JPS6048460A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS6048460A
JPS6048460A JP15482083A JP15482083A JPS6048460A JP S6048460 A JPS6048460 A JP S6048460A JP 15482083 A JP15482083 A JP 15482083A JP 15482083 A JP15482083 A JP 15482083A JP S6048460 A JPS6048460 A JP S6048460A
Authority
JP
Japan
Prior art keywords
compressor
pressure
valve
refrigerant
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15482083A
Other languages
Japanese (ja)
Inventor
仁彦 権守
博志 小暮
喜久治 高橋
中田 義隆
邦成 荒木
鷲見 文一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15482083A priority Critical patent/JPS6048460A/en
Publication of JPS6048460A publication Critical patent/JPS6048460A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は冷媒制御弁、差圧二方弁を用いた冷凍サイクル
に関するものであり、特に冷凍サイクルの消費電力量を
低減するのに好適である。また、差圧二方弁においては
、防音装置を具備する必要がないので、原価低減に好適
である。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a refrigeration cycle using a refrigerant control valve and a two-way differential pressure valve, and is particularly suitable for reducing power consumption of the refrigeration cycle. . Further, since the differential pressure two-way valve does not need to be equipped with a soundproofing device, it is suitable for cost reduction.

〔従来技術〕[Prior art]

従来よりこの種の冷蔵庫においては、庫内に設けた温度
検知のサーモスタットにより、冷却システムを成す圧縮
機の運転を断続させることにより庫内温度制御を行なっ
ている。特に、ロークリ圧縮機を用いた場合、高圧側の
冷媒重量が多いため圧縮機停止時に、高圧側から蒸発器
へポットガスが流入してしまい、その結果蒸発器温度が
」1昇し庫内の熱負荷となり、消費電力量が増加する。
Conventionally, in this type of refrigerator, the temperature inside the refrigerator is controlled by intermittent operation of a compressor forming a cooling system using a temperature detection thermostat provided inside the refrigerator. In particular, when using a low-pressure compressor, the weight of the refrigerant on the high-pressure side is large, so when the compressor is stopped, pot gas flows into the evaporator from the high-pressure side, resulting in the evaporator temperature rising by 1. This creates a heat load and increases power consumption.

そこで、防止策として、高圧側と低圧側の間に冷媒制御
弁を設け、圧縮機停止中に蒸発器へ高圧側のホットガス
流入を防止し、更に、高圧側がら圧縮機を介して、蒸発
器へ逆流するホットガスを蒸発器と圧縮機の間に設けた
逆止弁Iこより遮断している。かかる冷凍サイクルにお
いて、圧縮機停止時に高圧側から低圧側へのホットガス
洩れが少ない場合、高圧側と低圧側の圧力バランスが悪
く圧縮機再起動時に圧縮機にかかる負荷が大きくなり、
起動トルクを大きくした圧縮機が必要となる。
Therefore, as a preventive measure, a refrigerant control valve is installed between the high-pressure side and the low-pressure side to prevent hot gas from flowing into the evaporator from the high-pressure side while the compressor is stopped. Hot gas flowing back into the evaporator is blocked by a check valve I installed between the evaporator and the compressor. In such a refrigeration cycle, if there is little hot gas leaking from the high-pressure side to the low-pressure side when the compressor is stopped, the pressure balance between the high-pressure side and the low-pressure side will be poor, and the load on the compressor will increase when the compressor is restarted.
A compressor with high starting torque is required.

このように、従来の冷凍サイクルでは、圧縮機停止時の
高圧側から蒸発器へのホラ)・ガス流入を防止しても、
ロータリ圧縮機の成績係数の向」−に伴い、圧縮機内部
の高圧側と低圧側の洩れが少なくなった場合、圧縮機の
起動トルクを大きくしなければならぬという欠点があっ
た。
In this way, in conventional refrigeration cycles, even if gas is prevented from flowing into the evaporator from the high pressure side when the compressor is stopped,
As the coefficient of performance of rotary compressors increases, leakage between the high-pressure side and the low-pressure side inside the compressor decreases, resulting in the disadvantage that the starting torque of the compressor must be increased.

また、ホットガス流入防止のために設けた冷媒制御弁は
一般的に電磁弁が用いられるか、電気人力を必要とする
あるいは、衝撃音が発生するなとの問題があり、消費電
力量の増加、防音装置の設置などの欠点があった。
In addition, the refrigerant control valve installed to prevent the inflow of hot gas is generally a solenoid valve, requires electric power, or generates impact noise, which increases power consumption. However, there were drawbacks such as the installation of soundproofing equipment.

〔発明の目的〕[Purpose of the invention]

本発明は、この種の問題に着目し、前述の欠点を改良し
、消費電力量の低減、圧縮機の小形化、起動装置の簡略
化、原価低減、および低騒音化した冷凍装置を提供する
ことにある。
The present invention focuses on this type of problem, and provides a refrigeration system that improves the above-mentioned drawbacks, reduces power consumption, downsizes the compressor, simplifies the starting device, reduces cost, and reduces noise. There is a particular thing.

〔発明の概要〕[Summary of the invention]

前述の様に、ロータリ圧縮機を搭載した冷蔵庫用冷凍サ
イクルにおいて、圧縮機の再起動時の負荷を軽減するた
めに、圧縮機の高圧側と低圧側の圧力バランスを迅速に
行なわせる方法として電磁二方弁または瞬時通電弁を用
い、更に、圧縮機停止時に高圧側から蒸発器へのホット
ガス流入を防ぎ、消費電力量を低減させる方法として、
圧縮機吸込口と逆止弁の間の圧力が変化することを検知
して作動する差圧二方弁を用いたものである。
As mentioned above, in a refrigerator refrigeration cycle equipped with a rotary compressor, electromagnetic technology is used to quickly balance the pressure between the high-pressure side and the low-pressure side of the compressor in order to reduce the load when restarting the compressor. As a method of reducing power consumption by using a two-way valve or instantaneous energization valve and further preventing hot gas from flowing into the evaporator from the high pressure side when the compressor is stopped,
It uses a differential pressure two-way valve that operates by detecting changes in the pressure between the compressor suction port and the check valve.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第2〜第5図により説明する
−01は圧縮機、2は凝縮器、3は減圧器、4は蒸発器
、5は逆止弁でこれらは順次接続して冷凍サイクルを構
成している。6は冷媒制御弁で例えば電磁二方弁または
、永久磁石を用い、作動後は電気的な入力を必要としな
い瞬時通電弁であり、バイパス管7で圧縮機の吐出側と
吸込側とに接続されている。8は差圧式二方弁で弁を有
する高圧室8Hと低圧室8Lから成り、低圧室8Lの人
口8Zと、圧縮機吸込口と逆止弁の間とを連通管9で接
続し、高圧室の入日8Xと凝縮器出目を冷媒管で接続し
、高圧室の出口8yと減圧器人口を冷媒管で接続して構
成されている。
Hereinafter, one embodiment of the present invention will be explained with reference to Figs. 2 to 5. -01 is a compressor, 2 is a condenser, 3 is a pressure reducer, 4 is an evaporator, and 5 is a check valve, which are connected in sequence. make up the refrigeration cycle. Reference numeral 6 denotes a refrigerant control valve, which is an instantaneous energization valve that uses a two-way electromagnetic valve or a permanent magnet and does not require electrical input after activation, and is connected to the discharge side and suction side of the compressor through a bypass pipe 7. has been done. Reference numeral 8 is a differential pressure type two-way valve consisting of a high pressure chamber 8H and a low pressure chamber 8L each having a valve, and a communication pipe 9 connects the population 8Z of the low pressure chamber 8L with the compressor suction port and the check valve. The inlet 8X and the condenser outlet are connected by a refrigerant pipe, and the high pressure chamber outlet 8y and the pressure reducer port are connected by a refrigerant pipe.

次に、差圧三方弁8の動作原理を第4図により説明する
。差圧二方弁8は容器8a、容器8aを高圧室8Hと低
圧室8Lに仕切るダイヤフラム8d、ダイヤフラム8d
の高圧室側の面に固定された当て金8e、制御玉81)
、ボー1−8 c 、開閉の作動値を決めるバネ8f、
低圧室8 Lの圧力導入パイプ8Z、高圧室8Hの人口
バイブ8X、高圧室出ロバイブ8yより構成されており
、圧力導入パイプ8Zの圧力をps、高圧室入口バイブ
8xの圧力をpcとすると、Pc −Ps≦poの関係
となる作動値poがまり、上述の関係式が成立する場合
にはポート8cは閉路し、pc−pS>poの場合には
Next, the principle of operation of the differential pressure three-way valve 8 will be explained with reference to FIG. The differential pressure two-way valve 8 includes a container 8a, a diaphragm 8d that partitions the container 8a into a high pressure chamber 8H and a low pressure chamber 8L, and a diaphragm 8d.
A stopper 8e and a control ball 81) fixed to the high pressure chamber side surface of the
, bow 1-8c, spring 8f that determines the opening/closing operating value,
It is composed of a pressure introduction pipe 8Z of the low pressure chamber 8L, an artificial vibrator 8X of the high pressure chamber 8H, and a high pressure chamber exit vibe 8y.If the pressure of the pressure introduction pipe 8Z is ps, and the pressure of the high pressure chamber inlet vibe 8x is pc, then If the operating value po satisfies the relationship of Pc-Ps≦po and the above-mentioned relational expression is satisfied, the port 8c is closed, and if pc-pS>po.

ボート8cは開路するようになっており、Po はバネ
8fにより調整されている。
The boat 8c is designed to open, and Po is adjusted by a spring 8f.

かかる構成部品より成り立つ冷凍サイクルの動作につい
て第5図により説明する。
The operation of the refrigeration cycle made up of such components will be explained with reference to FIG.

まず、運転中については、圧縮機1の運転と同期して冷
媒制御弁6、例えば電磁二方弁または瞬時通電弁が閉路
され、冷媒はサイクル内を循環する。この時、逆止弁5
と圧縮機1の間の圧力円は低圧となるため、差圧三方弁
8の低圧室8Lもpsとなり、またこの時高圧室8 H
の人口8Xの圧力pcは次第に−上昇し、Pc −Ps
 > Poとなった時、バネ8fは押し−1−げられ、
□同時に、ダイヤフラム8d、当て金8e、制御玉3 
bも押し上げられ2ボーl−8cが開路して、冷媒は差
圧二方弁内を8Xから8yへと流れる。
First, during operation, the refrigerant control valve 6, such as an electromagnetic two-way valve or an instantaneous energization valve, is closed in synchronization with the operation of the compressor 1, and the refrigerant circulates within the cycle. At this time, check valve 5
Since the pressure circle between and the compressor 1 becomes low pressure, the low pressure chamber 8L of the differential pressure three-way valve 8 also becomes ps, and at this time, the high pressure chamber 8H
The pressure pc of population 8X gradually rises to -Ps -Ps
> When Po, the spring 8f is pushed down by -1-,
□At the same time, diaphragm 8d, stopper 8e, control ball 3
b is also pushed up, 2-ball l-8c is opened, and the refrigerant flows from 8X to 8y within the differential pressure two-way valve.

次に停止に時について説明する。庫内温度調節器により
、圧縮機1が停止すると同時に冷媒制御弁6が開路され
、高圧力スが圧縮機吸込[1と逆1に弁5の間に流入し
、圧縮機吐出口と圧縮機吸込口は迅速に圧力バランスす
る。更にこの時の高圧ガスは連通管9内を通って差圧二
方弁8の低圧室8Lへも流入し、ダイヤフラム8dの−
に面にかかる。
Next, we will explain when to stop. The internal temperature controller opens the refrigerant control valve 6 at the same time as the compressor 1 stops, and high-pressure gas flows between the compressor suction [1 and reverse 1 and the valve 5], and flows between the compressor discharge port and the compressor. The suction port quickly balances pressure. Furthermore, the high pressure gas at this time also flows into the low pressure chamber 8L of the differential pressure two-way valve 8 through the communication pipe 9, and the - of the diaphragm 8d.
It falls on the face.

従って、ダイヤフラム8dはpc −ps≦POとなっ
た場合に押し下げられ、同時に当て金3e、制御玉81
〕も押し下げられてポート8Cは遮断される。
Therefore, the diaphragm 8d is pushed down when pc-ps≦PO, and at the same time the pad 3e and the control ball 81
] is also pushed down and the port 8C is shut off.

この動作は迅速に行なわれることにより、高圧側つまり
、圧縮機、凝縮器内のポットカスの蒸発器への流入は防
止される。よって冷凍サイクルの高圧状態と低圧状態は
」ユ述の差圧二方弁と逆止弁によって維持され、かつ、
圧縮機の吸込口と吐出口(ま圧力バランスをする。
By performing this operation quickly, pot scum on the high pressure side, that is, in the compressor and condenser, is prevented from flowing into the evaporator. Therefore, the high pressure state and low pressure state of the refrigeration cycle are maintained by the differential pressure two-way valve and check valve mentioned above, and
The suction and discharge ports of the compressor (also balance the pressure).

以」ユの如く、本発明によれば、冷媒制御弁6と差圧二
方弁を組み合わせて冷凍サイクルに用いることにより、
断続運転時の圧縮機停止中に高圧側から、低圧側へのホ
ットガス流入を防止して、消費電力量の低減を図り、更
に、圧縮機1の吸込側と吐出側とを完全に圧力バランス
させることにより、圧縮機の起動トルクを低減させるこ
とができるので、圧縮機の小形化、起動装置の原価低減
を成し得る。
As described above, according to the present invention, by using the refrigerant control valve 6 and the differential pressure two-way valve in combination in the refrigeration cycle,
When the compressor is stopped during intermittent operation, hot gas is prevented from flowing from the high-pressure side to the low-pressure side, reducing power consumption.Furthermore, the suction side and discharge side of the compressor 1 are perfectly balanced in pressure. By doing so, the starting torque of the compressor can be reduced, thereby making it possible to downsize the compressor and reduce the cost of the starting device.

また、圧縮機吐出側のバイパス管分岐口と凝縮器の間に
第2の逆止弁を設けることにより、圧縮機低圧側の内容
積が大きい場合、圧縮機停止後の圧縮機吐出側と吸込側
のバランス圧がFがっても、凝縮器内の冷媒は逆流する
ことがなく、圧力は高圧状態を維持することができ、凝
縮器内部の液冷媒は蒸発することなく維持され、圧縮機
再起動時に液冷媒が迅速に減圧器へ流入するので、冷え
出しが向−トする。
In addition, by providing a second check valve between the bypass pipe branch port on the compressor discharge side and the condenser, when the internal volume on the low pressure side of the compressor is large, it is possible to Even if the balance pressure on the side increases, the refrigerant in the condenser will not flow back and the pressure can be maintained at a high pressure, and the liquid refrigerant inside the condenser will be maintained without evaporating, and the Since the liquid refrigerant quickly flows into the pressure reducer upon restart, cooling begins quickly.

また、冷媒制御弁6と、圧縮機吸込口と低圧側逆止弁5
の間を接続するバイパス管7に毛細管を設けること1こ
より、圧縮機停止後、圧縮機吸込側と吐出側とが圧力バ
ランスする際に発生する冷媒音を小さくすることができ
る。
Also, the refrigerant control valve 6, the compressor suction port and the low pressure side check valve 5
By providing a capillary tube in the bypass pipe 7 that connects the two, it is possible to reduce the refrigerant noise that occurs when the pressures are balanced between the suction side and the discharge side of the compressor after the compressor is stopped.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、断続運転を行なう冷凍サイクルにおい
て、圧縮機停止中に冷媒制御弁の開路により、圧縮機吸
込側と吐出側の圧力がバランスすることにより、圧縮機
の起動トルクの低減、圧縮機の小形化、起動装置の原価
低減が可能となる。
According to the present invention, in a refrigeration cycle that performs intermittent operation, the pressure on the suction side and the discharge side of the compressor are balanced by opening the refrigerant control valve while the compressor is stopped, thereby reducing the starting torque of the compressor and compressing It is possible to downsize the machine and reduce the cost of the starting device.

更に、−上述の圧縮機停止時に圧縮機吸込口と低圧側逆
止弁の間圧力が高くなることを利用して差圧三方弁を動
作させることにより、高圧側から低圧側へのホットガス
流入を防止でき、冷蔵庫内へ侵入する熱負荷を遮断でき
るので消費電力量を15〜20%低減できる。
Furthermore, by operating the differential pressure three-way valve by taking advantage of the fact that the pressure increases between the compressor suction port and the low-pressure side check valve when the compressor is stopped, hot gas flows from the high-pressure side to the low-pressure side. Since it is possible to prevent heat load from entering the refrigerator, power consumption can be reduced by 15 to 20%.

更に差圧二方弁は電気入力を必要としないため電磁二方
弁と比べて消費電力量をより低減できる。
Furthermore, since differential pressure two-way valves do not require electrical input, they can further reduce power consumption compared to electromagnetic two-way valves.

また、作動時の衝撃音が発生しないため、防音装置を設
置する必要がなく、原価低減を図ることができる。
Furthermore, since no impact noise is generated during operation, there is no need to install a soundproofing device, and costs can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の冷凍サイクル構成図である。第2、第3
図は本発明による冷凍装置の冷凍サイクルの構成図であ
る。第4図は差圧二方弁の断面図である。第5図は、圧
縮機、冷媒制御弁、差圧一方弁の動作を模式的に示した
図である。 1・・圧縮機、2・・・凝縮器、3・・・減圧器、4 
・蒸発器、5・・低圧側逆止弁、6・・・冷媒制御弁、
7・・バイパス管、8 差圧二方弁、9 連通管、10
・・・高圧側逆止弁、11・・毛細管、8a−・差用一
方弁容器、8b・・制御子、8c ボート、8d、・ダ
イヤフラム、8e・・・当て金、8f ・・ハネ、8H
・・・高圧室、8L・低圧室、8X・−・流入「1.B
Y・・n、1出日、8Z・・連通管人口。 代理人弁理士 高 橋 明 夫 $1 図 第2 図 ′$、3(2) ′$4図
FIG. 1 is a block diagram of a conventional refrigeration cycle. 2nd, 3rd
The figure is a configuration diagram of a refrigeration cycle of a refrigeration system according to the present invention. FIG. 4 is a sectional view of the differential pressure two-way valve. FIG. 5 is a diagram schematically showing the operations of the compressor, refrigerant control valve, and differential pressure one-way valve. 1... Compressor, 2... Condenser, 3... Pressure reducer, 4
・Evaporator, 5.. Low pressure side check valve, 6.. Refrigerant control valve,
7. Bypass pipe, 8 Differential pressure two-way valve, 9 Communication pipe, 10
...High pressure side check valve, 11...Capillary tube, 8a--Differential one-way valve container, 8b...Controller, 8c Boat, 8d,...Diaphragm, 8e...Batch, 8f...Spring, 8H
・・・High pressure chamber, 8L・Low pressure chamber, 8X・・・Inflow “1.B
Y...n, 1 Dehi, 8Z...Communication tube population. Representative Patent Attorney Akio Takahashi $1 Figure 2 Figure '$, 3 (2) '$4 Figure

Claims (1)

【特許請求の範囲】 1、圧縮機、凝縮器、減圧器、蒸発器、逆止弁を順次連
設して成る冷凍サイクルにおいて、圧縮機吐出口と凝縮
器入口の間の冷媒管から圧縮機吸込口と逆止弁の間へバ
イパス管を設け、このバイパス管の間に、圧縮機運転中
に閉路し、圧縮機停止中に開路する冷媒制御弁を設け、
更に。 凝縮器と減圧器の間に差圧二方弁を設け、圧縮機と逆止
弁の間の冷媒圧力を検出し、この冷媒圧力が凝縮器出口
の冷媒圧力より所定値以−1−人きい場合、差圧二方弁
の冷媒流路が閉路し、所定値より小さい場合、差圧二方
弁の冷媒流路が開路することを特徴とする冷凍装置。 2 前記冷媒制御弁に瞬時通電弁または電磁弁を用いた
ことを特徴とする特許請求の範囲第1項記載の冷凍装置
。 3 圧縮機をロークリ形圧縮機としたことを特徴とする
特許請求の範囲第1項記載の冷凍装置。 4、圧縮機吐出側のバイパス管分岐口と凝縮器の間に逆
止弁を設けたことを特徴とする特許請求の範囲第1項記
載の冷凍装置。 5 前記冷媒制御弁と、圧縮機吸込口と逆止弁間へ接続
するバイパス管7の間に毛細管を設置したことを特徴と
する特許請求の範囲第1項記載の冷凍装置。
[Scope of Claims] 1. In a refrigeration cycle in which a compressor, a condenser, a pressure reducer, an evaporator, and a check valve are sequentially connected, the refrigerant pipe between the compressor discharge port and the condenser inlet is connected to the compressor. A bypass pipe is provided between the suction port and the check valve, and a refrigerant control valve is provided between the bypass pipe, which is closed when the compressor is operating and opened when the compressor is stopped.
Furthermore. A differential pressure two-way valve is installed between the condenser and the pressure reducer to detect the refrigerant pressure between the compressor and the check valve, and the refrigerant pressure is lower than the refrigerant pressure at the condenser outlet by a predetermined value -1 A refrigeration system characterized in that when the differential pressure is lower than a predetermined value, the refrigerant flow path of the differential pressure two-way valve is closed, and when the differential pressure is smaller than a predetermined value, the refrigerant flow path of the differential pressure two-way valve is opened. 2. The refrigeration system according to claim 1, wherein the refrigerant control valve is an instantaneous energization valve or a solenoid valve. 3. The refrigeration system according to claim 1, wherein the compressor is a rotary compressor. 4. The refrigeration system according to claim 1, further comprising a check valve between the bypass pipe branch on the discharge side of the compressor and the condenser. 5. The refrigeration system according to claim 1, wherein a capillary tube is installed between the refrigerant control valve and a bypass pipe 7 that connects between the compressor suction port and the check valve.
JP15482083A 1983-08-26 1983-08-26 Refrigerator Pending JPS6048460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15482083A JPS6048460A (en) 1983-08-26 1983-08-26 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15482083A JPS6048460A (en) 1983-08-26 1983-08-26 Refrigerator

Publications (1)

Publication Number Publication Date
JPS6048460A true JPS6048460A (en) 1985-03-16

Family

ID=15592584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15482083A Pending JPS6048460A (en) 1983-08-26 1983-08-26 Refrigerator

Country Status (1)

Country Link
JP (1) JPS6048460A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06127112A (en) * 1991-08-02 1994-05-10 Sasaki Glass Co Ltd Method for decorating glass product
JP2015010781A (en) * 2013-06-28 2015-01-19 株式会社東芝 Cold storage chamber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06127112A (en) * 1991-08-02 1994-05-10 Sasaki Glass Co Ltd Method for decorating glass product
JP2015010781A (en) * 2013-06-28 2015-01-19 株式会社東芝 Cold storage chamber

Similar Documents

Publication Publication Date Title
JPS6048460A (en) Refrigerator
JPH10132401A (en) Control for multi-stage refrigerant compressor
JPH1151502A (en) Turbo refrigerating machine
JP3505209B2 (en) Refrigeration equipment
JPS6030961A (en) Refrigerator
JPS592454Y2 (en) Heat pump refrigeration equipment
JPS6033453A (en) Refrigerator
JPS6030962A (en) Refrigerator
JPS6036844A (en) Refrigerator
JPS6030960A (en) Refrigerator
JP2506141B2 (en) Refrigeration equipment
JPS60103255A (en) Refrigerator
JPH08506173A (en) Starter for small refrigeration system
JPS58133571A (en) Refrigeration cycle of air conditioner
JPS6071861A (en) Refrigeration cycle
JPS6071860A (en) Circulator for heating medium
JPS62131158A (en) Method of controlling refrigeration cycle
JPS60105867A (en) Refrigerator
JPS60111851A (en) Heat pump type refrigerator
JPH04136470U (en) Refrigeration equipment
JPH0218447Y2 (en)
JPS58187761A (en) Refrigerator
JPS5984057A (en) Refrigerator
JPS5899652A (en) Refrigerator
JPS6044773A (en) Starter for refrigerator