JPS58214754A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS58214754A
JPS58214754A JP9961082A JP9961082A JPS58214754A JP S58214754 A JPS58214754 A JP S58214754A JP 9961082 A JP9961082 A JP 9961082A JP 9961082 A JP9961082 A JP 9961082A JP S58214754 A JPS58214754 A JP S58214754A
Authority
JP
Japan
Prior art keywords
compressor
valve
float valve
float
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9961082A
Other languages
Japanese (ja)
Inventor
横江 章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP9961082A priority Critical patent/JPS58214754A/en
Publication of JPS58214754A publication Critical patent/JPS58214754A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は冷蔵庫、ショーケース等、に使用し、かつ冷媒
回路の開閉用としてフロート弁を使用している冷凍装置
に関し、フロート弁による冷媒回路の開閉動作を確実に
行なわせる事を目的としている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refrigeration system that is used in refrigerators, showcases, etc., and uses a float valve to open and close a refrigerant circuit. The purpose is to

この種従来の冷凍装置は圧縮機1により圧縮された高メ
募高圧の冷媒は、凝縮器2にて液化され、乾燥器3.フ
ロート弁4′を通り、キャピラリチューブ6で減圧され
、蒸発器6にて所定の温度で蒸発し、圧縮機1へ戻る冷
凍サイクルをくり返すものである。このフロート弁4′
は、フロート弁外殻4a/ + 7 o−ト4b′、弁
部4C′、弁座部4d′、弁穴4e/で構成されており
、圧縮機1が運転中は凝縮器2で冷却された液冷媒が溜
まっていき、所定の液面レベルになると浮力によりフロ
ー+、 4b/が浮いて弁部4C′を開方向に動作させ
て冷媒回路を開き、キャピラリチューブ6へ液冷媒を送
り通常の冷却作用を行なう。しかし、圧縮機1停止時に
は弁外殻4a’内には液冷媒が流入しないので、液面が
下がり、フロート4b′も下がって弁部4 C/を閉じ
る方向に動作して冷媒回路を閉じる。この為、高圧2相
冷媒(主としてガス分)は、冷却運転の停止時、蒸発器
θ側へ流れなくなるので、これにより冷凍効果を持たな
い冷媒ガスが圧縮機1の停止中に背圧により蒸発器6側
へ流れて、蒸発器6の温度が上昇する事を防止し、冷凍
装置の運転効率を高めている。
In this type of conventional refrigeration system, a high concentration, high pressure refrigerant compressed by a compressor 1 is liquefied in a condenser 2, and then liquefied in a dryer 3. It passes through a float valve 4', is depressurized by a capillary tube 6, is evaporated at a predetermined temperature in an evaporator 6, and returns to the compressor 1, repeating the refrigeration cycle. This float valve 4'
is composed of a float valve outer shell 4a/+7o-t 4b', a valve part 4C', a valve seat part 4d', and a valve hole 4e/, and is cooled by a condenser 2 while the compressor 1 is in operation. The liquid refrigerant accumulates, and when the liquid level reaches a predetermined level, the flow +, 4b/ floats due to buoyancy, operates the valve section 4C' in the opening direction, opens the refrigerant circuit, and sends the liquid refrigerant to the capillary tube 6, normally It has a cooling effect. However, when the compressor 1 is stopped, no liquid refrigerant flows into the valve shell 4a', so the liquid level drops, and the float 4b' also lowers, operating in the direction of closing the valve portion 4C/, thereby closing the refrigerant circuit. For this reason, the high-pressure two-phase refrigerant (mainly gas) does not flow to the evaporator θ side when the cooling operation is stopped, so that the refrigerant gas, which has no refrigerating effect, evaporates due to back pressure while the compressor 1 is stopped. This prevents the temperature of the evaporator 6 from rising due to the flow to the evaporator 6 side, thereby increasing the operating efficiency of the refrigeration system.

一般にフロート弁或いは、電磁弁等の弁部については、
弁閉止時に於ける少量のリーク量は生産歩留まりを考慮
して許容されている場合が多い。
Generally, for valve parts such as float valves or solenoid valves,
A small amount of leakage when the valve is closed is often allowed in consideration of production yield.

特にフロート弁については、弁閉時に弁穴が完全にシー
ルされた場合、冷媒が全熱供給されず、従ってフロート
弁は開閉動作の機能を失なうという状態が発生する。こ
の為、弁部からは機能上問題とならない程度リークさせ
、冷媒液がフロート弁へ流れ易くなる様にしている。し
かしながら、弁穴から機能上問題とならない程度リーク
させる仕様としておいても、冷凍装置が運転される様々
な圧力条件のもとでは、高圧、低圧の、ある圧力条件で
は、弁穴が完全に近い程シールされる様な場合もあり、
この為フロート弁が機能しなくなるという欠点を有して
いる。
Particularly with respect to a float valve, if the valve hole is completely sealed when the valve is closed, a situation occurs in which the refrigerant is not fully supplied with heat, and the float valve therefore loses its opening/closing function. For this reason, leakage is made from the valve portion to an extent that does not cause any functional problems, so that the refrigerant liquid can easily flow to the float valve. However, even if the specification allows leakage from the valve hole to an extent that does not pose a functional problem, under the various pressure conditions under which the refrigeration equipment is operated, under certain pressure conditions, such as high pressure or low pressure, the valve hole may be close to being completely leaked. In some cases, it may be sealed,
This has the disadvantage that the float valve no longer functions.

本発明は、上記した従来例の欠点をなくしたものであり
、以下に本発明の一実施例の構成について第2図により
説明する。尚、図中従来例の第1図と同一部品について
は同一番号を付して説明を省略し、異なる部分のみを説
明する。
The present invention eliminates the drawbacks of the conventional example described above, and the configuration of one embodiment of the present invention will be explained below with reference to FIG. 2. Components in the figure that are the same as those in FIG. 1 of the conventional example are designated by the same numbers and explanations are omitted, and only the different parts will be explained.

圧縮機1によね圧縮された高温高圧の冷媒は。The high temperature and high pressure refrigerant is compressed by the compressor 1.

凝縮器2にて液化され、乾燥器3.フロート弁4を通り
、キャピラリチューブ6で減圧され、蒸発器6で所定の
温度で蒸発して、吸入管7を通り、フロート弁4内に設
けている吸入管部4fを通って、圧縮機1へ戻る冷媒回
路を構成している。上記フロート弁4は、フロート弁外
殻4a、フロート4b、フロートと一体の弁部40.弁
座部4d、弁穴4B、吸入管部4fより成る。そして、
吸入管部4fは、フロート弁外殻4Nの入口4h側から
出口41側へ貫通させて設け、かつフロート弁外殻内の
ガス溜部分となる位置に対応して微細穴4gを設けてお
り、その大抵抗としては、弁穴4eの抵抗よりも犬きく
、且つ、フロート弁適用の所期機能を妨たけない様に決
めている。
It is liquefied in a condenser 2, and then sent to a dryer 3. It passes through the float valve 4, is depressurized in the capillary tube 6, is evaporated at a predetermined temperature in the evaporator 6, passes through the suction pipe 7, passes through the suction pipe section 4f provided in the float valve 4, and is then pumped into the compressor 1. It constitutes the refrigerant circuit that returns to the The float valve 4 includes a float valve outer shell 4a, a float 4b, and a valve portion 40 integrated with the float. It consists of a valve seat portion 4d, a valve hole 4B, and a suction pipe portion 4f. and,
The suction pipe portion 4f is provided to pass through the float valve outer shell 4N from the inlet 4h side to the outlet 41 side, and is provided with a fine hole 4g corresponding to the position of the gas reservoir in the float valve outer shell. The large resistance is determined to be greater than the resistance of the valve hole 4e and so as not to interfere with the intended function of the float valve.

係る構成において、圧縮機1の運転時には、凝縮器2で
冷却された液冷媒が溜まっていき、そしてフロート4b
が浮く液面レベル達する迄は、吸入管部4fの微細穴4
gから圧縮機1へという副冷媒回路が構成され、冷凍効
果のないガス分を冷却器6をバイパスさせ圧縮機1側へ
直接返す様にしており、このガス抜きにより、フロート
弁4への液冷媒の流入を円滑にしている。一方フロート
弁4内に所定量の液冷媒が溜まり、フロート4bが浮い
て、弁部4Cを開方向に動作させると、微細穴4gと弁
穴4eとの抵抗差により、弁穴46−キャピラリチュー
ブ5.蒸発器6という主冷媒回路を形成し、従来例で説
明した通常の冷却サイクルを行なう0又、吸入管部4f
をフロート弁4内に設けているので、蒸発器6がらの比
較的冷たい戻・リガスで、フロート弁4内の液冷媒を過
冷却でき、冷凍効果を高めている。圧縮機1の停止時に
は、フロート弁4へ液冷媒は供給されず、液面が下がり
、フロート4bも下がって弁は閉じる方向に動作する。
In such a configuration, when the compressor 1 is operating, the liquid refrigerant cooled by the condenser 2 accumulates, and the float 4b
The fine hole 4 of the suction pipe section 4f is
An auxiliary refrigerant circuit is constructed from g to the compressor 1, and the gas that has no refrigerating effect bypasses the cooler 6 and is directly returned to the compressor 1. By removing this gas, the liquid to the float valve 4 is Smooth inflow of refrigerant. On the other hand, when a predetermined amount of liquid refrigerant accumulates in the float valve 4, the float 4b floats, and the valve part 4C is moved in the opening direction, the difference in resistance between the fine hole 4g and the valve hole 4e causes the difference between the valve hole 46 and the capillary tube. 5. The suction pipe section 4f forms a main refrigerant circuit called the evaporator 6 and performs the normal cooling cycle described in the conventional example.
Since this is provided in the float valve 4, the relatively cold return/regas from the evaporator 6 can supercool the liquid refrigerant in the float valve 4, thereby enhancing the refrigeration effect. When the compressor 1 is stopped, no liquid refrigerant is supplied to the float valve 4, the liquid level drops, the float 4b also drops, and the valve moves in the closing direction.

この時は、微細穴4g、圧縮機1へという副冷媒回路が
構成され、フロート弁適用の所期機能を妨たげない程度
の微量ガスが吸入管部4fを介して圧縮機1へ上記した
と同じく冷却器6をバイパスして流れ、次サイクルでの
フロート動作を保証する様にしている。
At this time, an auxiliary refrigerant circuit is configured through the fine holes 4g and to the compressor 1, and a small amount of gas that does not interfere with the intended function of the float valve is passed through the suction pipe section 4f to the compressor 1. Similarly, the flow bypasses the cooler 6 to ensure float operation in the next cycle.

本発明は上記した様に、圧縮機、凝縮器、キャピラリチ
ューブ、蒸発器等を環状に順次接続すると共に、圧縮機
の0N−OFF運転により庫内温度を制御せしめ、前記
凝縮器の出口とキャピラリチューブの入口との間Kid
、圧縮機の運転、停止により循環する冷媒の増減により
開閉するフロート弁を設け、前記フロート弁に圧縮機の
吸入側と蒸発器の出口側に接続され、かつフロート弁内
に臨む微細穴を有する吸入管部を内設したものであるか
ら、冷凍装置が運転される様々な条件のもとでも、フロ
ート弁の機能を支障なく発輝させる事ができ、冷凍装置
の動力費低減に大きく寄与する事ができる。また、吸入
管部の働らきにより、フロート弁の開閉動作が確実かつ
迅速にでき、その上フロート弁内の液冷媒をも過冷却で
きる。
As described above, the present invention sequentially connects a compressor, a condenser, a capillary tube, an evaporator, etc. in an annular manner, controls the temperature inside the refrigerator by ON-OFF operation of the compressor, and connects the outlet of the condenser and the capillary. Kid between tube inlet
, a float valve is provided that opens and closes depending on the increase and decrease of circulating refrigerant due to operation and stop of the compressor, and the float valve has a fine hole connected to the suction side of the compressor and the outlet side of the evaporator and facing into the float valve. Since the suction pipe is installed internally, the function of the float valve can be maintained without any problems even under the various operating conditions of the refrigeration equipment, which greatly contributes to reducing the power cost of the refrigeration equipment. I can do things. In addition, due to the function of the suction pipe, the float valve can be opened and closed reliably and quickly, and the liquid refrigerant inside the float valve can also be supercooled.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の冷凍装置の冷凍サイクル図、第2図は本
発明一実施例の冷凍装置の冷凍サイクル図を示す。 1・・・・・・圧縮機、2・・・・・・凝縮器、4・・
・・・・フロート弁、4f・・・・・・吸入管部、6・
・・・・・キャピラリチューブ、6・・・・・・蒸発器
FIG. 1 shows a refrigeration cycle diagram of a conventional refrigeration system, and FIG. 2 shows a refrigeration cycle diagram of a refrigeration system according to an embodiment of the present invention. 1... Compressor, 2... Condenser, 4...
...Float valve, 4f...Suction pipe section, 6.
... Capillary tube, 6 ... Evaporator.

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、凝縮器、キャピラリチューブ、蒸発器等を環状
に順次接続すると共に、圧縮機の0N−OFF運転によ
り庫内温度を制御せしめ、前記凝縮器の出口とキャピラ
リチューブの入口との間には、圧縮機の運転、停止によ
り循環する冷媒の増減により開閉するフロート弁を設け
、このフロート弁に圧縮機の吸入側と蒸発器の出口側に
接続され、かつフロート弁内に臨んだ微細穴を有する吸
入管部を内設した冷凍装置。
A compressor, a condenser, a capillary tube, an evaporator, etc. are sequentially connected in an annular manner, and the temperature inside the refrigerator is controlled by ON-OFF operation of the compressor, and between the outlet of the condenser and the inlet of the capillary tube, , a float valve is provided that opens and closes depending on the increase or decrease of circulating refrigerant when the compressor is started or stopped, and this float valve is connected to the suction side of the compressor and the outlet side of the evaporator, and has a fine hole facing into the float valve. Refrigeration equipment with an internal suction pipe section.
JP9961082A 1982-06-09 1982-06-09 Refrigerator Pending JPS58214754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9961082A JPS58214754A (en) 1982-06-09 1982-06-09 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9961082A JPS58214754A (en) 1982-06-09 1982-06-09 Refrigerator

Publications (1)

Publication Number Publication Date
JPS58214754A true JPS58214754A (en) 1983-12-14

Family

ID=14251861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9961082A Pending JPS58214754A (en) 1982-06-09 1982-06-09 Refrigerator

Country Status (1)

Country Link
JP (1) JPS58214754A (en)

Similar Documents

Publication Publication Date Title
US6385981B1 (en) Capacity control of refrigeration systems
JPS5984050A (en) Refrigerator
JP4090240B2 (en) Cooling system
JPS58214754A (en) Refrigerator
JPH11182478A (en) Screw type refrigerating machine
JPH02192559A (en) Dual refrigerator
JP2000118231A (en) Refrigerating cycle
JP4153203B2 (en) Cooling system
JPH085172A (en) Cooler for refrigerator with deep freezer
JPH0113968Y2 (en)
JPH0144796Y2 (en)
JPH025336Y2 (en)
JPH025316Y2 (en)
JPH0593548A (en) Refrigerator
JPS5919256Y2 (en) refrigeration cycle
JPH029344Y2 (en)
JPH0230700Y2 (en)
JPS6115978B2 (en)
KR100426892B1 (en) power saving type air conditioner and adjusting method therefor
JPS5984063A (en) Heat pump type refrigeration cycle
JPH05264131A (en) Accumulator
JPS61191835A (en) Gas-liquid separator of chilling unit for automobile
JPS61276664A (en) Heat pump device
JPS5844180B2 (en) refrigeration cycle
JPS59200161A (en) Refrigeration cycle