JPH0221509B2 - - Google Patents

Info

Publication number
JPH0221509B2
JPH0221509B2 JP56099468A JP9946881A JPH0221509B2 JP H0221509 B2 JPH0221509 B2 JP H0221509B2 JP 56099468 A JP56099468 A JP 56099468A JP 9946881 A JP9946881 A JP 9946881A JP H0221509 B2 JPH0221509 B2 JP H0221509B2
Authority
JP
Japan
Prior art keywords
refrigerant
control valve
compressor
condenser
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56099468A
Other languages
Japanese (ja)
Other versions
JPS5871A (en
Inventor
Minoru Yonemura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP56099468A priority Critical patent/JPS5871A/en
Publication of JPS5871A publication Critical patent/JPS5871A/en
Publication of JPH0221509B2 publication Critical patent/JPH0221509B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は冷凍冷蔵庫の如く冷却運転を行なうた
めの冷凍サイクルに関する。一般に冷蔵庫の如く
圧縮機、凝縮器、毛細管、冷却器、吸入管等で構
成される冷凍サイクルで圧縮機の断続運転で温度
制御をしている機器に於いては、圧縮機停止には
高圧側の高温冷媒が毛細管を通してそれまで冷却
運転で低温になつていた冷却器内に高圧側、低圧
側の圧力バランスをすべく流入していく。この場
合高圧側の高温ガス冷媒は冷却器内に流入し冷却
されて、凝縮され液冷媒となる。つまり一般に断
熱された機器の庫内側に設けられた冷却器に凝縮
熱負荷となつており、かつまた、その間には高圧
側システム内の冷媒が減少してしまうために次の
圧縮機運転時には冷却器への冷媒供給の立上りが
遅くなるという欠点を有している。特に前者の凝
縮熱負荷は周囲温度が高くなる程大きくなり、又
後者の冷却器への冷媒供給立上りの遅れは周囲温
度の低下、吐出圧力の低下と共に顕著となり、い
ずれもが冷却効率の低下要因となつている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refrigeration cycle for performing cooling operation, such as in a refrigerator-freezer. In general, in devices such as refrigerators that control the temperature by intermittent operation of the compressor in a refrigeration cycle consisting of a compressor, condenser, capillary tube, cooler, suction pipe, etc., when the compressor is stopped, the high pressure side The high-temperature refrigerant flows through the capillary tube into the cooler, which had been at a low temperature due to cooling operation, in order to balance the pressure between the high-pressure side and the low-pressure side. In this case, the high-pressure side high-temperature gas refrigerant flows into the cooler, is cooled, and is condensed into liquid refrigerant. In other words, the condensation heat load is placed on the cooler installed inside the insulated equipment, and the refrigerant in the high-pressure system decreases during that time, so the next compressor operation requires cooling. This has the disadvantage that the start-up of the refrigerant supply to the container is delayed. In particular, the former's condensation heat load increases as the ambient temperature rises, and the latter's delay in the start-up of refrigerant supply to the cooler becomes more noticeable as the ambient temperature and discharge pressure decrease, both of which are factors that reduce cooling efficiency. It is becoming.

本発明はこれらの欠点を解決すべくなされたも
ので以下図によつてその一実施例を説明する。
The present invention has been made to solve these drawbacks, and one embodiment thereof will be explained below with reference to the drawings.

第1図は冷蔵庫(図示せず)における圧縮機
1、凝縮器2、毛細管3、冷却器4吸入管5で構
成される冷凍サイクルを示す。そして凝縮器2の
出口部に冷媒流制御弁6を配設している。
FIG. 1 shows a refrigeration cycle comprised of a compressor 1, a condenser 2, a capillary tube 3, a cooler 4 and a suction pipe 5 in a refrigerator (not shown). A refrigerant flow control valve 6 is disposed at the outlet of the condenser 2.

第2図は前記冷媒流制御弁6の概略断面図を示
す。この制御弁6のケーシング7には冷媒入口、
出口管8,9(いずれが入口、出口となるも可)
が設けられ、ケーシング7内の冷媒回路内に冷媒
温度によつて伸縮すべく温度膨脹係数の大きいガ
スが密封されたベローズ10(感知部)があり、
ケーシング7内に成形された弁座11と接してケ
ーシング内の冷媒回路を開閉せしめるニードルピ
ン12が前記ベローズ10に当接せしめるようス
プリング13を介して配設せられている。14は
ニードルピン12の天面と当接するストツパで、
これらが接触している状態において(スプリング
13の全圧縮時)ベローズ10は弁座11による
通路11′を塞がないようニードルピン12の長
さ、ストツパ14の高さが設定されている。
FIG. 2 shows a schematic cross-sectional view of the refrigerant flow control valve 6. The casing 7 of this control valve 6 has a refrigerant inlet,
Outlet pipes 8 and 9 (either can be the inlet or outlet)
is provided, and there is a bellows 10 (sensing section) in which a gas having a large coefficient of thermal expansion is sealed in order to expand and contract depending on the temperature of the refrigerant in the refrigerant circuit in the casing 7,
A needle pin 12 that contacts a valve seat 11 formed in the casing 7 to open and close a refrigerant circuit in the casing is disposed via a spring 13 so as to come into contact with the bellows 10. 14 is a stopper that comes into contact with the top surface of the needle pin 12;
The length of the needle pin 12 and the height of the stopper 14 are set so that the bellows 10 does not block the passage 11' caused by the valve seat 11 when these are in contact (when the spring 13 is fully compressed).

次に上記冷凍サイクルの動作を説明する。圧縮
機1が運転するとこれに伴ない高温冷媒が凝縮器
2に送り込まれ制御弁6内のベローズ内圧が上昇
しニードルピン12はスプリング13にうちかつ
て押上げられ通常の冷凍サイクルが行なわれる。
圧縮機1が停止すると凝縮器2への高温ガス冷媒
の供給が停止され凝縮器内ガス温度は急激に周囲
温度により低下し、これに伴ない制御弁6内のベ
ローズ10の内圧も低下しベローズ10は収縮し
スプリング13に押えられてニードルピン12は
ケーシング7の弁座11とで制御弁6内の冷媒回
路を封止せしめ、それ以後の高圧側の高温冷媒の
冷却器4内への流入を封止せしめる。これらの制
御弁動作の結果、圧縮機1の停止時には凝縮器2
内の高温ガス冷媒の冷却器側への流入による庫内
側への凝縮熱負荷量は減少し、圧縮機1の停止中
の冷却器4の温度上昇は庫内温度以下に十分保た
れるようになり、かつ高圧側に残つた冷媒は停止
中冷蔵庫を設置した室温に近づき圧力を低下して
いくも冷媒は従来の冷凍サイクル以上に高圧側に
多く保持されるので次の圧縮機1始動時には冷却
器4への冷媒循環の立上り速度が早くなる。特に
周囲温度低下時に凝縮器2能力が過大となつてき
ている為、圧縮機1の運転中の冷媒はより多く凝
縮器2内に液冷媒化している為この効果は更に大
となる。
Next, the operation of the refrigeration cycle will be explained. When the compressor 1 operates, high-temperature refrigerant is fed into the condenser 2, the internal pressure of the bellows in the control valve 6 increases, the needle pin 12 is pushed up by the spring 13, and a normal refrigeration cycle is performed.
When the compressor 1 stops, the supply of high-temperature gas refrigerant to the condenser 2 is stopped, and the gas temperature in the condenser rapidly decreases due to the ambient temperature, and the internal pressure of the bellows 10 in the control valve 6 also decreases accordingly. 10 contracts and is pressed by the spring 13, and the needle pin 12 seals the refrigerant circuit in the control valve 6 with the valve seat 11 of the casing 7, thereby preventing the high-temperature refrigerant from flowing into the cooler 4 on the high-pressure side. to be sealed. As a result of these control valve operations, when the compressor 1 is stopped, the condenser 2
The amount of condensation heat load on the inside of the refrigerator due to the flow of high-temperature gas refrigerant into the cooler side is reduced, and the temperature rise in the cooler 4 when the compressor 1 is stopped is kept sufficiently below the temperature inside the refrigerator. While the refrigerant is stopped, the refrigerant remaining on the high pressure side approaches the room temperature where the refrigerator is installed and the pressure decreases, but since more refrigerant is retained on the high pressure side than in a conventional refrigeration cycle, it will be cooled down when the next compressor starts. The rise speed of refrigerant circulation to the container 4 becomes faster. In particular, when the ambient temperature drops, the capacity of the condenser 2 becomes excessive, and more refrigerant is converted into liquid refrigerant in the condenser 2 during operation of the compressor 1, so this effect becomes even greater.

尚制御弁6を配設した第1図の冷凍サイクルに
於いて冷却器4の除霜をヒータ(図示せず)にて
行なう場合除霜中(圧縮機停止中)も同様に冷却
器4への冷媒流入は停止される為、冷却器4自体
の熱容量が減少し、デフロスト時間は短縮される
という効果をも有するものである。
In addition, in the refrigeration cycle shown in FIG. 1 in which the control valve 6 is installed, when the cooler 4 is defrosted by a heater (not shown), the air is also supplied to the cooler 4 during defrosting (while the compressor is stopped). Since the inflow of refrigerant is stopped, the heat capacity of the cooler 4 itself is reduced, and the defrost time is also shortened.

さらに制御弁6のベローズ10より別途に感温
キヤピラリチユーブ(第2図破線10′で示す)
を導出して圧縮機運転、停止による温度変化量の
より大きい部分(圧縮機本体、凝縮器入口部等に
配設すればベローズアクシヨンが早くなり、本発
明の効果が更に増加されるのは云う迄もない。
Furthermore, a temperature-sensitive capillary tube (indicated by broken line 10' in FIG. 2) is separately connected to the bellows 10 of the control valve 6.
If this is derived and placed in areas where the amount of temperature change due to compressor operation and stop is large (compressor body, condenser inlet, etc.), the bellows action will be faster and the effects of the present invention will be further increased. Needless to say.

以上説明したように本発明は冷凍サイクルの凝
縮器出口に凝縮器内の冷媒温度あるいは高圧側機
器温度変化を検知して開閉する冷媒流制御弁を配
設することにより、圧縮機停止時の高温ガス冷媒
の冷却器内流入による凝縮熱負荷の侵入防止と次
の圧縮機運転時の冷媒循環立上り速度を早めて冷
凍サイクルの効率向上を図ることができ、また制
御弁は温度にて作動するので電磁弁等の電気的要
素を必要とするものを設けるものと比べて電力消
費がなくて済ませることができ、しかも空間的配
線を必要としないため、冷凍サイクル構成を簡素
にすることができる。
As explained above, the present invention provides a refrigerant flow control valve that opens and closes by detecting changes in refrigerant temperature in the condenser or high-pressure side equipment temperature at the condenser outlet of the refrigeration cycle, thereby reducing the high temperature when the compressor is stopped. It is possible to improve the efficiency of the refrigeration cycle by preventing the intrusion of condensation heat load due to the inflow of gas refrigerant into the cooler and by accelerating the start-up speed of refrigerant circulation during the next compressor operation.Also, since the control valve operates based on temperature, Compared to systems that require electrical elements such as electromagnetic valves, there is no power consumption, and no spatial wiring is required, so the refrigeration cycle configuration can be simplified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明一実施例の冷凍サイクル図、第
2図は冷媒流制御弁の断面図を示す。 6……冷媒流制御弁、10……ベローズ。
FIG. 1 shows a refrigeration cycle diagram according to an embodiment of the present invention, and FIG. 2 shows a sectional view of a refrigerant flow control valve. 6... Refrigerant flow control valve, 10... Bellows.

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮機、凝縮器、毛細管、冷却器、吸入管等
で構成される冷凍サイクルで前記圧縮機の断続運
転で温度制御するものにおいて、前記凝縮器出口
部に配設された冷媒流制御弁と、前記冷媒流制御
弁のケーシング内に設けられたベローズと、前記
ケーシング内を2室に仕切る弁座に穿設された連
通孔に挿通されスプリングによつて前記ベローズ
に当接する方向に付勢され、前記凝縮器の吐出直
後の冷媒温度に対応した前記ベローズの膨張、収
縮に連動して前記ケーシング内の冷媒回路を開閉
するニードルピンとを備え、前記冷媒制御弁は前
記圧縮機の停止時に閉、運転時に開となるよう構
成した冷凍サイクル。
1. In a refrigeration cycle consisting of a compressor, a condenser, a capillary tube, a cooler, a suction pipe, etc., in which the temperature is controlled by intermittent operation of the compressor, a refrigerant flow control valve disposed at the outlet of the condenser; The refrigerant flow control valve is inserted into a communication hole formed in a bellows provided in the casing of the refrigerant flow control valve and a valve seat that partitions the inside of the casing into two chambers, and is biased by a spring in a direction to abut against the bellows. , a needle pin that opens and closes the refrigerant circuit in the casing in conjunction with expansion and contraction of the bellows corresponding to the refrigerant temperature immediately after discharge from the condenser, the refrigerant control valve closing when the compressor is stopped; A refrigeration cycle configured to be open during operation.
JP56099468A 1981-06-25 1981-06-25 Refrigerating cycle Granted JPS5871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56099468A JPS5871A (en) 1981-06-25 1981-06-25 Refrigerating cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56099468A JPS5871A (en) 1981-06-25 1981-06-25 Refrigerating cycle

Publications (2)

Publication Number Publication Date
JPS5871A JPS5871A (en) 1983-01-05
JPH0221509B2 true JPH0221509B2 (en) 1990-05-15

Family

ID=14248137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56099468A Granted JPS5871A (en) 1981-06-25 1981-06-25 Refrigerating cycle

Country Status (1)

Country Link
JP (1) JPS5871A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59152369U (en) * 1983-03-30 1984-10-12 株式会社東芝 Refrigeration cycle valve equipment
JPS6171864U (en) * 1984-10-17 1986-05-16
JPS6189564U (en) * 1985-10-30 1986-06-11
JP2002089989A (en) * 2000-09-12 2002-03-27 Daikin Ind Ltd Air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038850Y2 (en) * 1980-04-17 1985-11-20 三菱電機株式会社 Refrigeration cycle equipment

Also Published As

Publication number Publication date
JPS5871A (en) 1983-01-05

Similar Documents

Publication Publication Date Title
US5205131A (en) Refrigerator system with subcooling flow control
JPH0221509B2 (en)
JPS5819677A (en) Refrigerator
JPH0726775B2 (en) Dual refrigerator
US2895307A (en) Refrigerating system including a hot gas defrosting circuit
JPS61262560A (en) Heat pump type air conditioner
JP2921213B2 (en) refrigerator
CN100498137C (en) Overheat balancer used for heat pump water heater
JPS5971953A (en) Freezing refrigerator
JPS6353463B2 (en)
JPS5844184B2 (en) Refrigeration equipment
JPH08136112A (en) Refrigerator
JPS5952171A (en) Cooling device
EP0504738A1 (en) Refrigerator system with subcooling flow control valve
JPS5816167A (en) Refrigerator
JPS5919256Y2 (en) refrigeration cycle
JPH03152349A (en) Freezer device
JPS60120155A (en) Refrigeration cycle device
JPS6139256Y2 (en)
JPS5924775B2 (en) refrigerator
JPH0428955A (en) Air conditioner
JPS6314269B2 (en)
JPS6227823Y2 (en)
JPH01244263A (en) Defroster for air heat exchanger
JPS5844180B2 (en) refrigeration cycle