JPS6071861A - Refrigeration cycle - Google Patents

Refrigeration cycle

Info

Publication number
JPS6071861A
JPS6071861A JP17791583A JP17791583A JPS6071861A JP S6071861 A JPS6071861 A JP S6071861A JP 17791583 A JP17791583 A JP 17791583A JP 17791583 A JP17791583 A JP 17791583A JP S6071861 A JPS6071861 A JP S6071861A
Authority
JP
Japan
Prior art keywords
compressor
gas
refrigeration cycle
refrigerant
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17791583A
Other languages
Japanese (ja)
Inventor
仁彦 権守
博志 小暮
喜久治 高橋
中田 義隆
邦成 荒木
鷲見 文一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17791583A priority Critical patent/JPS6071861A/en
Publication of JPS6071861A publication Critical patent/JPS6071861A/en
Pending legal-status Critical Current

Links

Landscapes

  • Saccharide Compounds (AREA)
  • Fats And Perfumes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、冷媒制御弁、気液分離器、ガスバイパス回路
を特に設けた冷凍サイクルに関するものであり、特に冷
凍サイクルの消費電力量を低減するのに好適である。ま
た、圧縮機起動装置の原価低減にも好適である。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a refrigeration cycle that is particularly provided with a refrigerant control valve, a gas-liquid separator, and a gas bypass circuit, and particularly relates to a refrigeration cycle that reduces power consumption of the refrigeration cycle. It is suitable for It is also suitable for reducing the cost of the compressor starting device.

〔発明の背景〕[Background of the invention]

従来よりこの種の冷蔵庫においては、庫内に設けた温度
検知のサーモスタットにより、冷却システムを成す圧縮
機の運転を断続させることにより庫内温度制御を行なっ
ている。特にロータリ圧縮機を用いた場合、圧縮機およ
び凝縮器内の冷媒重量が多いため、圧縮機停止時に圧縮
機および凝縮器から蒸発器へホットガスが流入してしま
い、その結果、蒸発器温度が上昇し、庫内の熱負荷とな
り、消費電力量が増加する。
Conventionally, in this type of refrigerator, the temperature inside the refrigerator is controlled by intermittent operation of a compressor forming a cooling system using a temperature detection thermostat provided inside the refrigerator. Particularly when using a rotary compressor, the weight of refrigerant in the compressor and condenser is large, so when the compressor is stopped, hot gas flows from the compressor and condenser into the evaporator, resulting in a drop in evaporator temperature. This increases the heat load inside the refrigerator and increases power consumption.

そこで防止策として、高圧側と低圧側の間に。Therefore, as a preventive measure, between the high pressure side and the low pressure side.

冷媒制御弁を設け、圧縮機停止中に高圧側のホ・ソトガ
スの蒸発器への流入を防止し、更に、高圧側から圧縮機
を介して、蒸発器へ逆流するホットガスを蒸発器と圧縮
機の間に設けた逆止弁により遮断している。かかる冷凍
サイクルにおいて、圧縮機停止時に高圧側から圧縮機を
介して低圧側へのホットガス洩れが少ない場合、圧縮機
吸込側と吐出側の圧力バランスが悪く、圧縮機起動時に
圧縮隨にかかる負荷が大きくなり、起動トルクを大きく
した圧縮機が必要となる。このように従来の冷凍サイク
ルでは、圧縮機停止時の高圧側から低圧側へのホットガ
ス流入を防止しても、ロータリ圧縮機の成績係数の向上
に伴い、圧縮機内部の高圧側から低圧側へのホットガス
の洩れが少なくなった場合、圧縮機の起動トルクを大き
くしなければならぬという欠点があった。
A refrigerant control valve is installed to prevent hot gas on the high pressure side from flowing into the evaporator when the compressor is stopped, and to prevent hot gas from flowing back into the evaporator from the high pressure side via the compressor. It is shut off by a check valve installed between the machines. In such a refrigeration cycle, if there is little hot gas leaking from the high-pressure side to the low-pressure side via the compressor when the compressor is stopped, the pressure balance between the compressor suction side and the discharge side is poor, and the load on the compressor when the compressor is started will increase. becomes larger, and a compressor with larger starting torque is required. In this way, in conventional refrigeration cycles, even if hot gas is prevented from flowing from the high-pressure side to the low-pressure side when the compressor is stopped, as the coefficient of performance of rotary compressors improves, hot gas flows from the high-pressure side inside the compressor to the low-pressure side. If the leakage of hot gas to the compressor is reduced, the starting torque of the compressor must be increased.

また、ホットガス流入防止のために設けた冷媒制御弁は
一般的に電磁弁が用いられるが、電気入力を必要とする
、あるいは、開閉時に衝撃音が発声するなどの問題があ
り、消費電力量の増加、防音装置の設置などの欠点があ
った。
In addition, solenoid valves are generally used as refrigerant control valves installed to prevent the inflow of hot gas, but they have problems such as requiring electrical input or making impact noises when opening and closing, resulting in low power consumption. There were disadvantages such as an increase in noise and the installation of soundproofing equipment.

〔発明の目的〕[Purpose of the invention]

本発明は、この種の問題に着目し、前述の欠点を改良し
、しかも運転中の冷凍サイクルの効率向上を図ることに
よって、消費電力量の低減、圧縮機の小形化、起動装置
の簡略化、原価低減を成し遂げる冷凍サイクルを提供す
ることにある。
The present invention focuses on this type of problem, improves the above-mentioned drawbacks, and improves the efficiency of the refrigeration cycle during operation, thereby reducing power consumption, downsizing the compressor, and simplifying the starting device. Our objective is to provide a refrigeration cycle that achieves cost reduction.

〔発明の概要〕[Summary of the invention]

本発明は、圧縮機運転中に凝縮したガス冷媒を蒸発器に
流しても冷凍効果が得られないため、気液分離器により
ガス冷媒を圧縮機吸込側にバイパスするので、圧縮機停
止時に、圧縮機吸込側と吐出側の圧力はバランスする。
In the present invention, even if the condensed gas refrigerant flows into the evaporator during compressor operation, no refrigeration effect can be obtained, so the gas refrigerant is bypassed to the compressor suction side by the gas-liquid separator, so when the compressor is stopped, The pressures on the compressor suction side and discharge side are balanced.

更に、圧縮機停止時に圧縮機および凝縮器から蒸発器へ
のホットガス流入を冷媒制御弁により防止し、消費電力
量を低減させることができる。
Furthermore, when the compressor is stopped, the refrigerant control valve prevents hot gas from flowing into the evaporator from the compressor and condenser, thereby reducing power consumption.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第2、第4図により説明する
。1は圧縮機、2は凝縮器、4は減圧器。
An embodiment of the present invention will be described below with reference to FIGS. 2 and 4. 1 is a compressor, 2 is a condenser, and 4 is a pressure reducer.

5は蒸発器、6は逆止弁でこれらは順次接続して冷凍サ
イクルを構成している。7は気液分離器。
5 is an evaporator, and 6 is a check valve, which are connected in sequence to form a refrigeration cycle. 7 is a gas-liquid separator.

3は冷媒制御弁、10は冷媒制御弁を開閉させるための
連通管であり、圧縮機吸込口と逆止弁の間から導ひかれ
ている。8は気液分離器の上端に接続され、もう一端は
圧縮機の吸込口と逆止弁の間に接続されたバイパス回路
であり、途中に毛細管9が接続されている。冷媒制御弁
3は減圧器の中間に、気液分離器は凝縮器と減圧器の間
にそれぞれ接続されている。
3 is a refrigerant control valve, and 10 is a communication pipe for opening and closing the refrigerant control valve, which is led from between the compressor suction port and the check valve. 8 is connected to the upper end of the gas-liquid separator, and the other end is a bypass circuit connected between the suction port of the compressor and the check valve, and a capillary tube 9 is connected in the middle. The refrigerant control valve 3 is connected between the pressure reducer and the gas-liquid separator between the condenser and the pressure reducer.

次に、かかる冷凍サイクルの動作について第4図より説
明する。
Next, the operation of this refrigeration cycle will be explained with reference to FIG.

圧縮機運転中は冷媒制御弁3は開路する。気液分離器に
よってガス冷媒と液冷媒は分離され、ガス冷媒はガスバ
イパス回路8を通り、圧縮機吸込口へ流入する。この場
合の冷凍サイクルは第4図に示す破線の如くなり、凝縮
中のガス冷媒は蒸発器5の温度まで冷却する必要はなく
、従来サイクルよりも蒸発器5の温度まで冷やすガスエ
ンタルピの差分だけ蒸発器内を流れる液冷媒のエンタル
ピが増加するという利点がある。また、圧縮機停止時に
はバイパス回路内を通って凝縮器側の高圧ガスが圧縮機
吸込口と逆止弁の間へ流入するため、圧縮機吸込口と逆
止弁間の圧力は急激に上昇し。
The refrigerant control valve 3 is open during compressor operation. The gas refrigerant and liquid refrigerant are separated by the gas-liquid separator, and the gas refrigerant passes through the gas bypass circuit 8 and flows into the compressor suction port. The refrigeration cycle in this case is as shown by the broken line in Figure 4, and the gas refrigerant being condensed does not need to be cooled down to the temperature of the evaporator 5, but only by the difference in gas enthalpy that is lowered to the temperature of the evaporator 5 than in the conventional cycle. This has the advantage of increasing the enthalpy of the liquid refrigerant flowing within the evaporator. Additionally, when the compressor is stopped, high-pressure gas from the condenser passes through the bypass circuit and flows between the compressor suction port and the check valve, so the pressure between the compressor suction port and the check valve increases rapidly. .

連通管10を通って冷媒制御弁内のダイヤフラムまたは
ベローズへ圧力を加えるため、冷媒制御弁は閉路する。
The refrigerant control valve is closed to apply pressure through the communication tube 10 to the diaphragm or bellows within the refrigerant control valve.

よって、圧縮機停止中、圧縮機および、凝縮器内のホッ
トガスが蒸発器へ流入するのを防止することができ、更
に、圧縮機吸込側の圧力が上昇するので圧縮機吐出側と
の圧力がバランスする。
Therefore, while the compressor is stopped, hot gas in the compressor and condenser can be prevented from flowing into the evaporator.Furthermore, since the pressure on the compressor suction side increases, the pressure on the compressor discharge side is reduced. is balanced.

また、ガスバイパス回路8内に毛細管9を設けることに
より、圧縮機停止後、圧縮機吸込側と吐出側とが圧力バ
ランスする際に発生する冷媒音を小さくすることができ
る。
Further, by providing the capillary tube 9 in the gas bypass circuit 8, it is possible to reduce the refrigerant noise generated when the pressures on the suction side and the discharge side of the compressor are balanced after the compressor is stopped.

以上の如く1本発明によれば、冷媒制御弁と気液分離器
を組み合わせて、冷凍サイクルに用いることにより、圧
縮機運転時の圧縮機停止中に圧縮機および凝縮器から蒸
発器へのホットガス流入を防止して、消費電力量の低減
を図り、更に圧縮機1の吸込側と吐出側とを完全に圧力
バランスさせることにより、圧縮機の起動トルクを低減
させることができるので、圧縮機の小形化、起動装置の
原価低減を図ることができる。
As described above, according to the present invention, a refrigerant control valve and a gas-liquid separator are combined and used in a refrigeration cycle, thereby discharging hot water from the compressor and condenser to the evaporator while the compressor is stopped during compressor operation. By preventing gas inflow and reducing power consumption, and by creating a perfect pressure balance between the suction side and the discharge side of the compressor 1, the starting torque of the compressor can be reduced. It is possible to reduce the size of the device and reduce the cost of the starting device.

本発明の冷媒制御弁は差圧を利用して作動する差圧弁に
ついて説明したが、これのみに限らず。
Although the refrigerant control valve of the present invention has been described as a differential pressure valve that operates using differential pressure, the present invention is not limited to this.

電磁弁、瞬時通電弁についても同様の効果を発揮するも
のである。
Similar effects can be achieved with solenoid valves and instantaneous energization valves.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、断続運転を行なう冷凍サイクルにおい
て、圧縮機停止中にガスバイパス回路を通じて、圧縮機
吸込口と逆止弁の間の圧力が上昇することにより、冷媒
制御弁が閉路し、圧縮機、および凝縮器から蒸発器内へ
のホットガス流入を防止でき、冷蔵庫内へ侵入する熱負
荷を遮断できるので消費電力量を15〜20%低減でき
る。
According to the present invention, in a refrigeration cycle that performs intermittent operation, the pressure between the compressor suction port and the check valve increases through the gas bypass circuit while the compressor is stopped, so that the refrigerant control valve closes and the compressor It is possible to prevent hot gas from flowing into the evaporator from the refrigerator and the condenser, and to cut off the heat load entering the refrigerator, reducing power consumption by 15 to 20%.

更ニ、ガスバイパス回路よりホットガスが圧縮機吸込口
と逆止弁の間へ流入し、圧縮機吸込側と吐出側の圧力が
バランスするため、圧縮機の起動トルクの低減、あるい
は圧縮機の小形化、あるいは起動装置の原価低減が可能
となる。
Furthermore, hot gas flows from the gas bypass circuit between the compressor suction port and the check valve, and the pressures on the compressor suction side and discharge side are balanced, reducing the compressor starting torque or reducing the compressor speed. It is possible to downsize or reduce the cost of the starting device.

更に、圧縮機運転中には気液分離器によって分離したガ
ス冷媒がガスバイパス回路を通って圧縮機吸込側へ流入
するため、減圧器入口では飽和液相線上となり、その点
から減圧するためガス冷媒を蒸発器温度まで冷却する必
要がなく、その分の熱量が冷却に利用されるため、省電
力となり、消費電力量を低減できる。
Furthermore, during compressor operation, the gas refrigerant separated by the gas-liquid separator flows into the compressor suction side through the gas bypass circuit, so it is on the saturated liquidus line at the inlet of the pressure reducer, and the gas refrigerant is depressurized from that point. There is no need to cool the refrigerant to the evaporator temperature, and the amount of heat is used for cooling, so power is saved and power consumption can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の冷凍サイクルの構成図である。 第2図は1本発明による冷凍サイクルの構成図である。 第3図は、従来の冷凍サイクルを示すモリエル線図であ
る。第4図は1本発明の冷凍サイクルを説明するための
モリエル線図である。 1・・・圧縮機、2・・・凝縮器、3・・・冷媒制御弁
、4・・・減圧器、5・・・蒸発器、6・・・逆止弁、
7・・・気液分離器、8・・・ガスバイパス回路、9・
・・毛細管、10・・・連通管。 代理人 弁理士 高 橋 明 夫 :lf、s@ ′$4図 エンタルヒ0
FIG. 1 is a block diagram of a conventional refrigeration cycle. FIG. 2 is a block diagram of a refrigeration cycle according to the present invention. FIG. 3 is a Mollier diagram showing a conventional refrigeration cycle. FIG. 4 is a Mollier diagram for explaining the refrigeration cycle of the present invention. DESCRIPTION OF SYMBOLS 1... Compressor, 2... Condenser, 3... Refrigerant control valve, 4... Pressure reducer, 5... Evaporator, 6... Check valve,
7... Gas-liquid separator, 8... Gas bypass circuit, 9...
...Capillary tube, 10...Communication tube. Agent Patent Attorney Akio Takahashi: lf, s@ ′$4 Enthalpy 0

Claims (1)

【特許請求の範囲】 】、圧縮機、凝縮器、減圧器、蒸発器、逆止弁を順次連
設して形成される冷凍サイクルにおいて、凝縮器と減圧
器の間に気液分離器を設け、前記減圧器の中間に冷媒制
御弁を設け、気液分離器から圧縮機吸込口と逆止弁の間
へガスバイパス回路を設けたことを特徴とする冷凍サイ
クル。 2、圧縮機をロータリ形圧縮機としたことを特徴とする
特許請求範囲第1項記載の冷凍サイクル。 3、前記第1項記載のガスバイパス回路中に毛細管を設
けたことを特徴とする特許請求範囲第1項記載の冷凍サ
イクル。
[Claims] In a refrigeration cycle formed by sequentially connecting a compressor, a condenser, a pressure reducer, an evaporator, and a check valve, a gas-liquid separator is provided between the condenser and the pressure reducer. A refrigeration cycle characterized in that a refrigerant control valve is provided in the middle of the pressure reducer, and a gas bypass circuit is provided from the gas-liquid separator to between the compressor suction port and the check valve. 2. The refrigeration cycle according to claim 1, wherein the compressor is a rotary compressor. 3. The refrigeration cycle according to claim 1, characterized in that a capillary tube is provided in the gas bypass circuit according to claim 1.
JP17791583A 1983-09-28 1983-09-28 Refrigeration cycle Pending JPS6071861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17791583A JPS6071861A (en) 1983-09-28 1983-09-28 Refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17791583A JPS6071861A (en) 1983-09-28 1983-09-28 Refrigeration cycle

Publications (1)

Publication Number Publication Date
JPS6071861A true JPS6071861A (en) 1985-04-23

Family

ID=16039282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17791583A Pending JPS6071861A (en) 1983-09-28 1983-09-28 Refrigeration cycle

Country Status (1)

Country Link
JP (1) JPS6071861A (en)

Similar Documents

Publication Publication Date Title
US6385981B1 (en) Capacity control of refrigeration systems
EP0921364A2 (en) Pulsed flow for capacity control
JP2010002173A (en) Refrigerator
JPH01239350A (en) Refrigerating cycle device
JPS6071861A (en) Refrigeration cycle
JPS5849776B2 (en) Two-stage compression refrigeration equipment
JPS6073259A (en) Refrigeration cycle device
JP2508811B2 (en) Air conditioner
JPS6048459A (en) Refrigeration cycle
JPS60111851A (en) Heat pump type refrigerator
JPS60178256A (en) Refrigeration cycle
JPS6073258A (en) Refrigeration cycle device
JPS6048460A (en) Refrigerator
JPH06241583A (en) Freezer device
JPS60103255A (en) Refrigerator
JPS6057163A (en) Refrigeration cycle
JPS5888556A (en) Refrigerator
JPS60162158A (en) Refrigeration cycle
JPS6073260A (en) Refrigeration cycle
JPH07167508A (en) Refrigerator
JPS5984063A (en) Heat pump type refrigeration cycle
JPS6196367A (en) Air-cooling refrigerator
JPS62237251A (en) Air conditioner
JPS60105867A (en) Refrigerator
JPS58214754A (en) Refrigerator