressor 2 is a low-pressure line 9.
  • C 0 2 as refrigerant
  • the compressor 2 and is used as it can adjust the discharge volume, the refrigerant compressed by the compressor 2, as supercritical refrigerant of high temperature and high pressure It enters the radiator 3 where it is radiated and cooled. Thereafter, the heat is exchanged with the low-temperature refrigerant flowing out of the evaporator in the internal heat exchanger 4 to be further cooled and sent to the expansion device 5 without being liquefied. Then, the pressure is reduced in the expansion device 5 to become low-temperature and low-pressure wet steam, and heat exchange with the air passing therethrough in the evaporator 6 to become gaseous. It is heated by heat exchange and returned to the compressor 2.
  • line A has a preferred control line for a cycle in which the compressor has a constant discharge capacity without the internal heat exchanger 4
  • line B has the internal heat exchanger 4.
  • 2 shows preferred control lines for a cycle in which the displacement of the compressor is constant without being adjusted.
  • the X mark is a refrigeration cycle that uses existing efficiency components, and plots the location where the maximum coefficient of performance can be obtained under various conditions. This is a refrigeration cycle using the above components, and plots the locations where the maximum coefficient of performance can be obtained under various conditions, and the range covering both of these distributions is the above sandy region .
  • Means for setting the refrigerant temperature and the refrigerant pressure on the inflow side of the expansion device 5 to such ranges include not only adjusting the discharge capacity of the compressor 2 but also controlling the opening degree by an external control signal.
  • an electric expansion device that performs expansion by adjusting the valve opening so that the refrigerant temperature and the refrigerant pressure at the inflow side of the expansion device are set to target values within the region, it is also possible to use an equalizing type expansion device.
  • a dilatation device it is advisable to adjust the amount of gas to be charged, and in the case of an expansion device using bimetal, it is advisable to adjust the material by selecting the material.
  • the expansion device 5 is provided with a housing 10, an inflow passage 11 communicating with the high-pressure passage 4 a of the internal heat exchanger 4, and an evaporator 5.
  • An outflow passageway 12 leading to 6 and a high-pressure space 13 opening these passageways are provided, and the high-pressure space 13 houses a pressure-reducing control valve 14 and a relief valve 15.
  • the outflow passageway 12 is divided into two branches and opens into the high-pressure space 13, and the openings thereof seat the valve bodies 16 and 17 of the pressure reduction control valve 14 and the relief valve 15. Valve seats 18 and 19 are provided.
  • the pressure reducing control valve 14 is composed of a valve body 16 and a bellows 21 joined to a rod 20 of the valve body 16, and a bellows 2 is accommodated by a spring 22 housed in the bellows. 1 is urged in the direction of extension, that is, the valve element 16 is seated on the valve seat 18.
  • the valve opening pressure of the pressure reducing control valve 14 and the movement of the valve element 16 are adjusted by adjusting the spring pressure with an adjusting plug 23 screwed tightly into the housing 10 or inside the bellows. It is adjusted by adjusting the amount of gas to be filled.
  • the pressure reducing control valve 14 is responsive to the pressure of the high pressure space 13 and the temperature of the refrigerant around the bellows, and controls the area shown in FIG. Characteristics are obtained.
  • the relief valve 15 includes a valve element 17 and a bellows 25 joined to a rod 24 of the valve element 17.
  • the inside of the bellows 25 is formed as a bellows 25. It is opened to the atmosphere through a through hole 27 of an adjusting plug 26 that is integrally screwed into the housing 10 in an airtight manner, and is set at atmospheric pressure. Also, when the opening pressure of the relief valve 15 is adjusted by adjusting the amount of screwing of the control plug 26, and the pressure in the high-pressure space becomes slightly lower than the maximum operating pressure of the cycle. Then, the bellows 25 contracts, and the relief valve 15 is opened.
  • the relief valve 15 is located at a position farther from the high-pressure passage 11 than the pressure-reducing valve 14. In other words, the pressure-reducing valve 14 allows the refrigerant that has flowed in to the relief valve 15. When the relief valve 15 is opened, the refrigerant flows around the bellows of the pressure reducing control valve 14.
  • the refrigerant cooled by the radiator 3 and the internal heat exchanger 4 passes around the bellows of the pressure-reducing control valve 14, so that the velocity 21 Cooling can be promoted to open the pressure reducing control valve 14, and after the high pressure drops below a predetermined pressure and the relief valve 15 closes, pressure reduction is performed by the pressure reducing valve 14.
  • a capacity control is performed to balance between the refrigerant pressure and the refrigerant temperature as shown by the sandy region in FIG. That is, according to the above configuration, at the time of starting, pressure control is performed prior to performance control to avoid an abnormal rise in pressure, and thereafter, it is possible to smoothly shift to performance control for obtaining good cooling performance.
  • FIG. 4 shows another example of the structure of the expansion device 5.
  • the housing 10 has an inflow passage 11 communicating with the high-pressure passage 4 a of the internal heat exchanger 4 and an evaporator 6. And a high-pressure space 13 where these passages are opened, and the high-pressure space 13 houses the pressure-reducing control valve 14 and the relief valve 15.
  • the outflow passage 1 2 opens into the high-pressure space 13 without being divided into two branches, and this opening is used as the valve seat 31 on which the valve element 30 of the relief valve 15 is seated.
  • the point 4 is that it is provided inside the relief valve 15.
  • the high-pressure space 13 is defined as a low-pressure space 33 set to atmospheric pressure or vacuum by a diaphragm 32 held in a housing.
  • the relief valve 15 has a hollow valve element 30 disposed in the high-pressure space 13, and this valve element 30 is fixed to the diaphragm 32 and receives a spring received in the low-pressure space 33.
  • the valve body 30 is seated by the spring 3 5 which is mounted between 3 and 4 3 1 To a predetermined pressure. Therefore, the relief valve 15 opens when the high pressure exceeds a predetermined pressure.
  • valve body 30 of the relief valve 15 has a large number of inflow holes 36 communicating with the inside and outside, formed on the side wall, and an outflow hole 37 formed at a position aligned with the outflow passage 12. I have.
  • the pressure-reducing control valve 14 is composed of a valve body 39 seated on the periphery of the outflow hole 37 as a toilet seat 38 and a bellows 41 joined to a mouth 40 of the valve body.
  • the bellows 41 is urged by the spring 42 stored in the rose in the direction in which the bellows 41 is extended, that is, the valve element 39 is seated on the valve seat 38.
  • valve opening pressure of the pressure reducing control valve 14 and the movement of the valve body are adjusted by adjusting the spring pressure and the amount of gas sealed inside the bellows.
  • the control characteristics in the region shown in FIG. 2 are obtained.
  • the valve opening pressure of the relief valve 15 is set to a predetermined pressure slightly lower than the maximum operating pressure of the cycle, and does not open during the normal operation of the pressure reducing control valve 14. The valve is opened only when the temperature rises abnormally.
  • the refrigerant cooled by the radiator 3 and the internal heat exchanger 4 not only flows around the relief valve 14 but also flows into the inlet hole 36 formed in the valve body 30.
  • the pressure is also supplied to the inside of the valve body through the valve, so that the bellows 41 can be cooled and the pressure reducing control valve 14 can be opened.
  • the pressure is adjusted by the pressure reducing control valve 14 to balance the refrigerant pressure and the refrigerant temperature as indicated by the sandy region in FIG. Capability control is performed.
  • the discharge displacement control of the compressor 2 may be performed as a configuration that suppresses an abnormal increase in pressure at the time of starting the compressor.
  • the compressor 2 used in the refrigeration cycle 1 may be provided with a discharge capacity adjusting mechanism, and the adjusting mechanism may be controlled by an external control signal.
  • the discharge capacity adjustment mechanism may be configured such that the discharge capacity is controlled by the control unit 44 by turning on / off the electromagnetic clutch 43 or the like, but the capacity is controlled using a variable capacity compressor. It is preferable to control the amount of electricity supplied to the variable adjustment unit 45 by the control unit 44 to adjust the discharge capacity.
  • the control unit 44 includes a central processing unit (CPU), a read-only memory (ROM), a random access memory (RAM), an input / output port (I / O), and the like.
  • CPU central processing unit
  • ROM read-only memory
  • RAM random access memory
  • I / O input / output port
  • a refrigerant pressure detection sensor 46 configured to have a drive circuit for controlling the variable capacity adjustment section 45 for detecting the refrigerant pressure on the expansion device inlet side, and the refrigerant temperature on the expansion device inlet side.
  • a signal is input from an A / C switch 49 or the like that commands the start of a compressor installed in the refrigerant temperature detection sensor 47, air conditioning control panel 48, etc. According to this program, signals from various sensors and the air conditioning control panel are processed to control the capacity of the compressor 2 and the like.
  • step 50 It is determined whether or not there is a drive request for the refrigeration cycle 1 (step 50). If the A / C switch 49 is not pressed (NO), this cycle is performed without operating the refrigeration cycle 1.
  • the control routine is completed and the AZC switch 49 is pressed (YES)
  • step 54 the discharge capacity of the compressor 2 is significantly reduced or minimized so that the increase in high pressure generated at the time of startup does not exceed a predetermined pressure. As a result, even if the compressor 2 is started under a high load, a sudden abnormal increase in the high pressure can be avoided.
  • step 56 the control (capacity control) for giving priority to the optimum cooling capacity, that is, the refrigerant pressure and the refrigerant temperature satisfying the sandy region in FIG. 2 are obtained.
  • the discharge capacity of the compressor 2 is controlled.
  • the opening degree control of the expansion device 5 may be performed.
  • the expansion device 5 is not an expansion device shown in FIGS. 3 and 4, but an electric expansion valve known per se whose opening is adjusted by a control signal from the outside. And is controlled by the control unit 44.
  • FIG. 5 is a flowchart showing a specific example of the operation of the inflation device 5. The control unit 44 will be described below. The same control as in Steps 50 and 52 is performed.
  • the opening of the expansion device 5 is controlled so that the increase in high pressure generated at the time of starting does not exceed a predetermined pressure. Should be increased or maximized. As a result, even if the compressor 2 starts at a high load, the high pressure escapes to the low pressure via the expansion device 5, and a sudden increase in the high pressure can be avoided.
  • step 60 the control (capacity control) for giving priority to the optimal cooling capacity, that is, the refrigerant pressure and the refrigerant temperature satisfying the sandy region in FIG.
  • the opening degree of the expansion device 5 is controlled so as to obtain the following.
  • the pressure increase that occurs at the time of the start is caused by the opening of the relief valve 15 or the compressor 2. It is possible to suppress the burst pressure by controlling the discharge capacity or adjusting the opening degree of the expansion device 5.
  • the bellows of the pressure reducing control valve 14 is cooled by the circulating refrigerant even when the relief valve 15 is opened, so that the high pressure is reduced. After stabilization, the system can smoothly shift to capacity control to obtain optimal cooling capacity.
  • the pressure reducing valve and the relief valve are provided in the expansion device, and the pressure reducing valve is provided on the path for guiding the refrigerant to the relief valve, the high-pressure pressure is reduced by the compressor. Even when the pressure rises at the time of startup, the relief valve can be opened to suppress the sudden increase in pressure.Also, while the refrigerant is flowing through the relief valve, this refrigerant flows around the pressure reducing valve. This can promote cooling of the pressure-reducing control valve, avoiding the situation where the expansion device is closed after startup, and changing the pressure control by the relief valve to the performance by the pressure-reducing valve. A smooth transition to force control is possible.
  • a pressure reducing control valve and a relief valve are provided in the expansion device, and a pressure reducing control valve is provided in the relief valve.
  • the relief valve is displaced integrally with the control valve.
  • the refrigerant discharge amount of the compressor can be changed, and the high pressure is controlled to a predetermined pressure or less by giving priority to the discharge amount control at the start of the compressor. It is also effective to use an electric expansion device and control the high pressure to a predetermined pressure or less at the start of the compressor by giving priority to the pressure reduction amount control.

Abstract

A refrigerating cycle including a compressor, a radiator, an expander, an evaporator, and an internal heat exchanger for heat exchange between a refrigerant flowing out of the evaporator and the refrigerant in the supercritical zone, the supercritical fluid being used as a refrigerant, wherein the expander (5) is provided with a pressure reducing regulating valve (14) whose degree of opening is adjusted by the refrigerant temperature and refrigerant pressure on the inflow side, and a relief valve (15) that establishes communication between the inflow side and outflow side of the expander (5) when the refrigerant pressure on the inflow side exceeds a predetermined pressure. The pressure reducing regulating valve (14) is placed in a passageway through which the refrigerant flowing into the expander (5) flows to the relief valve (15). The relief valve (15) may be provided with the pressure reducing regulating valve so that when the refrigerant pressure on the inflow side exceeds a predetermined pressure, the relief valve is displaced integrally with the regulating valve to open the valve. This prevents an abnormal rise in pressure that occurs when the compressor is started from a high load stoppage state.

Description

明 細 書  Specification
冷凍サイクル 技術分野 Refrigeration cycle technology
この発明は、 冷媒として超臨界冷媒、 例えば、 二酸化炭素 ( C 02 ) を用いた冷凍サイクルに関する。 背景技術 The present invention relates to a refrigeration cycle using a supercritical refrigerant, for example, carbon dioxide (C 0 2 ) as a refrigerant. Background art
フ口ン冷凍サイクルに代わるノンフロン冷凍サイクルとして、 特公平 7— 1 8 6 0 2号公報に示される冷凍サイクルが知られている。 この冷 凍サイクルは、 圧縮機、 冷却装置、 絞り手段、 及び蒸発器から少なく と も構成されるもので、 冷媒として、 エチレン ( C2 H4 ) 、 ディボランAs a non-CFC refrigeration cycle that replaces the refrigeration cycle, a refrigeration cycle disclosed in Japanese Patent Publication No. 7-18602 is known. This refrigeration cycle is composed of at least a compressor, a cooling device, a throttling means, and an evaporator. Ethylene (C 2 H 4 ), diborane
(B 2 He ) 、 ェ夕ン (C2 He ) 、 酸化窒素 (N2 0) 、 二酸化炭素(B 2 He), nitrogen (C 2 He), nitric oxide (N 20 ), carbon dioxide
( C 02 ) 等が用いられ、 その中でも、 特に二酸化炭素 (C〇2 ) が主 に用いられている。 (C 0 2 ) is used, and among them, carbon dioxide (C〇 2 ) is mainly used.
しかしながら、 二酸化炭素 (C 02 ) を用いた上記冷凍サイクルは、 臨界点が約 3 1. 1 °Cと低いため、 エンジンルーム内の温度が 6 0°C以 上に達する夏場や炎天下などのような高負荷時においては、 冷凍サイク ルが停止していても、 サイクル内の冷媒は臨界点を超えた超臨界状態に ある。 However, carbon dioxide (C 0 2) the refrigeration cycle using, since the critical point is lower and approximately 3 1. 1 ° C, such as summer and scorching sun the temperature inside the engine room reaches 6 0 ° C or more on At such a high load, even if the refrigeration cycle is stopped, the refrigerant in the cycle is in a supercritical state beyond the critical point.
このような状態で圧縮機を始動させると、 サイクル内の冷媒が臨界状 態にあるため、 高圧圧力は圧縮機の始動と同時に応答良く反応して急激 に上昇する。 これに対して、 膨張弁入口の冷媒温度は、 圧縮機が始動し て冷媒が循環し始めても、 圧力ほど素早い反応はなく、 急激に低下する ことはない。 しかも、 温度センサや膨張弁感温部は、 それ自体の熱容量 を有しているので、 冷媒温度の低下はさらに遅れることになる。 このため、 圧縮機の始動時においては、 膨張弁は閉塞状態に保たれ、 高圧圧力を膨張弁を介して逃がすことができなくなり、 サイクル上でバ 一ス トが生じやすくなる (破裂板が安全装置としてついているものは、 この破裂板のバース トが生じ、 高圧カッ トスィ ッチがあるものは、 この スィ ッチの作動によりサイクルの運転が停止する) 不都合がある。 When the compressor is started in such a state, the high-pressure pressure rapidly reacts and rapidly rises simultaneously with the start of the compressor because the refrigerant in the cycle is in a critical state. On the other hand, even when the compressor starts and the refrigerant starts to circulate, the refrigerant temperature at the inlet of the expansion valve does not react as quickly as the pressure and does not drop sharply. Moreover, since the temperature sensor and the expansion valve temperature sensing portion have their own heat capacity, the decrease in the refrigerant temperature is further delayed. For this reason, when the compressor is started, the expansion valve is kept closed, and high-pressure pressure cannot be released through the expansion valve, so that a burst is likely to occur on the cycle (the rupture disk is not safe). The bursting of the rupture disk occurs with the device installed, and the operation of the cycle is stopped by the operation of the high-pressure cut switch).
このような不都合を防ぐために、 本出願人は、 高圧ラインが所定圧以 上に達した場合に、 高圧ラインと低圧ラインとを連通するリ リーフ弁を 設け、 高圧圧力が所定圧以上にならないようにする構成を検討してい る。  In order to prevent such inconvenience, the applicant has set up a relief valve that connects the high-pressure line and the low-pressure line when the high-pressure line reaches a predetermined pressure or higher, so that the high-pressure pressure does not exceed the predetermined pressure. We are considering a configuration that will
ところが、 リ リーフ弁を設けるにしても、 膨張弁の手前で高圧ライン と低圧ライ ンとを連通可能にすると、 高圧ライ ンが所定圧以上になれ ば、 冷媒は膨張弁に至る前にリ リーフ弁を介して低圧ラインへバイパス するため、 膨張弁に冷えた冷媒を十分供給できなくなり、 膨張弁の閉弁 状態が解除されない不都合がある。  However, even if a relief valve is provided, if the high-pressure line and low-pressure line can be connected in front of the expansion valve, the refrigerant will be relieved before reaching the expansion valve if the high-pressure line exceeds a predetermined pressure. Since the refrigerant is bypassed to the low-pressure line via the valve, it is not possible to supply sufficient cold refrigerant to the expansion valve, and the closed state of the expansion valve may not be released.
そこで、 この発明においては、 超臨界流体を冷媒とする冷凍サイクル において、 高負荷停止状態から圧縮機を始動した際に生じる圧力の異常 上昇を防止することを主たる課題としている。 また、 始動時に膨張装置 の冷却を促し、 圧縮機の始動後に膨張装置の閉塞状態を解除し、 サイク ルの的確な起動を確保することをも課題としている。 発明の開示  Therefore, the main object of the present invention is to prevent an abnormal increase in pressure that occurs when the compressor is started from a high load stop state in a refrigeration cycle using a supercritical fluid as a refrigerant. Another object is to promote cooling of the expansion device at start-up, release the blockage of the expansion device after the compressor starts, and ensure accurate startup of the cycle. Disclosure of the invention
上記課題を達成するために、 この発明にかかる冷凍サイクルは、 冷媒 を超臨界域まで昇圧する圧縮機と、 超臨界域に達した冷媒を冷却する放 熱器と、 この放熱器により冷却された後に冷媒を減圧する膨張装置と、 この膨張装置で減圧された冷媒を蒸発する蒸発器と、 前記蒸発器から流 出する冷媒と前記超臨界域の冷媒とを熱交換させる内部熱交換器とを備 え、 前記膨張装置に、 流入側の冷媒温度と冷媒圧力とによって開度を調 節する減圧調節弁と、 前記流入側の冷媒圧力が所定圧以上となった場合 に前記膨張装置の流入側と流出側とを連通するリ リーフ弁とを設け、 前 記膨張装置に流入された冷媒が前記リ リーフ弁に至る経路上に前記減圧 調節弁を設けたことを特徴としている。 In order to achieve the above object, a refrigeration cycle according to the present invention includes a compressor that pressurizes a refrigerant to a supercritical region, a radiator that cools the refrigerant that has reached the supercritical region, and a radiator that cools the refrigerant. An expansion device for decompressing the refrigerant later, an evaporator for evaporating the refrigerant decompressed by the expansion device, and an internal heat exchanger for exchanging heat between the refrigerant flowing out of the evaporator and the refrigerant in the supercritical region. Equipment A pressure-reducing control valve that controls an opening degree of the expansion device based on a refrigerant temperature and a refrigerant pressure on an inflow side; and a decompression control valve when the refrigerant pressure on the inflow side becomes a predetermined pressure or more. A relief valve communicating with the outflow side is provided, and the pressure reducing control valve is provided on a path through which the refrigerant flowing into the expansion device reaches the relief valve.
したがって、 圧縮機の始動時に圧力上昇があれば、 膨張装置に設けら れたリ リーフ弁が開いて、 圧縮器の吐出側から膨張弁に至る高圧ライン と膨張弁から圧縮器の吸入側に至る低圧ラインとが連通し、 高圧ライン の圧力を一気に低圧ラインへ逃がすことができる。 しかも、 膨張装置に 流入された冷媒がリ リーフ弁に至る経路上に減圧調節弁を設けたので、 高圧ラインの冷媒がリ リーフ弁を介して低圧ラインへ流れる場合にも、 この冷媒が減圧調節弁の周囲を流れるので、 減圧調節弁の冷却が促進さ れ、 始動後に膨張装置が閉じた状態となる事態を回避することができ る。  Therefore, if the pressure rises when the compressor starts, the relief valve provided in the expansion device opens, and the high pressure line from the compressor discharge side to the expansion valve and the high pressure line from the expansion valve to the compressor suction side Communicates with the low-pressure line, allowing the pressure in the high-pressure line to escape to the low-pressure line at once. In addition, since the pressure reducing valve is provided on the path through which the refrigerant flowing into the expansion device reaches the relief valve, even when the refrigerant in the high pressure line flows to the low pressure line via the relief valve, the pressure of the refrigerant can be reduced. Since the gas flows around the valve, cooling of the pressure reducing control valve is promoted, and a situation in which the expansion device is closed after starting can be avoided.
また、 前記膨張装置に、 減圧調節弁とリ リーフ弁とを設けた場合に、 減圧調節弁をリ リーフ弁に設け、 流入側の冷媒圧力が所定圧以上となつ た場合にリ リーフ弁を調節弁と一体に変位させて開弁するようにしても よい。  When the expansion device is provided with a pressure reducing valve and a relief valve, the pressure reducing valve is provided in the relief valve, and when the refrigerant pressure on the inflow side becomes equal to or higher than a predetermined pressure, the relief valve is adjusted. The valve may be opened by being displaced integrally with the valve.
このような構成によれば、 圧縮機の始動時に圧力上昇があれば、 膨張 装置に設けられたリ リーフ弁が調節弁と一体に開いて、 高圧ラインと低 圧ラインとが連通し、 高圧ラインの圧力を一気に低圧ラインへ逃がすこ とができる。 しかも、 減圧調節弁は、 リ リーフ弁に設けられているの で、 高圧ラインの冷媒がリ リーフ弁を介して低圧ラインへ流れる場合に も、 この冷媒が減圧調節弁の周囲を流れるので、 この減圧調節弁の冷却 が促進され、 始動後に膨張装置が閉じた状態となる事態を回避すること ができる。 さらに、 前記圧縮機の冷媒吐出量を変更可能とし、 この圧縮機の始動 時に、 高圧ラインの冷媒圧力を所定圧以下とするよう圧縮機の冷媒吐出 量を制御するようにしてもよい。 圧縮機の始動時に高圧圧力が上昇する ことから、 圧縮機の吐出容量を制御することで、 始動時の圧力が破壊圧 力以上になるのを抑えることができる。 According to such a configuration, if there is a pressure increase at the time of starting the compressor, the relief valve provided in the expansion device opens integrally with the control valve, and the high-pressure line and the low-pressure line communicate with each other. Pressure can be released to the low pressure line at once. In addition, since the pressure reducing valve is provided in the relief valve, even when the refrigerant in the high pressure line flows to the low pressure line through the relief valve, the refrigerant flows around the pressure reducing valve. Cooling of the pressure reducing valve is promoted, and the situation where the expansion device is closed after starting can be avoided. Further, the refrigerant discharge amount of the compressor may be changed, and when starting the compressor, the refrigerant discharge amount of the compressor may be controlled so that the refrigerant pressure in the high-pressure line is equal to or lower than a predetermined pressure. Since the high pressure increases when the compressor is started, controlling the compressor displacement prevents the pressure at the start from exceeding the burst pressure.
このような始動時の高圧圧力制御は、 膨張装置を外部からの制御信号 によって開度の任意に制御できる電気式とし、 圧縮機の始動時に高圧ラ ィンの冷媒圧力を所定圧以下とするよう膨張装置による減圧量を制御す ることによつても実現可能となる。 図面の簡単な説明  The high pressure control at the time of such a start is an electric type in which the degree of opening of the expansion device can be arbitrarily controlled by an external control signal, and the refrigerant pressure of the high pressure line is set to a predetermined pressure or less when the compressor is started. It can also be realized by controlling the amount of pressure reduction by the expansion device. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明にかかる冷凍サイクルの構成例を示す図である。 第 2図は、 第 1図で示す冷凍サイクルの最適制御領域を示す特性図であ る。 第 3図は、 第 1図で示す冷凍サイクルに用いられる膨張装置を示す 図である。 第 4図は、 第 1図で示す冷凍サイクルに用いられる他の膨張 装置を示す図である。 第 5図は、 高負荷時に圧縮機を始動させる場合の 吐出容量の制御動作例を示すフローチャートである。 第 6図は、 高負荷 時に圧縮機を始動させる場合の膨張装置の制御動作例を示すフローチヤ ートである。 発明を実施するための最良の形態  FIG. 1 is a diagram showing a configuration example of a refrigeration cycle according to the present invention. FIG. 2 is a characteristic diagram showing an optimal control region of the refrigeration cycle shown in FIG. FIG. 3 is a diagram showing an expansion device used in the refrigeration cycle shown in FIG. FIG. 4 is a diagram showing another expansion device used in the refrigeration cycle shown in FIG. FIG. 5 is a flowchart showing an example of a control operation of the discharge capacity when the compressor is started under a high load. FIG. 6 is a flowchart showing an example of the control operation of the expansion device when starting the compressor at a high load. BEST MODE FOR CARRYING OUT THE INVENTION
以下において、 この発明をより詳細に説述するために、 添付の図面に 基づいて説明する。  Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.
第 1図において、 冷凍サイクル 1は、 冷媒を圧縮する圧縮機 2、 冷媒 を冷却する放熱器 3、 高圧ライ ンと低圧ラインとの冷媒を熱交換する内 部熱交換器 4、 冷媒を減圧する膨張装置 5、 冷媒を蒸発気化する蒸発器 6、 蒸発器から流出された冷媒を気液分離するアキュムレータ 7を有し て構成されている。 このサイクルでは、 圧縮機 2の吐出側を放熱器 3を 介して内部熱交換器 4の高圧通路 4 aに接続し、 この高圧通路 4 aの流 出側を膨張装置 5に接続し、 圧縮機 2の吐出側から膨張装置 5に至る経 路を高圧ライン 8としている。 また、 膨張装置 5の流出側は、 蒸発器 6 に接続され、 この蒸発器 6の流出側は、 アキュムレータを介して内部熱 交換器 4の低圧通路 4 bに接続されている。 そして、 低圧通路 4 bの流 出側を圧縮機 2の吸入側に接続し、 膨張装置 5の流出側から圧縮機 2に 至る経路を低圧ライン 9としている。 In FIG. 1, a refrigeration cycle 1 includes a compressor 2 for compressing the refrigerant, a radiator 3 for cooling the refrigerant, an internal heat exchanger 4 for exchanging heat between the high-pressure line and the low-pressure line, and a decompression of the refrigerant. Expansion device 5, evaporator for evaporating and evaporating refrigerant 6. It has an accumulator 7 for gas-liquid separation of the refrigerant flowing out of the evaporator. In this cycle, the discharge side of the compressor 2 is connected to the high-pressure passage 4a of the internal heat exchanger 4 via the radiator 3, and the discharge side of the high-pressure passage 4a is connected to the expansion device 5, The path from the discharge side of 2 to the expansion device 5 is a high-pressure line 8. The outlet side of the expansion device 5 is connected to an evaporator 6, and the outlet side of the evaporator 6 is connected to a low-pressure passage 4b of the internal heat exchanger 4 via an accumulator. The outflow side of the low-pressure passage 4 b is connected to the suction side of the compressor 2, and the path from the outflow side of the expansion device 5 to the compressor 2 is a low-pressure line 9.
この冷凍サイクル 1においては、 冷媒として C 0 2 が、 圧縮機 2 とし て吐出容量を調節できるものが用いられており、 圧縮機 2で圧縮された 冷媒は、 高温高圧の超臨界状態の冷媒として放熱器 3に入り、 ここで放 熱して冷却する。 その後、 内部熱交換器 4において蒸発器から流出する 低温冷媒と熱交換して更に冷やされ、 液化されることなく膨張装置 5へ 送られる。 そして、 この膨張装置 5において減圧されて低温低圧の湿り 蒸気となり、 蒸発器 6においてここを通過する空気と熱交換してガス状 となり、 しかる後に内部熱交換器 4において高圧ライン 8の高温冷媒と 熱交換して加熱され、 圧縮機 2へ戻される。 In this refrigeration cycle 1, C 0 2 as refrigerant, the compressor 2 and is used as it can adjust the discharge volume, the refrigerant compressed by the compressor 2, as supercritical refrigerant of high temperature and high pressure It enters the radiator 3 where it is radiated and cooled. Thereafter, the heat is exchanged with the low-temperature refrigerant flowing out of the evaporator in the internal heat exchanger 4 to be further cooled and sent to the expansion device 5 without being liquefied. Then, the pressure is reduced in the expansion device 5 to become low-temperature and low-pressure wet steam, and heat exchange with the air passing therethrough in the evaporator 6 to become gaseous. It is heated by heat exchange and returned to the compressor 2.
上述した冷凍サイクル 1は、 通常の稼動状態において、 膨張装置 5の 流入側での冷媒温度 T [ °C ] と、 膨張装置 5の流入側での冷媒圧力 P [ M P a ] とが、 第 2図の砂状で示された領域となるように設定されて いる。 この領域は、 いろいろな運転条件下において良好な C 0 Pが得ら れるような膨張装置流入側の冷媒温度と冷媒圧力との範囲をシユミレー シヨンによって決定したもので、 より具体的には、 T = 2 . 4 1 P + 4 . 8 6 ( C線で示す) と Τ = 2 . 5 2 Ρ - 7 . 4 1 ( D線で示す) と で囲まれた範囲である。 この範囲でサイクルが運転されれば、 冷房能力 を優先する能力制御となる。 In the refrigeration cycle 1 described above, the refrigerant temperature T [° C.] on the inflow side of the expansion device 5 and the refrigerant pressure P [MPa] on the inflow side of the expansion device 5 in the normal operation state It is set to be the area shown in the sand in the figure. In this region, the range of the refrigerant temperature and the refrigerant pressure on the inflow side of the expansion device at which good C 0 P is obtained under various operating conditions is determined by the simulation, and more specifically, T = 2.41P + 4.886 (shown by line C) and と = 2.52 2-7.41 (shown by line D). If the cycle is operated in this range, the cooling capacity Is the priority control.
尚、 図中、 A線は、 内部熱交換器 4を有せず、 圧縮機の吐出容量が一 定であるサイクルの好ましい制御線を、 B線は、 内部熱交換器 4は有す るが、 圧縮機の吐出容量が調節されずに一定であるサイクルの好ましい 制御線をそれぞれ示している。 また、 X印は、 既存の効率のコンポ一ネ ン トを用いた冷凍サイクルで、 条件をいろいろ異ならせて最大成績係数 が得られる箇所をプロッ ト したものであり、 〇印は、 効率を良く したコ ンポーネン トを用いた冷凍サイクルで、 条件をいろいろ異ならせて最大 成績係数が得られる箇所をプロッ ト したものであり、 これら両方の分布 を網羅する範囲が上記砂状の領域となっている。  In the figure, line A has a preferred control line for a cycle in which the compressor has a constant discharge capacity without the internal heat exchanger 4, and line B has the internal heat exchanger 4. 2 shows preferred control lines for a cycle in which the displacement of the compressor is constant without being adjusted. The X mark is a refrigeration cycle that uses existing efficiency components, and plots the location where the maximum coefficient of performance can be obtained under various conditions. This is a refrigeration cycle using the above components, and plots the locations where the maximum coefficient of performance can be obtained under various conditions, and the range covering both of these distributions is the above sandy region .
膨張装置 5の流入側での冷媒温度と冷媒圧力とを、 このような範囲に 設定する手段としては、 圧縮機 2の吐出容量を調節することによる他 に、 外部からの制御信号によって開度制御する電気式膨張装置を用いる 場合であれば、 膨張装置の流入側での冷媒温度と冷媒圧力とを領域内の 目標値となるように弁開度を調節することによって、 また、 均圧式の膨 張装置であれば、 封入ガスの封入量などを調節することによって、 バイ メタルを利用した膨張装置であれば、 その材質を選択する等によって調 整すると良い。  Means for setting the refrigerant temperature and the refrigerant pressure on the inflow side of the expansion device 5 to such ranges include not only adjusting the discharge capacity of the compressor 2 but also controlling the opening degree by an external control signal. In the case of using an electric expansion device that performs expansion, by adjusting the valve opening so that the refrigerant temperature and the refrigerant pressure at the inflow side of the expansion device are set to target values within the region, it is also possible to use an equalizing type expansion device. In the case of a dilatation device, it is advisable to adjust the amount of gas to be charged, and in the case of an expansion device using bimetal, it is advisable to adjust the material by selecting the material.
このうち、 第 3図に示される膨張装置 5が用いられる場合を説明する と、 この膨張装置 5は、 ハウジング 1 0に内部熱交換器 4の高圧通路 4 aに通じる流入通路 1 1 と蒸発器 6に通じる流出通路 1 2 と、 これら通 路が開口する高圧空間 1 3 とが設けられ、 高圧空間 1 3に減圧調節弁 1 4とリ リーフ弁 1 5 とが収納されている。 流出通路 1 2は、 二股に分か れて高圧空間 1 3に開口しており、 それそれの開口部が減圧調節弁 1 4 及びリ リーフ弁 1 5の弁体 1 6 , 1 7を着座する弁座 1 8 , 1 9 となつ ている。 減圧調節弁 1 4は、 弁体 1 6と、 この弁体 1 6のロッ ド 2 0に接合さ れたべローズ 2 1 とから成り、 このべローズ内に収納されたスプリング 2 2によりべローズ 2 1を伸張する方向、 即ち、 弁体 1 6を弁座 1 8へ 着座する方向へ付勢している。 この減圧調節弁 1 4の開弁圧や弁体 1 6 の動きは、 ハウジング 1 0に気密よく螺合する調節栓 2 3によってスプ リ ング圧を調節することによって、 又は、 ベロ一ズ内部に封入する気体 量を調節することによって調整され、 減圧調節弁 1 4は、 高圧空間 1 3 の圧力やべローズ周囲の冷媒温度に応動するようになつており、 前記第 2図で示す領域の制御特性が得られるようになっている。 Among these, the case where the expansion device 5 shown in FIG. 3 is used will be described. The expansion device 5 is provided with a housing 10, an inflow passage 11 communicating with the high-pressure passage 4 a of the internal heat exchanger 4, and an evaporator 5. An outflow passageway 12 leading to 6 and a high-pressure space 13 opening these passageways are provided, and the high-pressure space 13 houses a pressure-reducing control valve 14 and a relief valve 15. The outflow passageway 12 is divided into two branches and opens into the high-pressure space 13, and the openings thereof seat the valve bodies 16 and 17 of the pressure reduction control valve 14 and the relief valve 15. Valve seats 18 and 19 are provided. The pressure reducing control valve 14 is composed of a valve body 16 and a bellows 21 joined to a rod 20 of the valve body 16, and a bellows 2 is accommodated by a spring 22 housed in the bellows. 1 is urged in the direction of extension, that is, the valve element 16 is seated on the valve seat 18. The valve opening pressure of the pressure reducing control valve 14 and the movement of the valve element 16 are adjusted by adjusting the spring pressure with an adjusting plug 23 screwed tightly into the housing 10 or inside the bellows. It is adjusted by adjusting the amount of gas to be filled.The pressure reducing control valve 14 is responsive to the pressure of the high pressure space 13 and the temperature of the refrigerant around the bellows, and controls the area shown in FIG. Characteristics are obtained.
リ リーフ弁 1 5は、 同じく、 弁体 1 7と、 この弁体 1 7のロッ ド 2 4 に接合されたべローズ 2 5 とから成り、 このべローズ 2 5の内部は、 ベ ローズ 2 5 と一体をなしてハウジング 1 0に気密よく螺合する調節栓 2 6の通孔 2 7を介して大気に開放され、 大気圧に設定されている。 ま た、 調節栓 2 6の螺合量を調節することによってリ リーフ弁 1 5の開弁 圧が調節されており、 高圧空間内の圧力がサイクルの最高作動圧力より やや低い圧力となった場合にベローズ 2 5が収縮し、 リ リーフ弁 1 5が 開成されるようになつている。  Similarly, the relief valve 15 includes a valve element 17 and a bellows 25 joined to a rod 24 of the valve element 17. The inside of the bellows 25 is formed as a bellows 25. It is opened to the atmosphere through a through hole 27 of an adjusting plug 26 that is integrally screwed into the housing 10 in an airtight manner, and is set at atmospheric pressure. Also, when the opening pressure of the relief valve 15 is adjusted by adjusting the amount of screwing of the control plug 26, and the pressure in the high-pressure space becomes slightly lower than the maximum operating pressure of the cycle. Then, the bellows 25 contracts, and the relief valve 15 is opened.
このリ リーフ弁 1 5は、 減圧調節弁 1 4よりも高圧通路 1 1から離れ た位置にあり、 換言すれば、 減圧調節弁 1 4は、 流入された冷媒がリ リ ーフ弁 1 5 に至る経路上に配されており、 リ リーフ弁 1 5が開成する と、 冷媒は減圧調節弁 1 4のべローズ周囲を通って流れる構成となって いる。  The relief valve 15 is located at a position farther from the high-pressure passage 11 than the pressure-reducing valve 14. In other words, the pressure-reducing valve 14 allows the refrigerant that has flowed in to the relief valve 15. When the relief valve 15 is opened, the refrigerant flows around the bellows of the pressure reducing control valve 14.
上記構成において、 高負荷時においては、 冷凍サイクル 1が停止して いても、 サイクル内の冷媒は超臨界状態にあり、 圧縮機 2が回転し始め ると、 高圧ライン 8の圧力は上昇し、 この圧力波は、 高圧ライン全体に 波及して、 即座に膨張装置 5の高圧空間 1 3にも至る。 減圧調節弁 1 4 は、 高負荷時であることから閉弁状態にあるが、 リ リーフ弁 1 5は、 高 圧空間 1 3の圧力が所定圧以上となれば開弁することから、 このリ リー フ弁 1 5を介して高圧圧力が一気に低圧ライン 9へ逃げ、 バース 卜に至 るような圧力上昇を避けることができる。 In the above configuration, at high load, even if the refrigeration cycle 1 is stopped, the refrigerant in the cycle is in a supercritical state, and when the compressor 2 starts rotating, the pressure in the high-pressure line 8 increases, This pressure wave spreads throughout the high-pressure line and immediately reaches the high-pressure space 13 of the expansion device 5. Pressure reducing valve 1 4 The valve is in a closed state because of high load, but the relief valve 15 opens when the pressure in the high-pressure space 13 exceeds a predetermined pressure. The high pressure escapes to the low pressure line 9 at a stretch via the circumstance, and a pressure rise that may cause a burst can be avoided.
また、 このような圧力のリ リーフ時においては、 放熱器 3や内部熱交 換器 4で冷却された冷媒が減圧調節弁 1 4のべローズ周囲を通過するの で、 ベロ一ズ 2 1の冷却を促進して減圧調節弁 1 4を開成させることが でき、 高圧圧力が所定圧よ り低くなってリ リーフ弁 1 5が閉じた後に は、 減圧調節弁 1 4による減圧調整が行われて、 第 2図の砂状領域で示 されるような冷媒圧力と冷媒温度でバランスする能力制御がなされる。 つまり、 上記構成によれば、 始動時においては、 能力制御に優先して 圧力の異常上昇を避ける圧力制御がなされ、 その後は、 良好な冷房能力 を得る能力制御へスムーズに移行させることができる。  Also, at the time of such pressure relief, the refrigerant cooled by the radiator 3 and the internal heat exchanger 4 passes around the bellows of the pressure-reducing control valve 14, so that the velocity 21 Cooling can be promoted to open the pressure reducing control valve 14, and after the high pressure drops below a predetermined pressure and the relief valve 15 closes, pressure reduction is performed by the pressure reducing valve 14. A capacity control is performed to balance between the refrigerant pressure and the refrigerant temperature as shown by the sandy region in FIG. That is, according to the above configuration, at the time of starting, pressure control is performed prior to performance control to avoid an abnormal rise in pressure, and thereafter, it is possible to smoothly shift to performance control for obtaining good cooling performance.
第 4図に、 膨張装置 5の他の構成例が示され、 この膨張装置 5におい ては、 ハウジング 1 0に内部熱交換器 4の高圧通路 4 aに通じる流入通 路 1 1 と蒸発器 6に通じる流出通路 1 2と、 これら通路が開口する高圧 空間 1 3とが形成され、 この高圧空間 1 3に減圧調節弁 1 4とリ リーフ 弁 1 5 とが収納されている点で前記構成例と同様である。 異なる点は、 流出通路 1 2が二股に分かれずに高圧空間 1 3に開口し、 この開口部を リ リーフ弁 1 5の弁体 3 0が着座する弁座 3 1 としており、 減圧調節弁 1 4は、 リ リーフ弁 1 5の内部に設けられている点にある。  FIG. 4 shows another example of the structure of the expansion device 5. In the expansion device 5, the housing 10 has an inflow passage 11 communicating with the high-pressure passage 4 a of the internal heat exchanger 4 and an evaporator 6. And a high-pressure space 13 where these passages are opened, and the high-pressure space 13 houses the pressure-reducing control valve 14 and the relief valve 15. Is the same as The difference is that the outflow passage 1 2 opens into the high-pressure space 13 without being divided into two branches, and this opening is used as the valve seat 31 on which the valve element 30 of the relief valve 15 is seated. The point 4 is that it is provided inside the relief valve 15.
高圧空間 1 3は、 ハウジング内に保持されたダイヤフラム 3 2によつ て大気圧又は真空に設定された低圧空間 3 3 と画成されている。 リ リー フ弁 1 5は、 高圧空間 1 3に配された中空の弁体 3 0を有し、 この弁体 3 0はダイヤフラム 3 2に固定され、 低圧空間 3 3に設けられたバネ受 け 3 4との間に弾装されるスプリ ング 3 5によって弁体 3 0を弁座 3 1 に所定圧をもって付勢するようにしている。 したがって、 リ リーフ弁 1 5は、 高圧圧力が所定圧以上になれば開弁するようになっている。 The high-pressure space 13 is defined as a low-pressure space 33 set to atmospheric pressure or vacuum by a diaphragm 32 held in a housing. The relief valve 15 has a hollow valve element 30 disposed in the high-pressure space 13, and this valve element 30 is fixed to the diaphragm 32 and receives a spring received in the low-pressure space 33. The valve body 30 is seated by the spring 3 5 which is mounted between 3 and 4 3 1 To a predetermined pressure. Therefore, the relief valve 15 opens when the high pressure exceeds a predetermined pressure.
また、 リ リーフ弁 1 5の弁体 3 0には、 内外を連通する多数の流入孔 3 6が側壁に形成されると共に、 流出通路 1 2 と整合した位置に流出孔 3 7が形成されている。 減圧調節弁 1 4は、 流出孔 3 7の周縁を便座 3 8としてここに着座する弁体 3 9 と、 この弁体の口ッ ド 4 0に接合され たべローズ 4 1 とから成り、 このべローズ内に収納されたスプリング 4 2によりべローズ 4 1を伸張する方向、 即ち、 弁体 3 9を弁座 3 8へ着 座する方向へ付勢している。 この減圧調節弁 1 4の開弁圧や弁体の動き は、 スプリング圧やべローズ内部に封入される気体量などを調節するこ とによって調整され、 減圧調節弁 1 4は、 高圧空間 1 3の圧力やべ口一 ズ周囲の冷媒温度に応動するようになつており、 前記第 2図で示す領域 の制御特性が得られるようになつている。  Also, the valve body 30 of the relief valve 15 has a large number of inflow holes 36 communicating with the inside and outside, formed on the side wall, and an outflow hole 37 formed at a position aligned with the outflow passage 12. I have. The pressure-reducing control valve 14 is composed of a valve body 39 seated on the periphery of the outflow hole 37 as a toilet seat 38 and a bellows 41 joined to a mouth 40 of the valve body. The bellows 41 is urged by the spring 42 stored in the rose in the direction in which the bellows 41 is extended, that is, the valve element 39 is seated on the valve seat 38. The valve opening pressure of the pressure reducing control valve 14 and the movement of the valve body are adjusted by adjusting the spring pressure and the amount of gas sealed inside the bellows. In response to the pressure and the refrigerant temperature around the nozzle, the control characteristics in the region shown in FIG. 2 are obtained.
そして、 リ リーフ弁 1 5の開弁圧は、 サイクルの最高作動圧力よりや や低い所定の圧力に設定されており、 減圧調節弁 1 4の通常作動時にお いては開弁せず、 高圧圧力の異常上昇時にのみ開弁するようになつてい る。  The valve opening pressure of the relief valve 15 is set to a predetermined pressure slightly lower than the maximum operating pressure of the cycle, and does not open during the normal operation of the pressure reducing control valve 14. The valve is opened only when the temperature rises abnormally.
このような構成においては、 圧縮機 2が回転し始めて高圧ライン 8の 圧力が上昇し、 リ リーフ弁 1 5の開弁圧を超えると、 リ リーフ弁 1 5は 開弁し、 このリ リーフ弁 1 5を介して圧力が一気に低圧ライン 9へ逃げ る。 このため、 高負荷時において圧縮機が始動した場合においても、 バ 一ス トするような急激な圧力上昇を避けることができる。  In such a configuration, when the compressor 2 starts to rotate and the pressure in the high-pressure line 8 rises and exceeds the opening pressure of the relief valve 15, the relief valve 15 opens and the relief valve 15 opens. The pressure quickly escapes to the low pressure line 9 via 15. For this reason, even when the compressor is started under a high load, it is possible to avoid a sudden and sudden increase in pressure.
また、 圧力のリ リーフ時において、 放熱器 3や内部熱交換器 4で冷却 された冷媒は、 リ リーフ弁 1 4の周囲を流れるだけでなく、 弁体 3 0に 形成された流入孔 3 6を介して弁体内部にも供給されるので、 ベロ一ズ 4 1を冷やして減圧調節弁 1 4を開成させることができ、 高圧圧力が所 定圧より低くなってリ リーフ弁 1 5が閉じた後には、 減圧調節弁 1 4に よる減圧調整が行われて、 第 2図の砂状領域で示されるような冷媒圧力 と冷媒温度でバランスする能力制御がなされる。 At the time of pressure relief, the refrigerant cooled by the radiator 3 and the internal heat exchanger 4 not only flows around the relief valve 14 but also flows into the inlet hole 36 formed in the valve body 30. The pressure is also supplied to the inside of the valve body through the valve, so that the bellows 41 can be cooled and the pressure reducing control valve 14 can be opened. After the pressure becomes lower than the constant pressure and the relief valve 15 is closed, the pressure is adjusted by the pressure reducing control valve 14 to balance the refrigerant pressure and the refrigerant temperature as indicated by the sandy region in FIG. Capability control is performed.
つまり、 上記構成によれば、 始動時においては、 能力制御に優先して 圧力の異常上昇を避ける圧力制御がなされ、 その後は、 良好な冷房能力 を得る能力制御へスムーズに移行させることができる。  That is, according to the above configuration, at the time of starting, pressure control is performed prior to performance control to avoid an abnormal rise in pressure, and thereafter, it is possible to smoothly shift to performance control for obtaining good cooling performance.
以上の構成に加え、 又は、 以上の構成に代えて、 圧縮機始動時の圧力 の異常上昇を抑える構成として、 圧縮機 2の吐出容量制御を行うように してもよい。  In addition to or instead of the above configuration, the discharge displacement control of the compressor 2 may be performed as a configuration that suppresses an abnormal increase in pressure at the time of starting the compressor.
即ち、 冷凍サイクル 1に用いられる圧縮機 2に、 吐出容量の調節機構 を持たせ、 この調節機構を外部からの制御信号によって制御するとよ い。 吐出容量の調節機構としては、 電磁クラッチ 4 3のオンオフなどに よって吐出容量をコントロールュニッ ト 4 4でディ一ティ一比制御する 構成であってもよいが、 可変容量圧縮機を用いて容量可変調節部 4 5へ の通電量をコン トロールユニッ ト 4 4によって制御し、 吐出容量を調節 するとよい。  That is, the compressor 2 used in the refrigeration cycle 1 may be provided with a discharge capacity adjusting mechanism, and the adjusting mechanism may be controlled by an external control signal. The discharge capacity adjustment mechanism may be configured such that the discharge capacity is controlled by the control unit 44 by turning on / off the electromagnetic clutch 43 or the like, but the capacity is controlled using a variable capacity compressor. It is preferable to control the amount of electricity supplied to the variable adjustment unit 45 by the control unit 44 to adjust the discharge capacity.
コン トロールュニッ ト 4 4は、 中央演算処理装置 ( C P U ) 、 読出専 用メモリ (R O M ) 、 ランダムアクセスメモリ (R A M ) 、 入出力ポ一 ト ( I / O ) 等を備えると共に、 電磁クラッチ 4 3の 0 N / 0 F Fゃ容 量可変調節部 4 5を制御する駆動回路を有して構成され、 膨張装置入口 側の冷媒圧力を検出する冷媒圧力検出センサ 4 6、 膨張装置入口側の冷 媒温度検出する冷媒温度検出センサ 4 7、 空調制御パネル 4 8などに設 けられた圧縮機の始動を指令する A / Cスィ ツチ 4 9などからの信号が 入力され、 R 0 Mに与えられた所定のプログラムにしたがって各種セン サゃ空調制御パネルからの信号を処理し、 圧縮機 2の容量制御等を行う ようになっている。 第 5図に、 この圧縮機 2の吐出容量を制御する具体的動作例がフロー チャートとして示され、 以下、 これを説明すると、 コン トロールュニッ ト 4 4は、 A / Cスイ ッチ 4 9を押して冷凍サイクル 1の駆動要請があ るか否かを判定し (ステップ 5 0 ) 、 A / Cスィ ッチ 4 9が押されてい ない場合 (N O ) には、 冷凍サイクル 1を作動させずにこの制御ル一チ ンを終え、 A Z Cスィ ツチ 4 9が押された場合 (Y E S ) には、 圧縮機 2の始動時であるか、 始動後に冷凍サイクル 1が安定状態となつたかを 判定する (ステップ 5 2 ) 。 この判定は、 圧縮機 2が始動してから所定 時間内を始動時とするものであっても、 冷媒圧力検出センサ 4 6によつ て検出された冷媒圧力がある圧力以上になっている期間を始動時とする ものであってもよい。 The control unit 44 includes a central processing unit (CPU), a read-only memory (ROM), a random access memory (RAM), an input / output port (I / O), and the like. 0 N / 0 FF capacity A refrigerant pressure detection sensor 46 configured to have a drive circuit for controlling the variable capacity adjustment section 45 for detecting the refrigerant pressure on the expansion device inlet side, and the refrigerant temperature on the expansion device inlet side. A signal is input from an A / C switch 49 or the like that commands the start of a compressor installed in the refrigerant temperature detection sensor 47, air conditioning control panel 48, etc. According to this program, signals from various sensors and the air conditioning control panel are processed to control the capacity of the compressor 2 and the like. FIG. 5 is a flow chart showing a specific operation example of controlling the discharge capacity of the compressor 2.The control unit 44 will be described below by pressing the A / C switch 49. It is determined whether or not there is a drive request for the refrigeration cycle 1 (step 50). If the A / C switch 49 is not pressed (NO), this cycle is performed without operating the refrigeration cycle 1. When the control routine is completed and the AZC switch 49 is pressed (YES), it is determined whether the compressor 2 has been started or the refrigeration cycle 1 has been stabilized after the start (step 5 2). This determination is made during a period in which the refrigerant pressure detected by the refrigerant pressure detection sensor 46 is equal to or higher than a certain pressure, even if the start of the compressor 2 is within a predetermined time after the start. At the start.
圧縮機 2の始動時には、 ステップ 5 4へ進み、 始動時に生じる高圧圧 力の上昇が所定圧以上とならないように、 圧縮機 2の吐出容量を著しく 小さくするか最小とする。 これにより、 高負荷時で圧縮機 2が始動して も、 高圧圧力の突発的な異常上昇を避けることができる。  When the compressor 2 is started, the process proceeds to step 54, and the discharge capacity of the compressor 2 is significantly reduced or minimized so that the increase in high pressure generated at the time of startup does not exceed a predetermined pressure. As a result, even if the compressor 2 is started under a high load, a sudden abnormal increase in the high pressure can be avoided.
サイクル内の冷媒圧が安定してきた段階では、 ステツプ 5 6へ進み、 最適冷房能力を優先させる制御 (能力制御) 、 即ち、 第 2図の砂状領域 を満たす冷媒圧力と冷媒温度を得るような圧縮機 2の吐出容量制御がな される。  When the refrigerant pressure in the cycle has stabilized, the process proceeds to step 56, where the control (capacity control) for giving priority to the optimum cooling capacity, that is, the refrigerant pressure and the refrigerant temperature satisfying the sandy region in FIG. 2 are obtained. The discharge capacity of the compressor 2 is controlled.
さらに、 上述の圧縮機制御に加えて、 又は、 上述の圧縮機制御に代え て、 膨張装置 5の開度制御を行うようにしても良い。 この制御を行うに 際し、 膨張装置 5は、 第 3図や第 4図で示される膨張装置ではなく、 外 部からの制御信号によって開度が調節されるそれ自体周知の電気式膨張 弁が用いられ、 前記コントロールュニッ ト 4 4によって制御される。 第 5図に、 この膨張装置 5の具体的動作例がフローチャートとして示 され、 以下、 これを説明すると、 コン トロールュニッ ト 4 4は、 前記ス テツプ 5 0及び 5 2 と同様の制御が行われ、 圧縮機 2の始動時には、 ス テツプ 5 8へ進み、 始動時に生じる高圧圧力の上昇が所定圧以上となら ないように膨張装置 5の開度を大きくするか最大とする。 これにより、 高負荷時に圧縮機 2が始動しても、 高圧圧力は膨張装置 5を介して低圧 へ逃げ、 高圧圧力の突発的な上昇を避けることができる。 Further, in addition to the above-described compressor control or instead of the above-described compressor control, the opening degree control of the expansion device 5 may be performed. In performing this control, the expansion device 5 is not an expansion device shown in FIGS. 3 and 4, but an electric expansion valve known per se whose opening is adjusted by a control signal from the outside. And is controlled by the control unit 44. FIG. 5 is a flowchart showing a specific example of the operation of the inflation device 5. The control unit 44 will be described below. The same control as in Steps 50 and 52 is performed.When the compressor 2 is started, the process proceeds to Step 58, and the opening of the expansion device 5 is controlled so that the increase in high pressure generated at the time of starting does not exceed a predetermined pressure. Should be increased or maximized. As a result, even if the compressor 2 starts at a high load, the high pressure escapes to the low pressure via the expansion device 5, and a sudden increase in the high pressure can be avoided.
そして、 サイクル内の冷媒圧が安定してきた段階でステップ 6 0へ進 み、 以後、 最適冷房能力を優先させる制御 (能力制御) 、 即ち、 第 2図 の砂状領域を満たす冷媒圧力と冷媒温度を得るような膨張装置 5の開度 制御がなされる。  Then, when the refrigerant pressure in the cycle has stabilized, the process proceeds to step 60, and thereafter, the control (capacity control) for giving priority to the optimal cooling capacity, that is, the refrigerant pressure and the refrigerant temperature satisfying the sandy region in FIG. The opening degree of the expansion device 5 is controlled so as to obtain the following.
したがって、 いずれの構成、 又は、 その組合せにおいても、 高負荷停 止時から圧縮機 2を始動させた場合には、 始動時に生じる圧力上昇を、 リ リーフ弁 1 5の開成、 又は、 圧縮機 2の吐出容量の規制、 又は膨張装 置 5の開度調節によって抑えてバース ト圧に至らないようにすることが できる。 特に、 膨張装置 5にリ リーフ弁 1 5を設けた上述の構成によれ ば、 このリ リーフ弁 1 5の開成中も循環冷媒によって減圧調節弁 1 4の ベローズが冷却されるので、 高圧圧力が安定してきた後に最適な冷房能 力を得る能力制御へスムーズに移行させることができる。 産業上の利用可能性  Therefore, in any of the configurations and combinations thereof, when the compressor 2 is started from the stop of the high load, the pressure increase that occurs at the time of the start is caused by the opening of the relief valve 15 or the compressor 2. It is possible to suppress the burst pressure by controlling the discharge capacity or adjusting the opening degree of the expansion device 5. In particular, according to the above-described configuration in which the relief valve 15 is provided in the expansion device 5, the bellows of the pressure reducing control valve 14 is cooled by the circulating refrigerant even when the relief valve 15 is opened, so that the high pressure is reduced. After stabilization, the system can smoothly shift to capacity control to obtain optimal cooling capacity. Industrial applicability
以上述べたように、 この発明によれば、 膨張装置に、 減圧調節弁とリ リーフ弁とを設け、 減圧調節弁をリ リーフ弁へ冷媒を導く経路上に設け たので、 高圧圧力が圧縮機の始動時に上昇しても、 リ リーフ弁を開くこ とで圧力の急増を抑えることができ、 また、 冷媒がリ リーフ弁を介して 流れる最中においても、 この冷媒を減圧調節弁の周囲に流してこの減圧 調節弁の冷却を促進することができ、 始動後に膨張装置が閉じた状態と なる事態を回避し、 リ リーフ弁による圧力制御から減圧調節弁による能 力制御へスムーズに移行させることができる。 As described above, according to the present invention, since the pressure reducing valve and the relief valve are provided in the expansion device, and the pressure reducing valve is provided on the path for guiding the refrigerant to the relief valve, the high-pressure pressure is reduced by the compressor. Even when the pressure rises at the time of startup, the relief valve can be opened to suppress the sudden increase in pressure.Also, while the refrigerant is flowing through the relief valve, this refrigerant flows around the pressure reducing valve. This can promote cooling of the pressure-reducing control valve, avoiding the situation where the expansion device is closed after startup, and changing the pressure control by the relief valve to the performance by the pressure-reducing valve. A smooth transition to force control is possible.
また、 膨張装置に、 減圧調節弁とリ リーフ弁とを設け、 しかも、 減圧 調節弁をリ リーフ弁に設け、 所定圧以上となった場合にリ リーフ弁を調 節弁と一体に変位して開弁する構成によれば、 圧縮機の始動時に圧力上 昇があれば、 高圧ラインの圧力を一気に低圧ラインへ逃がし、 高圧圧力 の異常上昇を抑えることができる。 しかも、 この構成によれば、 減圧調 節弁がリ リーフ弁に設けられているので、 高圧ラインの圧力がリ リーフ 弁を介して低圧ラインへ流れている最中にも減圧調節弁の冷却を促進す ることができ、 始動後に膨張装置が閉じた状態となる事態を回避し、 リ リーフ弁による圧力制御から減圧調節弁による能力制御へスムーズに移 行させることができる。  In addition, a pressure reducing control valve and a relief valve are provided in the expansion device, and a pressure reducing control valve is provided in the relief valve. When the pressure exceeds a predetermined pressure, the relief valve is displaced integrally with the control valve. According to the configuration in which the valve is opened, if the pressure rises at the time of starting the compressor, the pressure in the high pressure line is released to the low pressure line at once, thereby suppressing an abnormal rise in the high pressure. Moreover, according to this configuration, since the pressure-reducing control valve is provided in the relief valve, the pressure of the high-pressure line can be cooled even while the pressure of the high-pressure line is flowing to the low-pressure line via the relief valve. As a result, it is possible to avoid a situation in which the expansion device is closed after starting, and to smoothly shift from pressure control by the relief valve to capacity control by the pressure-reducing control valve.
冷凍サイクルの始動時における高圧圧力の異常上昇を避ける手段とし ては、 圧縮機の冷媒吐出量を変更可能とし、 圧縮機の始動時に吐出量制 御を優先させて高圧圧力を所定圧以下に制御したり、 また、 膨張装置を 電気式とし、 圧縮機の始動時に減圧量制御を優先させて高圧圧力を所定 圧以下に制御する構成も有効である。  As a means to avoid abnormal rise in high pressure at the start of the refrigeration cycle, the refrigerant discharge amount of the compressor can be changed, and the high pressure is controlled to a predetermined pressure or less by giving priority to the discharge amount control at the start of the compressor. It is also effective to use an electric expansion device and control the high pressure to a predetermined pressure or less at the start of the compressor by giving priority to the pressure reduction amount control.

Claims

請 求 の 範 囲 The scope of the claims
1 . 冷媒を超臨界域まで昇圧する圧縮機と、 超臨界域に達した冷媒を 冷却する放熱器と、 この放熱器により冷却された後に冷媒を減圧する膨 張装置と、 この膨張装置で減圧された冷媒を蒸発する蒸発器と、 前記蒸 発器から流出する冷媒と前記超臨界域の冷媒とを熱交換させる内部熱交 換器とを備えた冷凍サイクルにおいて、 1. A compressor that raises the pressure of the refrigerant to the supercritical region, a radiator that cools the refrigerant that has reached the supercritical region, an expansion device that depressurizes the refrigerant after being cooled by the radiator, and a decompression device that depressurizes the refrigerant. A refrigerating cycle, comprising: an evaporator for evaporating the separated refrigerant; and an internal heat exchanger for exchanging heat between the refrigerant flowing out of the evaporator and the refrigerant in the supercritical region.
前記膨張装置に、 流入側の冷媒温度と冷媒圧力とによつて開度を調節 する減圧調節弁と、 前記流入側の冷媒圧力が所定圧以上となった場合に 前記膨張装置の流入側と流出側とを連通するリ リーフ弁とを設け、 前記 膨張装置に流入された冷媒が前記リ リーフ弁に至る経路上に前記減圧調 節弁を設けたことを特徴とする冷凍サイクル。  A pressure-reducing control valve for controlling an opening degree of the expansion device according to a refrigerant temperature and a refrigerant pressure on an inflow side; and an inflow side and an outflow of the expansion device when the refrigerant pressure on the inflow side becomes a predetermined pressure or more. A refrigeration cycle, comprising: a relief valve communicating with a side of the expansion device; and a pressure reduction control valve provided on a path through which the refrigerant flowing into the expansion device reaches the relief valve.
2 . 冷媒を超臨界域まで昇圧する圧縮機と、 超臨界域に達した冷媒を 冷却する放熱器と、 この放熱器により冷却された後に冷媒を減圧する膨 張装置と、 この減圧手段で減圧された冷媒を蒸発する蒸発器と、 前記蒸 発器から流出する冷媒と前記超臨界域の冷媒とを熱交換させる内部熱交 換器とを備えた冷凍サイクルにおいて、  2. A compressor that increases the pressure of the refrigerant to the supercritical region, a radiator that cools the refrigerant that has reached the supercritical region, an expansion device that reduces the pressure of the refrigerant after being cooled by the radiator, A refrigerating cycle, comprising: an evaporator for evaporating the separated refrigerant; and an internal heat exchanger for exchanging heat between the refrigerant flowing out of the evaporator and the refrigerant in the supercritical region.
前記膨張装置に、 流入側の冷媒温度と冷媒圧力とによって開度を調節 する減圧調節弁と、 前記流入側の冷媒圧力が所定圧以上となった場合に 前記膨張装置の流入側と流出側とを連通するリ リーフ弁とを設け、 前記 減圧調節弁を前記リ リーフ弁に設け、 前記流入側の冷媒圧力が前記所定 圧以上となった場合に前記リ リーフ弁を前記調節弁と一体に変位させて 開弁するようにしたことを特徴とする冷凍サイクル。  The expansion device, a pressure-reducing control valve that adjusts an opening degree by a refrigerant temperature and a refrigerant pressure on an inflow side, and an inflow side and an outflow side of the expansion device when the refrigerant pressure on the inflow side becomes a predetermined pressure or more. A relief valve that communicates with the pressure control valve, the pressure reducing control valve is provided in the relief valve, and when the refrigerant pressure on the inflow side becomes equal to or higher than the predetermined pressure, the relief valve is displaced integrally with the control valve. A refrigeration cycle characterized in that the valve is opened.
3 . 冷媒を超臨界域まで昇圧する圧縮機と、 超臨界域に達した冷媒を 冷却する放熱器と、 この放熱器により冷却された後に冷媒を減圧する膨 張装置と、 この減圧手段で減圧された冷媒を蒸発する蒸発器と、 前記蒸 発器から流出する冷媒と前記超臨界域の冷媒とを熱交換させる内部熱交 換器とを備えた冷凍サイクルにおいて、 3. A compressor that raises the pressure of the refrigerant to the supercritical region, a radiator that cools the refrigerant that has reached the supercritical region, and an expander that depressurizes the refrigerant after being cooled by the radiator A refrigerating cycle comprising: a tensioning device; an evaporator for evaporating the refrigerant decompressed by the decompression means; and an internal heat exchanger for exchanging heat between the refrigerant flowing out of the evaporator and the refrigerant in the supercritical region. At
前記圧縮機の冷媒吐出量を変更可能とし、  It is possible to change the refrigerant discharge amount of the compressor,
前記圧縮機の始動時には、 前記圧縮機から前記膨張装置に至る高圧ラ インの冷媒圧力が所定圧以下となるよう前記冷媒吐出量を制御するよう にしたことを特徴とする冷凍サイクル。  A refrigeration cycle characterized in that when the compressor is started, the refrigerant discharge amount is controlled so that the refrigerant pressure in a high-pressure line from the compressor to the expansion device is equal to or lower than a predetermined pressure.
4 . 冷媒を超臨界域まで昇圧する圧縮機と、 超臨界域に達した冷媒を 冷却する放熱器と、 この放熱器により冷却された後に冷媒を減圧する膨 張装置と、 この減圧手段で減圧された冷媒を蒸発する蒸発器と、 前記蒸 発器から流出する冷媒と前記超臨界域の冷媒とを熱交換させる内部熱交 換器とを備えた冷凍サイクルにおいて、  4. A compressor that pressurizes the refrigerant to the supercritical region, a radiator that cools the refrigerant that has reached the supercritical region, an expansion device that depressurizes the refrigerant after being cooled by the radiator, A refrigerating cycle, comprising: an evaporator for evaporating the separated refrigerant; and an internal heat exchanger for exchanging heat between the refrigerant flowing out of the evaporator and the refrigerant in the supercritical region.
前記膨張装置は、 外部からの制御信号によつて開度を任意に制御でき る電気式であり、  The expansion device is an electric type in which the opening can be arbitrarily controlled by an external control signal.
前記圧縮機の始動時には、 前記圧縮機から前記膨張装置に至る高圧ラ ィンの冷媒圧力が所定圧以下となるよう前記膨張装置による減圧量を制 御するようにしたことを特徴とする冷凍サイクル。  When the compressor is started, the amount of pressure reduction by the expansion device is controlled so that the refrigerant pressure in the high-pressure line from the compressor to the expansion device is equal to or lower than a predetermined pressure. .
PCT/JP2000/001081 2000-02-25 2000-02-25 Refrigerating cycle WO2001063185A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/001081 WO2001063185A1 (en) 2000-02-25 2000-02-25 Refrigerating cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/001081 WO2001063185A1 (en) 2000-02-25 2000-02-25 Refrigerating cycle

Publications (1)

Publication Number Publication Date
WO2001063185A1 true WO2001063185A1 (en) 2001-08-30

Family

ID=11735717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/001081 WO2001063185A1 (en) 2000-02-25 2000-02-25 Refrigerating cycle

Country Status (1)

Country Link
WO (1) WO2001063185A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1482259A1 (en) * 2003-05-27 2004-12-01 Valeo Climatisation Expansion device for air conditioning system
FR2856782A1 (en) * 2003-06-30 2004-12-31 Valeo Climatisation VEHICLE AIR CONDITIONING SYSTEM OPERATING ACCORDING TO A SUPERCRITICAL CYCLE
EP1715263A3 (en) * 2005-04-21 2007-09-12 Behr GmbH & Co. KG Air conditioning device, in particular for a motor vehicle
EP1722176A3 (en) * 2005-05-13 2007-09-19 Behr GmbH & Co. KG Differential pressure valve
WO2008064816A1 (en) * 2006-12-01 2008-06-05 Otto Egelhof Gmbh & Co. Kg Thermostatic expansion valve for refrigeration cycles or heat pump cycles, featuring a mechanically controlled safety function

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428463A (en) * 1987-07-22 1989-01-31 Saginomiya Seisakusho Inc Expansion valve
JPH0446275A (en) * 1990-06-12 1992-02-17 Takenaka Komuten Co Ltd Globe type two way control valve
JPH0460346A (en) * 1990-06-28 1992-02-26 Toshiba Ave Corp Control device of air conditioner
JPH04158171A (en) * 1990-10-23 1992-06-01 Fujitsu General Ltd Air conditioner
JPH11211251A (en) * 1998-01-30 1999-08-06 Mitsubishi Heavy Ind Ltd Method and device for operating super critical steam compression cycle and air-conditioning control method and device
JPH11248272A (en) * 1998-01-05 1999-09-14 Denso Corp Supercritical refrigeration cycle
JP2000065430A (en) * 1998-08-18 2000-03-03 Nippon Soken Inc Vapor compression refrigeration cycle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428463A (en) * 1987-07-22 1989-01-31 Saginomiya Seisakusho Inc Expansion valve
JPH0446275A (en) * 1990-06-12 1992-02-17 Takenaka Komuten Co Ltd Globe type two way control valve
JPH0460346A (en) * 1990-06-28 1992-02-26 Toshiba Ave Corp Control device of air conditioner
JPH04158171A (en) * 1990-10-23 1992-06-01 Fujitsu General Ltd Air conditioner
JPH11248272A (en) * 1998-01-05 1999-09-14 Denso Corp Supercritical refrigeration cycle
JPH11211251A (en) * 1998-01-30 1999-08-06 Mitsubishi Heavy Ind Ltd Method and device for operating super critical steam compression cycle and air-conditioning control method and device
JP2000065430A (en) * 1998-08-18 2000-03-03 Nippon Soken Inc Vapor compression refrigeration cycle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1482259A1 (en) * 2003-05-27 2004-12-01 Valeo Climatisation Expansion device for air conditioning system
FR2855596A1 (en) * 2003-05-27 2004-12-03 Valeo Climatisation REGULATOR DEVICE FOR AIR CONDITIONING CIRCUIT
US7299654B2 (en) 2003-05-27 2007-11-27 Valeo Climatisation, S.A. Pressure-reducing device for an air-conditioning circuit
FR2856782A1 (en) * 2003-06-30 2004-12-31 Valeo Climatisation VEHICLE AIR CONDITIONING SYSTEM OPERATING ACCORDING TO A SUPERCRITICAL CYCLE
EP1493979A1 (en) * 2003-06-30 2005-01-05 Valeo Climatisation Car air-conditioner with a supercritical cycle
EP1715263A3 (en) * 2005-04-21 2007-09-12 Behr GmbH & Co. KG Air conditioning device, in particular for a motor vehicle
EP1722176A3 (en) * 2005-05-13 2007-09-19 Behr GmbH & Co. KG Differential pressure valve
WO2008064816A1 (en) * 2006-12-01 2008-06-05 Otto Egelhof Gmbh & Co. Kg Thermostatic expansion valve for refrigeration cycles or heat pump cycles, featuring a mechanically controlled safety function

Similar Documents

Publication Publication Date Title
US5890370A (en) Refrigerating system with pressure control valve
EP1954992B1 (en) Method and apparatus of optimizing the cooling load of an economized vapor compression system
JP5292537B2 (en) Expansion device
JP2007524060A (en) Control of refrigeration system
JP2006010136A (en) Supercritical heat pump cycle device
JP4348571B2 (en) Refrigeration cycle
US20060150650A1 (en) Expansion valve for refrigerating cycle
EP1869375B1 (en) Method of determining optimal coefficient of performance in a transcritical vapor compression system and a transcritical vapor compression system
WO2001006183A1 (en) Refrigerating cycle
JP4179231B2 (en) Pressure control valve and vapor compression refrigeration cycle
WO2001027543A1 (en) Refrigerating cycle
WO2001063185A1 (en) Refrigerating cycle
JP2004142701A (en) Refrigeration cycle
KR100845847B1 (en) Control Metheod for Airconditioner
JP2001147048A (en) Superheat extent controller for refrigeration circuit
JP2002228282A (en) Refrigerating device
US3803865A (en) Refrigeration control system
JP2002221376A (en) Refrigerating cycle
EP3628942B1 (en) A method for controlling a vapour compression system at a reduced suction pressure
JP4232567B2 (en) Refrigeration cycle equipment
JP2007183086A (en) Supercritical refrigeration cycle
JP2000097523A (en) Inflation device of super-critical refrigeration cycle
JP2009250590A (en) Expansion valve
JP2001116399A (en) Refrigeration cycle
JP2002174471A (en) Freezing cycle

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase