JPS5899652A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS5899652A
JPS5899652A JP56198059A JP19805981A JPS5899652A JP S5899652 A JPS5899652 A JP S5899652A JP 56198059 A JP56198059 A JP 56198059A JP 19805981 A JP19805981 A JP 19805981A JP S5899652 A JPS5899652 A JP S5899652A
Authority
JP
Japan
Prior art keywords
valve
port
pressure
compressor
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56198059A
Other languages
Japanese (ja)
Other versions
JPS6325262B2 (en
Inventor
均 那須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP56198059A priority Critical patent/JPS5899652A/en
Publication of JPS5899652A publication Critical patent/JPS5899652A/en
Publication of JPS6325262B2 publication Critical patent/JPS6325262B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は冷蔵庫等に用いる冷凍装置に関する。[Detailed description of the invention] The present invention relates to a refrigeration device used in a refrigerator or the like.

一般的なロータリーコンプレッサの如く高圧容器型の圧
縮機を採用する小形の冷凍装置においては、密閉容器内
が高圧側になるために一般のレシプロコンプレッサの如
く低圧容器型の密閉圧縮機(以下レシプロコンプレッサ
と呼ぶ)に比べて冷凍装置に封入する冷媒量が大巾に増
加する。その−例として、普及型冷凍冷蔵庫ではレシプ
ロ型の冷媒封入量1507程度に対して、ロータリー型
では約260f程度となシロ0%以上の大巾な増加とな
る。この冷媒の増加分1o02のうち一部は高温高圧の
スーパーヒートガスとして、一部は冷凍機油中に溶解し
て密閉容器中に滞留しているのである。これらの高温高
圧の冷媒は冷凍装置の温度調節器の働きにより冷凍装置
の停止時にはスーパーヒートガスはガス状態で、冷凍機
油中に溶解しているものは気化して密閉容器内の高温部
分で加熱され、高温高圧のスーパーヒートガスとなり蒸
発器に流入する。すなわち、その流入経路の第1流路と
して密閉容器−凝縮器一絞り装置−蒸発器へと流入し、
凝縮器で放熱されるので常温のスーパーヒートガスとし
て流入するが、蒸発器との温度差は非常に大きく、従っ
て蒸発器を加熱し大きな熱負荷となる欠点があった。ま
た、第2流路として密閉容器→圧縮要素のシリンダ室−
サクジョンラインー蒸発器へと高温高圧のスーパーヒー
トガスのまま流入し7蒸発器を加熱し、これまた大きな
熱負荷となる欠点があった。なおこの、密閉容器内の高
温高圧ガスがシリンダ室に流入するのは、現存するロー
タリーコンプレッサ等の高圧容器型の圧縮機が金属面接
触によるメカニカルシールにてシリンダ室を構成してい
るためである。
In small refrigeration equipment that uses a high-pressure container-type compressor such as a general rotary compressor, the inside of the closed container is on the high-pressure side, so a low-pressure container-type hermetic compressor (hereinafter referred to as reciprocating compressor) such as a general reciprocating compressor is used. The amount of refrigerant to be sealed in the refrigeration system is significantly increased compared to the refrigeration system. As an example, in a popular refrigerator-freezer, the amount of refrigerant sealed in a reciprocating type is about 1507, whereas in a rotary type it is about 260f, which is a large increase of more than 0%. A portion of this increase in refrigerant 1002 is converted into high-temperature, high-pressure superheat gas, and a portion is dissolved in the refrigerating machine oil and remains in the closed container. These high-temperature, high-pressure refrigerants are in a gas state when the refrigeration equipment is stopped due to the action of the temperature regulator of the refrigeration equipment, and those dissolved in the refrigeration oil are vaporized and heated in the high-temperature part of the sealed container. The gas becomes a high-temperature, high-pressure superheat gas and flows into the evaporator. That is, the first flow path of the inflow path is from the closed container to the condenser to the throttle device to the evaporator,
Since the heat is radiated by the condenser, it flows in as superheated gas at room temperature, but the temperature difference between it and the evaporator is very large, which has the disadvantage of heating the evaporator and creating a large heat load. In addition, as a second flow path, the closed container → the cylinder chamber of the compression element
The suction line - the superheated gas at high temperature and pressure flows into the evaporator as it is and heats the evaporator 7, which also has the disadvantage of creating a large heat load. The reason why this high-temperature, high-pressure gas in the closed container flows into the cylinder chamber is because existing high-pressure container type compressors such as rotary compressors have cylinder chambers made of mechanical seals using metal surface contact. .

すなわち、ロータリーコンプレッサ等の高圧容器型の圧
縮機を用いた冷凍装置は以上の如く高温高圧のスーパー
ヒートガスが多量に蒸発器に流入して大きな熱負荷とな
るものであった。そのため従来のレシプロコンプレッサ
に比べて約20%程度効率の高いロータリーコンプレッ
サ等の高圧容器型の圧縮機を実際に冷凍冷蔵庫に取りつ
けてJISC9607電、気冷紙庫及び電気冷蔵庫の消
費電力試験にて測定した場合にも効果は大巾に減少し、
約6係程度の節電量でしかないものであった。
That is, in a refrigeration system using a high-pressure container type compressor such as a rotary compressor, a large amount of high-temperature, high-pressure superheat gas flows into the evaporator, resulting in a large heat load. Therefore, a high-pressure container-type compressor such as a rotary compressor, which has about 20% higher efficiency than a conventional reciprocating compressor, is actually attached to a refrigerator-freezer and measured in the JISC 9607 electric, air-cooled paper storage, and electric refrigerator power consumption test. Even if you do, the effect will be greatly reduced,
The amount of electricity saved was only about 6 units.

この消費電力量の低減量をロータリーコンプレッサ等の
高圧容器型の圧縮機の効率向上相当分に引き上げるため
には、前記第1.第2の流路より蒸発器に流入する多量
のスーパーヒートガスを阻止することである。現在一部
に用いられている方法は前記第2流路を改善する方法で
、冷凍装置のサクションラインにチェツクノくルプを設
ける方法やロータリーコンプレッサ内部にチェソクノ(
ルプを設ける方法であるが、前記第1流路は未改良であ
るだめその効果は小さく、消費電力量の低減は6チ程度
向上するのみ゛で合計10%程度の効果である。また前
記第1流路を改善する方法として考えられる方法は、電
磁弁をコンデンサ出口に設は冷凍装置の運転に連動して
開閉する手法があるが、電磁弁は高価であり、動作時に
騒音が発生し、またこの電磁弁の制御回路が必要で電気
回路が複雑となり、それ自身が電力を消費するなどの欠
点を有しているものであった。
In order to increase the amount of reduction in power consumption to an amount equivalent to the efficiency improvement of a high-pressure vessel type compressor such as a rotary compressor, it is necessary to The purpose is to prevent a large amount of superheat gas from flowing into the evaporator from the second flow path. Currently, some methods are used to improve the second flow path, such as installing a check loop in the suction line of the refrigeration system or installing a check loop inside the rotary compressor.
However, since the first flow path has not been improved, the effect is small, and the reduction in power consumption is only improved by about 6 channels, which is a total effect of about 10%. In addition, a possible method for improving the first flow path is to install a solenoid valve at the condenser outlet and open and close it in conjunction with the operation of the refrigeration equipment, but solenoid valves are expensive and generate noise during operation. Furthermore, a control circuit for the solenoid valve is required, which complicates the electric circuit, and the electric circuit itself consumes electric power.

本発明は以上の欠点に鑑みて、安価で、電気的な制御を
必要とせず、静粛で、かつロータリーコンプレッサ等の
高圧容器型の圧縮機単体の効率向上と同等以上の高効率
化を冷凍装置として図らんとする省エネルギー形の冷凍
装置を提供せんとするものである。
In view of the above drawbacks, the present invention provides a refrigeration system that is inexpensive, does not require electrical control, is quiet, and has an efficiency equal to or higher than that of a single high-pressure container type compressor such as a rotary compressor. The purpose of this invention is to provide an energy-saving refrigeration system that is designed to achieve the desired results.

以下に本発明の一実施例について説明する。1はロータ
リー型の圧縮機、2は凝縮器、3は流体制御弁、4は絞
り装置、6は蒸発器、6は逆止弁、7はマフラーである
。前記流体制御弁3は内部に略円筒状の弁室8を形成し
ており、この弁室8の内径と略同−の外径る有するボー
ル弁9を備えている。前記弁室8の下面及び上面には第
1弁座10、第2弁座11が形成され、それぞれ第1ポ
ー)12、第2ポ◆ト13が連通されている。
An embodiment of the present invention will be described below. 1 is a rotary compressor, 2 is a condenser, 3 is a fluid control valve, 4 is a throttle device, 6 is an evaporator, 6 is a check valve, and 7 is a muffler. The fluid control valve 3 has a substantially cylindrical valve chamber 8 formed therein, and is equipped with a ball valve 9 having an outer diameter that is substantially the same as the inner diameter of the valve chamber 8. A first valve seat 10 and a second valve seat 11 are formed on the lower and upper surfaces of the valve chamber 8, and communicate with a first port 12 and a second port 13, respectively.

14は第3ボートであり、ボール弁9が第1の弁座10
を閉成したるときに形成するボール弁9の下部の弁室8
aに面する位置、に連通されている。
14 is a third boat, in which the ball valve 9 is located on the first valve seat 10.
The lower valve chamber 8 of the ball valve 9 is formed when the valve is closed.
It is connected to the position facing a.

jた、流体制御弁3のそれぞれのポート12,13゜1
4は第1ポート12は冷凍サイクルの高圧側配管Aの絞
り装置4の入口に、第2ポート13は導圧管16を介し
て冷凍サイクルの低圧側配管Bのマフラー7の一端に接
続し、第3ポート14は凝縮器2の出口にそれぞれ接続
されている。
In addition, each port 12, 13°1 of the fluid control valve 3
4, the first port 12 is connected to the inlet of the throttle device 4 of the high pressure side piping A of the refrigeration cycle, the second port 13 is connected to one end of the muffler 7 of the low pressure side piping B of the refrigeration cycle via the impulse pipe 16, The three ports 14 are each connected to an outlet of the condenser 2.

次に上記構成による動作について説明する。Next, the operation of the above configuration will be explained.

第1図は装置の起動直前の状態を示すものであり、第3
図のイ点に相当する。このときの圧力を第1ポート12
の圧力P1o1第2ポート1aの圧力P2ON第3ポー
ト14の圧力P3oとする。また、第1ポート12の断
面積d1、第2ポート13の断面積a  ボール弁9の
断面積a3、ボール弁1 9の自重Wとすると前記ボール弁9が第1弁座1oの着
座した状態から上方へ摺動せしめられ、第1ポート12
が開路するC以下開弁と呼ぶ)ときの第2ポート13と
第3ポート14の圧力差ΔPo−P3o−P2゜は以下
の式で求められる。
Figure 1 shows the state immediately before the device starts up, and Figure 3 shows the state immediately before starting the device.
Corresponds to point A in the figure. The pressure at this time is the first port 12.
The pressure P1o1 of the second port 1a is P2ON, and the pressure P3o of the third port 14 is assumed to be P3o. Also, assuming that the cross-sectional area d1 of the first port 12, the cross-sectional area a of the second port 13, the cross-sectional area a3 of the ball valve 9, and the weight W of the ball valve 19, the ball valve 9 is seated on the first valve seat 1o. the first port 12.
The pressure difference ΔPo−P3o−P2° between the second port 13 and the third port 14 when the valve is opened (hereinafter referred to as an open valve) is determined by the following equation.

ΔP0〉a1/a3・(P3゜−Pl。)+w/a3捷
だ、前記ボール弁9が第2弁座11に着座した状態より
下方へ摺動せしめられ、第1ポー12を閉路する(以下
閉弁と呼ぶ)ときの前記圧力差ΔP1  は以下の式で
求められる。
ΔP0〉a1/a3・(P3゜−Pl.)+w/a3, the ball valve 9 is slid downward from the state seated on the second valve seat 11, closing the first port 12 (hereinafter The pressure difference ΔP1 when the valve is closed (referred to as valve closing) is determined by the following formula.

ΔP1< W/ a2 従って、例えば周囲温度30 ’C、冷媒R−12、a
l: a2= 0.01 cnl、 a3==0.5c
ffl、 W=0.003tとすると、P1o=1.0
に//c−61P3o−6,5KIP/cdGであるた
め、ΔP0〉0.1警/cdのときに開弁する。
ΔP1<W/a2 Therefore, for example, if the ambient temperature is 30'C, the refrigerant R-12, a
l: a2=0.01 cnl, a3==0.5c
ffl, W=0.003t, P1o=1.0
//c-61P3o-6,5KIP/cdG, so the valve opens when ΔP0>0.1/cd.

また、ΔP1(o、all/cnのときに閉弁する。Further, the valve closes when ΔP1(o, all/cn).

第3図のイ点の状態で起動すると、低圧側配管Bの圧力
は急激に降下する。従って低圧側配管Bのマフラー7と
導圧管1F5により連通せしめられた第2ポート13及
び弁室8のポール弁9上方の圧力も急激に降下し開弁圧
力点(第3図の四点)を瞬間に通過下降する。これによ
り、ボール弁9は第2図の如く第1弁座10を開弁する
と共に、第2弁座11に圧着され、第2ポート13及び
これと連通した導圧管16と弁室8及びこれと連通した
高、圧側配管Aを完全に分離するものである。この時、
流体制御弁3の第1ポート12は開路状態とされるため
、冷媒は一圧縮機1−凝縮器2−流体制御弁3−絞り装
置4−蒸発器6−逆止弁6へと流れるため、逆止弁6も
開路され、逆止弁6−マフラー7−圧縮機1への正規な
流れが保たれ支障なく冷凍作用が行なわれる。
When the system is started in the state shown at point A in FIG. 3, the pressure in the low-pressure side pipe B drops rapidly. Therefore, the pressure at the second port 13, which is communicated with the muffler 7 of the low-pressure side pipe B by the impulse pipe 1F5, and above the Paul valve 9 in the valve chamber 8 also drops rapidly, causing the valve opening pressure point (four points in Fig. 3) to drop. Pass and descend in an instant. As a result, the ball valve 9 opens the first valve seat 10 as shown in FIG. This completely separates the high and pressure side piping A that communicates with the At this time,
Since the first port 12 of the fluid control valve 3 is opened, the refrigerant flows from the compressor 1 to the condenser 2 to the fluid control valve 3 to the throttle device 4 to the evaporator 6 to the check valve 6. The check valve 6 is also opened, and a normal flow from the check valve 6 to the muffler 7 to the compressor 1 is maintained, and the refrigeration operation is performed without any trouble.

次に停止時について説明する。第2図は停止直前の流体
制御弁3の状態を表わすものであり、第3図のハ点に相
当する。この状態で圧縮機1の運転が停止すると低圧側
配管B内のガス流が停止し、逆止弁6は弁(図示せず)
自重により閉弁する。
Next, the time of stopping will be explained. FIG. 2 shows the state of the fluid control valve 3 immediately before it is stopped, and corresponds to point C in FIG. 3. When the operation of the compressor 1 is stopped in this state, the gas flow in the low pressure side pipe B is stopped, and the check valve 6 is closed to the valve (not shown).
The valve closes due to its own weight.

この時、圧縮機1内のスーパーヒートガスは圧縮機1の
圧縮要素内を逆流し、低圧側配管Bの逆止弁6の下流側
に流入し圧力を急上昇せしめる。しかし、逆止弁6が閉
弁しているためスーパーヒートガスが蒸発器6内へ逆流
入する−ことを防止している。一方、同時に、前記マフ
ラー7と導圧管16にて連通された流体制御弁3の第2
ボート13内の圧力も急上昇し、第3ポート14内の圧
力との圧力差ΔPがo、a Kp /aa (第3図の
二点)より小さくなると自重でボール弁9を下方へ摺動
せしめられ第1弁座10を閉じて高圧側配管Aを閉路す
る゛。これにより凝縮器2内のスーパーヒートガスが絞
り装置4を通じ蒸発器5へと流入することも防止できる
ものである。尚、圧縮機1が停止後、流体制御弁3が閉
弁するまでの時間tは約30秒以下であることが望まし
い。この30秒以下というのは、冷凍装置の大きさや、
圧縮機・1の大きさにもよるが、冷凍装置が停止後より
約1分程度は凝縮器2で凝縮された液冷媒が絞シ装置4
へ流入し、正規な冷凍作用を行なうので、それ以前に流
体制御弁3を閉弁すれば良いためである。
At this time, the superheated gas in the compressor 1 flows backward through the compression element of the compressor 1, flows into the downstream side of the check valve 6 in the low-pressure side pipe B, and rapidly increases the pressure. However, since the check valve 6 is closed, the superheat gas is prevented from flowing back into the evaporator 6. On the other hand, at the same time, a second
The pressure inside the boat 13 also rises rapidly, and when the pressure difference ΔP with the pressure inside the third port 14 becomes smaller than o, a Kp /aa (two points in Fig. 3), the ball valve 9 is slid downward by its own weight. Then, the first valve seat 10 is closed and the high pressure side piping A is closed. This also prevents the superheated gas in the condenser 2 from flowing into the evaporator 5 through the throttle device 4. Note that the time t from when the compressor 1 stops until the fluid control valve 3 closes is desirably about 30 seconds or less. This 30 seconds or less depends on the size of the refrigeration equipment,
Although it depends on the size of the compressor 1, the liquid refrigerant condensed in the condenser 2 flows into the throttling device 4 for about 1 minute after the refrigeration system stops.
This is because the fluid control valve 3 only needs to be closed before this occurs because the fluid flows into the fluid and performs a normal refrigeration action.

そのためには前記時間食をできるだけ小さくする必要が
ある。このためには前記流体制御弁3の第2ポート13
の圧力と第3ポート14の圧力との圧力差ΔPが大きな
時、流体制御弁3を閉弁させる必要がある。一方、運転
時の前記圧力差 ΔPは外気湯度が低くなる程小さくな
るため、前記流体制御弁3を開弁させる圧力差ΔPを大
きくとると運転状態でも前記流体制御弁3は閉弁しだま
捷となり、冷凍作用が行なえなくなる。この点に関し、
本発明ではボール弁9の大きさ、自重及び第1ポート1
2、第2ポート13の断面積を適正に選定することによ
り、開弁時のΔP = 0.1 Kp/ crl、閉弁
時のΔP= O−3Kp / a/!と理想通りに簡単
な構成で可能としている。
For this purpose, it is necessary to make the temporal eclipse as small as possible. For this purpose, the second port 13 of the fluid control valve 3 is
When the pressure difference ΔP between the pressure at the third port 14 and the pressure at the third port 14 is large, it is necessary to close the fluid control valve 3. On the other hand, the pressure difference ΔP during operation becomes smaller as the outside air temperature decreases, so if the pressure difference ΔP that opens the fluid control valve 3 is set large, the fluid control valve 3 will not close even during operation. It becomes cold and the freezing action becomes impossible. In this regard,
In the present invention, the size of the ball valve 9, its own weight, and the first port 1
2. By appropriately selecting the cross-sectional area of the second port 13, ΔP when the valve is open = 0.1 Kp/crl, and ΔP when the valve is closed = O-3Kp/a/! This is ideally possible with a simple configuration.

以上の説明からも明らかなように本発明による冷凍装置
は内部にボール弁を摺動可能に収納した略円筒状の弁室
の下面に第1弁座及び第1ポート、上面に第2弁座及び
第2ポートを形成し、前記ボール弁が前記第1の弁座に
着座した時にボール弁の下面及び前記弁室とで構成され
る空間に面する位置に第3ポートを形成した流体制御弁
を有し、冷却システムにおける蒸発器の出口に接続した
逆止弁と圧縮機の低圧側の間に第2ポート、冷却システ
ムの高圧側配管に第1ポート、第3ボートをそれぞれ接
続配管したもので、電磁弁で制御するものに比べて安価
であり、さらに、制御する電力も必要とせず、制御回路
も不要で余分な電気配線も必要とせず、又なめらかな動
作を行うので騒音が発生しないなどの特徴を有するもの
である。また、第1弁座とボール弁は低圧回路の圧力が
低い時に開弁し、高い時は閉弁するようにその圧力に応
動するようにしているので冷凍装置が運転中は通常9冷
媒循環を行い、冷凍装置が停止中には逆止弁機能を有す
る第2弁座とボール弁がただちに閉弁すると同時に低圧
回路の圧力が急上昇し第1弁座をボール弁が液冷媒が減
圧装置へ流出している微小時間中に閉弁するので、圧縮
機内および凝縮器内のスーパーヒートガスがサクション
ラインおよび絞り装置を介して蒸発器に流入するのを防
止する。従って流体制御弁の無いものに比べて節電効果
を大とすると共に流体制御弁の弁装置の構成も非常に簡
素であり、その動作特性の選定もバネ等ではなくポート
径、ボール弁径、ボール弁の自重の組合わせにより行な
うものであるから、そのバラツキも殆んどなく安価で精
度の良いものを簡単に組立てることができる。
As is clear from the above description, the refrigeration system according to the present invention has a substantially cylindrical valve chamber in which a ball valve is slidably housed, a first valve seat and a first port on the lower surface, and a second valve seat on the upper surface. and a fluid control valve having a second port formed therein, and a third port formed at a position facing a space formed by the lower surface of the ball valve and the valve chamber when the ball valve is seated on the first valve seat. The second port is connected between the check valve connected to the outlet of the evaporator in the cooling system and the low pressure side of the compressor, and the first port and third port are connected to the high pressure side piping of the cooling system. It is less expensive than those controlled by solenoid valves, and also requires no power, no control circuit, and no extra electrical wiring, and operates smoothly, so no noise is generated. It has the following characteristics. In addition, the first valve seat and ball valve respond to the pressure by opening when the pressure in the low-pressure circuit is low and closing when it is high, so when the refrigeration system is in operation, the refrigerant is normally circulated. When the refrigeration equipment is stopped, the second valve seat and the ball valve, which has a check valve function, immediately close, and at the same time, the pressure in the low pressure circuit suddenly increases, and the first valve seat and the ball valve close, causing liquid refrigerant to flow out to the pressure reducing device. Since the valve is closed during a minute period during which the evaporator is closed, superheated gas in the compressor and condenser is prevented from flowing into the evaporator via the suction line and the throttling device. Therefore, the power saving effect is greater than that of one without a fluid control valve, and the configuration of the valve device of the fluid control valve is also very simple, and the selection of its operating characteristics is not based on springs, etc., but on the port diameter, ball valve diameter, ball Since this is done by combining the weights of the valves themselves, there is almost no variation and it is possible to easily assemble products with high precision at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の冷凍装置の冷凍サイクル図
で起動直前の状態、第2図は第1図相当の停止前・の流
体制御弁の要部断面図、第3図は第1図の冷凍装置の圧
力変化図である。 1・・・・・・圧縮機S2・・・・・・凝縮器S3・・
・・・・流体制御弁、4 、、、、、、絞9装置、5 
、、、、、・蒸発器、6・・・・・・逆止弁・1o・・
・・・・第1弁座S11・・・ポート、13 、、、、
、、第2ボート、14 、、、、、、第3ポート。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
l11 12図
Fig. 1 is a refrigeration cycle diagram of a refrigeration system according to an embodiment of the present invention in a state immediately before startup, Fig. 2 is a cross-sectional view of the main part of the fluid control valve before stopping corresponding to Fig. FIG. 2 is a pressure change diagram of the refrigeration device shown in FIG. 1. 1... Compressor S2... Condenser S3...
...Fluid control valve, 4, ..., Throttle 9 device, 5
,,,,, Evaporator, 6... Check valve, 1o...
...First valve seat S11...Port, 13...
,,Second boat,14,,,,,Third port. Name of agent: Patent attorney Toshio Nakao and 1 other person
l11 12 figure

Claims (1)

【特許請求の範囲】[Claims] 内部にボール弁を摺動可能に収納した略円筒状の弁室の
下面に第1弁座及び第1ポート、上面に第2弁座及び第
2ポートをそれぞれ形成し、前記ボール弁が前記第1弁
座に着座した時にボール弁の下面及び前記弁室とで構成
される空間に面する位置に第3ボートを形成した流体制
御弁と、圧縮機、凝縮器、絞り装置、蒸発器、逆止弁等
で構成される冷却システムの高圧側配管に第1ポートと
第3ポートを接続し、がっ、低圧側配管で逆上弁より下
流側に第2ポートを接続1管した冷凍装置。
A first valve seat and a first port are formed on the lower surface of a substantially cylindrical valve chamber in which a ball valve is slidably housed, and a second valve seat and a second port are formed on the upper surface, and the ball valve A fluid control valve having a third boat formed at a position facing the space formed by the lower surface of the ball valve and the valve chamber when seated on the first valve seat, a compressor, a condenser, a throttle device, an evaporator, and a reverse valve. A refrigeration system in which the first and third ports are connected to the high-pressure side piping of a cooling system consisting of a stop valve, etc., and the second port is connected to the downstream side of the reverse valve using the low-pressure side piping.
JP56198059A 1981-12-08 1981-12-08 Refrigerator Granted JPS5899652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56198059A JPS5899652A (en) 1981-12-08 1981-12-08 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56198059A JPS5899652A (en) 1981-12-08 1981-12-08 Refrigerator

Publications (2)

Publication Number Publication Date
JPS5899652A true JPS5899652A (en) 1983-06-14
JPS6325262B2 JPS6325262B2 (en) 1988-05-24

Family

ID=16384839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56198059A Granted JPS5899652A (en) 1981-12-08 1981-12-08 Refrigerator

Country Status (1)

Country Link
JP (1) JPS5899652A (en)

Also Published As

Publication number Publication date
JPS6325262B2 (en) 1988-05-24

Similar Documents

Publication Publication Date Title
US6385981B1 (en) Capacity control of refrigeration systems
US6202438B1 (en) Compressor economizer circuit with check valve
JPS59104050A (en) Refrigerator
JPS5899652A (en) Refrigerator
JP3505209B2 (en) Refrigeration equipment
JPS6353463B2 (en)
JPS5899671A (en) Fluid control valve for refrigerator
JPS6325261B2 (en)
JPS5862463A (en) Refrigerator
JPS5852957A (en) Refrigerator
JPS5888577A (en) Fluid control valve for refrigerator
JPH01239351A (en) Air conditioner of air cooled heat pump type
JPH0248778Y2 (en)
JPS5898692A (en) Rotary compressor
JPS5862471A (en) Refrigerator
JPS5816167A (en) Refrigerator
JPH03144257A (en) Freezer
JPS5899674A (en) Refrigerator
JPS6048460A (en) Refrigerator
JPS6325260B2 (en)
JPS6071861A (en) Refrigeration cycle
JPS58214754A (en) Refrigerator
JPS5899656A (en) Refrigerator
JPS6033453A (en) Refrigerator
JPS5896954A (en) Refrigerator