JPS60178256A - Refrigeration cycle - Google Patents

Refrigeration cycle

Info

Publication number
JPS60178256A
JPS60178256A JP3232184A JP3232184A JPS60178256A JP S60178256 A JPS60178256 A JP S60178256A JP 3232184 A JP3232184 A JP 3232184A JP 3232184 A JP3232184 A JP 3232184A JP S60178256 A JPS60178256 A JP S60178256A
Authority
JP
Japan
Prior art keywords
compressor
gas
valve
condenser
differential pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3232184A
Other languages
Japanese (ja)
Inventor
邦成 荒木
中田 義隆
喜久治 高橋
博志 小暮
鷲見 文一
仁彦 権守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3232184A priority Critical patent/JPS60178256A/en
Publication of JPS60178256A publication Critical patent/JPS60178256A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Saccharide Compounds (AREA)
  • Fats And Perfumes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 し究明の利用分野〕 本発明は、ガスバイパス回路、差圧戊2方弁を用いた冷
凍サイクルに関するものであり、特に、冷凍サイクルの
消費+[力の低減と、圧縮機の起框時における負荷軽減
に好適である。さらに、原価低減の面からも好適である
[Detailed Description of the Invention] Field of Application of the Investigation] The present invention relates to a refrigeration cycle using a gas bypass circuit and a differential pressure two-way valve, and in particular, the present invention relates to a refrigeration cycle that uses a gas bypass circuit and a differential pressure two-way valve. Suitable for reducing the load when starting up the compressor. Furthermore, it is suitable from the viewpoint of cost reduction.

し発明の背筬〕 従来の冷凍サイクルを第1図に示すと、圧縮機1、凝縮
器2、減圧器6、蒸発’l:i 4、逆IE弁5、スト
ノブ用I4f磁弁6、バランス用電磁弁7、を順次冷媒
管で接続されている。この冷凍ナイクルにおいて、圧縮
機104転中しこは、ストップ用電磁弁6は開き、バラ
ンス用電磁弁7は閉じた状態となつCおり、圧縮器1よ
り吐出された冷媒は、凝縮器2、減圧器6、蒸発器4、
逆止弁5の順に循環して冷却を行う。圧縮機1の停止中
してVま、ストップ用電磁弁6は閉じ、バランス用電磁
弁Zは開いた状態となる。このような、弁制御を行う事
により、圧縮機1の運転全停止させる際、凝縮器2にあ
った。冷媒が蒸発器4に流入してしまい、圧縮機1運転
開始直後に凝縮器2から蒸発54に冷媒が流れ込まず、
冷え出しが悪くなるという欠点、及び圧縮機1停+h中
に凝縮器2から高温ガス冷媒が蒸発器4に流入しC1蒸
発器を温めてしまうという欠点を無くして・ハる。また
、圧縮機1停市中Vこバラ/、ス用直磁弁7を開く事に
より、圧縮機前後のIE ノア差を無り12、圧縮機1
の起動を1経くする′JfがiiJ能であるという特徴
金イ〒シフ′〔いる。さらに、逆止弁5け圧縮機1の停
止中に、高圧1jス冷媒が蒸発器4に戻るのτ防11−
. L fいる。このような冷凍リーイク・しくCおい
C1t↓、イリJ率が向−1−するという反面、(は磁
弁が2イ1タ必曹となり、心線If rtfl ’Tこ
中の、「力消費と、rp価上昇を招くという大、さな欠
点があった。
Background of the Invention] A conventional refrigeration cycle is shown in Fig. 1, which includes a compressor 1, a condenser 2, a pressure reducer 6, an evaporator 4, a reverse IE valve 5, an I4f magnetic valve 6 for a stoke knob, and a balance. The solenoid valves 7 are sequentially connected by refrigerant pipes. In this refrigeration engine, when the compressor 104 is in operation, the stop solenoid valve 6 is open and the balance solenoid valve 7 is closed, and the refrigerant discharged from the compressor 1 is transferred to the condenser 2, pressure reducer 6, evaporator 4,
Cooling is performed by circulating in the order of check valve 5. When the compressor 1 is stopped, the stop solenoid valve 6 is closed and the balance solenoid valve Z is open. By performing such valve control, when the operation of the compressor 1 is completely stopped, there is a problem in the condenser 2. The refrigerant flows into the evaporator 4, and the refrigerant does not flow into the evaporator 54 from the condenser 2 immediately after the compressor 1 starts operating.
This eliminates the drawbacks of slow cooling down and the drawbacks that high-temperature gas refrigerant flows into the evaporator 4 from the condenser 2 and warms the C1 evaporator when the compressor is stopped for 1 hour. In addition, by opening the direct magnetic valve 7 for the compressor 1 stop and 7 for the city, the IE noise difference before and after the compressor is eliminated.
There is a characteristic that 'Jf' is iiJ function after one activation of 'Jf'. Furthermore, while the compressor 1 with five check valves is stopped, the high-pressure refrigerant returns to the evaporator 4.
.. There is L f. In this case, the refrigeration leakage current C1t↓, while the current J rate goes -1-, on the other hand, the magnetic valve becomes 2I1T, and the "power consumption" in the core wire If rtfl 'T is reduced. However, there was a big but small drawback that it caused an increase in RP value.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、圧縮機1がIff+J:した際に、圧
縮機1の+IJ後での圧力差を無く(7、ホノトガ人の
蒸発器4への流入を防IJ−,する差圧民2万弁を有し
、し、かも1ポ転中の効率をも低[さ伊ずvC1消費[
株]力の低減、圧縮1’!!l!1の小IK化、起fB
JJ装(δの簡略化、原価低減構成し遂げる事の可能な
冷凍ナイクルを提供することにある。
The purpose of the present invention is to eliminate the pressure difference after the +IJ of the compressor 1 when the compressor 1 does If+J (7) to prevent the pressure difference after the compressor 1 from flowing into the evaporator 4. It has a million valves, and the efficiency during 1 point turn is also low [Sazu vC1 consumption [
Stock] Force reduction, compression 1'! ! l! 1's small IK, Ki fB
Our objective is to provide a frozen Nycle that can simplify the JJ system (δ) and reduce costs.

(発明の概要] 本発明によると、圧縮機」ボ転中には、減圧〆)人口側
にあるガス冷媒を蒸発器に流しても冷凍効果がないこと
から、圧縮機の吸込側に戻し、圧縮機停止中には、ガス
バランス回路によりホットガスを圧縮機吸込側にバイパ
スするため、圧縮機前後でのI圧力はバランスする。こ
こで、バイパス用も細管は凝縮器と熱交換させる事によ
り、圧縮機へ液冷媒が戻るのを防+h している。さら
に、圧縮機1亭止時Vこは、低圧側が高圧側と圧力バラ
ンスする事によって発生する圧力上昇により作動する差
圧式2方弁により、高圧側から蒸発器へのポットガス流
入金防さ゛、哨1匡力効果を高めている。
(Summary of the Invention) According to the present invention, while the compressor is running, the gas refrigerant on the artificial side is returned to the suction side of the compressor because there is no refrigeration effect even if the gas refrigerant is passed through the evaporator. When the compressor is stopped, hot gas is bypassed to the compressor suction side by the gas balance circuit, so the I pressures before and after the compressor are balanced. Here, the narrow tube for bypass also exchanges heat with the condenser to prevent liquid refrigerant from returning to the compressor. Furthermore, when the compressor 1 is stopped, a differential pressure two-way valve that operates due to the pressure rise generated by the pressure balance between the low pressure side and the high pressure side prevents pot gas from flowing into the evaporator from the high pressure side. It increases the effectiveness of the force.

〔発明の実施例〕[Embodiments of the invention]

以[、本発明の一実施例を第2図、第6図、第4図、第
5図により説明する。第2図は、圧縮機1が運転中の状
態を示し、1は圧縮機、2は凝縮器、6は減圧器、4は
蒸発器、5は逆IE弁、8は気液分離器、9は差圧式2
方弁、14は連通管、15は凝縮器2と熱交換を行なう
ガスバランス用毛細管、16は差圧引込用毛細管であり
、これらは、第2図のように接続されて冷凍サイクルを
構成している。かかる冷凍リーイクルにおいて、圧縮1
幾1がd転金開始すると、差圧2方弁9における第1弁
内室10が低圧となり、第2弁内室11との間に差圧が
生じ、その差圧力が板バネ18の力に打ら勝ち、ダイヤ
フラム16を押し上げ−C、ストノブ用Jζ−ル12が
ボートを開らく。また、気液分離58においCは、ガス
冷媒と液冷媒が分子lliされ、ガス冷媒eま、ガスバ
ランス用毛細管15を通り圧縮機1吸込側Vこバイパス
される。ここで、ガスパラノス用毛Ir+lIl管15
・・よ凝縮器2と熱交換されており、液冷媒が圧縮機1
へ戻る事を防th Lでいる。一方、液冷媒は、開放状
jホとなっている差圧2か弁9全通って減圧器6で減圧
され、蒸発器4−・・と流入する。ここで、ガス冷媒は
、蒸発器4においC何の冷却作用はもたず、蒸発器4で
冷却される分がエノタルビの損失となる。したがっC1
このような冷凍ナイクルを用いると、上記工/タルピ差
分だけ冷fJ+する工/タルビが増加するという利点が
生ずる。次に、・麻6図は圧縮機1が1亭止しブこ状態
を示す。圧縮機1が停止すると、ガスバラン入用毛+t
ll青15を通じて、圧縮機1前後の高圧側、低圧側の
バランスが行なわれる。
Hereinafter, one embodiment of the present invention will be described with reference to FIGS. 2, 6, 4, and 5. FIG. 2 shows the compressor 1 in operation, with 1 being a compressor, 2 a condenser, 6 a pressure reducer, 4 an evaporator, 5 a reverse IE valve, 8 a gas-liquid separator, and 9 is differential pressure type 2
14 is a communication pipe, 15 is a gas balance capillary tube for heat exchange with the condenser 2, and 16 is a differential pressure drawing capillary tube. These are connected as shown in Fig. 2 to constitute a refrigeration cycle. ing. In such a frozen leak, compression 1
When the first valve 1 starts rolling, the first valve internal chamber 10 of the differential pressure two-way valve 9 becomes low pressure, and a differential pressure is generated between the first valve internal chamber 11 and the second valve internal chamber 11, and the differential pressure is caused by the force of the leaf spring 18. The diaphragm 16 is pushed up and the stoknob Jζ-rule 12 opens the boat. Further, in the gas-liquid separation 58, the gas refrigerant and the liquid refrigerant are molecularly separated, and the gas refrigerant e passes through the gas balance capillary tube 15 and is bypassed to the suction side of the compressor 1. Here, the capillary Ir+lIl tube 15 for gasparanos
...The liquid refrigerant is exchanged with the condenser 2, and the liquid refrigerant is transferred to the compressor 1.
I am in th L to prevent returning to . On the other hand, the liquid refrigerant passes through the differential pressure valve 2 and the open valve 9, is depressurized by the pressure reducer 6, and flows into the evaporator 4. Here, the gas refrigerant has no cooling effect in the evaporator 4, and the amount cooled by the evaporator 4 becomes a loss of enotarubi. Therefore C1
When such frozen Nycle is used, there is an advantage that the cold fJ+FJ/Talbi increases by the above-mentioned FJ/Talpi difference. Next, Fig. 6 shows a state in which the compressor 1 is stopped at one stop. When the compressor 1 stops, the gas balance +t
The high pressure side and low pressure side before and after the compressor 1 are balanced through the blue 15.

すなわち、差圧引込g16の連結しである圧縮1潰1の
吸込111++の圧力が、帷速Vこ上昇し、これまC1
刑らいC’v>た差圧2方升9のダイA・フラム16金
押し[げて、軸棒17に固定され7ヒストノプ用ボール
12がボートを閉じる。この結果、高圧側の凝縮器2よ
!ll流入釘るポットガスが、蒸発?!S4へと流れる
のを遮断する事ができる。以上の如く、本発明によれば
、ガスバイパス用の気l夜分離?!S8と差圧式2方沖
9を用いる事により、圧縮(幾1の断続運転中−・こ、
圧縮機1が停+h した際、高圧側θ1ら蒸発器4への
ホットガス流人を防上して、消費鑞力計の低減を計り、
さらVこ、圧縮機1の吐出側と吸込側との間に発生する
差圧をバランスさせる事により、圧縮機1の起動トルク
を低減させる事が1]]能となる。すなわち、圧縮機1
について、小形化、起!4!I装置の簡略といった原価
低減にも、結びつく。また、ガスバノ/ス用毛細゛R1
5七凝縮器2の熱交換を行り41こより、液冷媒が圧縮
磯1−\戻り悪影響を与える心配もない。
That is, the pressure of the suction 111++ of the compression 1 collapse 1, which is the connection of the differential pressure suction g16, increases by the width V, and until now C1
Press C'v> differential pressure 2 squares 9 die A flamm 16 gold and fixed to shaft 17 7 Histonop ball 12 closes the boat. As a result, condenser 2 on the high pressure side! Does the inflowing pot gas evaporate? ! It is possible to block the flow to S4. As described above, according to the present invention, air separation for gas bypass is possible. ! By using S8 and differential pressure type 2-way offshore 9, compression (during intermittent operation)
When the compressor 1 stops +h, the flow of hot gas from the high pressure side θ1 to the evaporator 4 is prevented to reduce the power consumption meter,
Furthermore, by balancing the differential pressure generated between the discharge side and the suction side of the compressor 1, it becomes possible to reduce the starting torque of the compressor 1. That is, compressor 1
About, miniaturization, and rise! 4! This also leads to cost reduction through the simplification of I equipment. In addition, capillary R1 for gas vane/gas
Since heat exchange is performed in the 57 condenser 2, there is no fear that the liquid refrigerant will return to the compression chamber 1-\ and have an adverse effect.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、断続運転中の冷凍サイクルにおいC1
圧縮機1が停+h Lだ時、差圧2方弁9が閉じる事に
より、高圧111!lから蒸発器4へのホットガスの流
入を防上でき、冷蔵庫へ侵入する熱負荷を遮断できるの
で、消費′心力肴が低減できる。さしVCl−2を液分
離器8によつ〒、圧縮機1の前後で発生した圧力差を短
時間にバランスする事ができ、圧縮機1の起動トルクを
低減する。すなわち、圧縮機1の小形化、起動装置tの
簡略化といりた原価1氏減全d1゛る事が可能となる。
According to the present invention, in the refrigeration cycle during intermittent operation, C1
When the compressor 1 is stopped +hL, the differential pressure two-way valve 9 closes, resulting in high pressure 111! It is possible to prevent hot gas from flowing into the evaporator 4 from the refrigerator, and to cut off the heat load entering the refrigerator, thereby reducing the amount of food consumed. By passing the VCl-2 into the liquid separator 8, the pressure difference generated before and after the compressor 1 can be balanced in a short time, and the starting torque of the compressor 1 can be reduced. That is, it is possible to reduce the cost by 1 person and total d1 by downsizing the compressor 1 and simplifying the starting device t.

次に、圧縮機1の運転中には、気l夜分離器8により分
離されたガス冷媒が、ガスバイパス用毛細管15vこよ
つ−C1圧縮機1吸込側へとバイパスされ、蒸発器4へ
流入するガス冷媒が減少rるため、ガス冷媒を蒸発器4
@度までドげる分の熱エネルギを損失する事なく運転で
き、 消d鑞力敬を低減する事ができる。ここで、ガス
バランス用毛細管15i、j、凝縮器2と熱交換させて
あり、液冷媒がガスバランス用毛細#15を通過した場
合にガス冷媒に蒸発させて、圧縮機1へ液冷媒が戻るの
を防+h Lでいる。
Next, while the compressor 1 is operating, the gas refrigerant separated by the gas separator 8 is bypassed to the gas bypass capillary tube 15V-C1 to the suction side of the compressor 1, and flows into the evaporator 4. Since the amount of gas refrigerant to be used decreases, the gas refrigerant is transferred to the evaporator 4.
It is possible to operate without losing the amount of heat energy that goes up to @ degrees, and it is possible to reduce energy consumption. Here, heat is exchanged with the gas balance capillaries 15i, j and the condenser 2, and when the liquid refrigerant passes through the gas balance capillary #15, it is evaporated into gas refrigerant and the liquid refrigerant returns to the compressor 1. Defense +h Stay in L.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の冷凍サイクルの構成図である。 第2図は、圧縮機運転中に分ける本発明の冷凍サイクル
、第6図は、圧縮機停止中における本発明の冷凍サイク
ルの説明図である。第4図は、差圧式2方弁の断面図、
第5図は、本発明を説明するモリエル線図である。 1・・・圧縮機、2・・・凝縮器、6・・減圧器、4・
・・蒸発器、5・・・逆Iヒ弁、6・・・ストップ用准
磁弁、7・・・バラノス用成磁弁、8・・・気液分離器
、?・・・差圧式2方弁、10・・第1弁内室、11・
・・第2弁内室、12・・ストップ用ボール、16・・
・ダイヤフラム、14・・・連通傅、15・・・ガスバ
ランス用毛細管、16・−・差圧引込用毛細′q、17
−°軸棒、18゛板バネ。 菓 1 口 ′F−2口 ′t−4口 f 5 口 工〉7ノL、ヒe−−
FIG. 1 is a block diagram of a conventional refrigeration cycle. FIG. 2 is an explanatory diagram of the refrigeration cycle of the present invention divided while the compressor is in operation, and FIG. 6 is an explanatory diagram of the refrigeration cycle of the present invention when the compressor is stopped. Figure 4 is a sectional view of a differential pressure type two-way valve.
FIG. 5 is a Mollier diagram illustrating the present invention. 1...Compressor, 2...Condenser, 6...Reducer, 4...
...Evaporator, 5...Reverse I valve, 6... Semi-magnetic valve for stop, 7... Magnetic valve for Balanos, 8... Gas-liquid separator, ? ...Differential pressure type two-way valve, 10..First valve inner chamber, 11.
...Second valve inner chamber, 12...Stop ball, 16...
・Diaphragm, 14...Communication tube, 15...Capillary tube for gas balance, 16...Capillary 'q for drawing differential pressure, 17
-° shaft rod, 18° leaf spring. 1 mouth'F-2 mouth't-4 mouthf 5 mouthwork〉7ノL,hie--

Claims (1)

【特許請求の範囲】 1、 圧縮機、凝縮器、減圧器、逆上弁を順次接続し7
て形成される冷凍−ナイクルにおいて、凝縮器出口にシ
(液分離器を設け、前記気液分離器上部より、凝縮器と
熱交換を行なうガスバランス用毛細管を圧縮機と逆止弁
との間に接続し、さらに前記気液分離器と減圧器との間
に、逆止弁と圧縮機の間より導かれる差圧引込管を接続
されている差圧式2方弁を設けたことを特徴とする冷凍
IFイクル。 2、 圧縮1幾をロータリー形圧縮機としたこと勿時徴
とする・時11°H青求の範囲第1項記載/)冷凍リー
・イクル。
[Claims] 1. A compressor, a condenser, a pressure reducer, and a reverse valve are connected in sequence.
In the refrigerating system, a liquid separator is installed at the condenser outlet, and a gas balance capillary tube for heat exchange with the condenser is connected from the top of the gas-liquid separator between the compressor and the check valve. A differential pressure type two-way valve is further provided between the gas-liquid separator and the pressure reducer, which is connected to a differential pressure lead-in pipe led from between the check valve and the compressor. Refrigeration IF cycle. 2. It is obvious that the compression 1 is a rotary type compressor. ・The range of 11°H blue as described in item 1/) Refrigeration cycle.
JP3232184A 1984-02-24 1984-02-24 Refrigeration cycle Pending JPS60178256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3232184A JPS60178256A (en) 1984-02-24 1984-02-24 Refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3232184A JPS60178256A (en) 1984-02-24 1984-02-24 Refrigeration cycle

Publications (1)

Publication Number Publication Date
JPS60178256A true JPS60178256A (en) 1985-09-12

Family

ID=12355670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3232184A Pending JPS60178256A (en) 1984-02-24 1984-02-24 Refrigeration cycle

Country Status (1)

Country Link
JP (1) JPS60178256A (en)

Similar Documents

Publication Publication Date Title
US6385981B1 (en) Capacity control of refrigeration systems
JPS60178256A (en) Refrigeration cycle
JPS6071861A (en) Refrigeration cycle
JPS5849776B2 (en) Two-stage compression refrigeration equipment
JPH06281270A (en) Air conditioner
JPS6073260A (en) Refrigeration cycle
JPH04136470U (en) Refrigeration equipment
JPS60111851A (en) Heat pump type refrigerator
JPS58214754A (en) Refrigerator
JPS5888556A (en) Refrigerator
JPS6073259A (en) Refrigeration cycle device
JPH07167508A (en) Refrigerator
JPS5912259A (en) Controller for capacity of air conditioner
JPH0618860U (en) Heat pump combined refrigeration circuit with intermediate injection circuit
JPS61119951A (en) Refrigerator
JPS5899652A (en) Refrigerator
JPS60200053A (en) Refrigerator
JPS6030961A (en) Refrigerator
JPS59208355A (en) Refrigerator
JPH09133413A (en) Freezing cycle of refrigerant
JPS6033453A (en) Refrigerator
JPS59200161A (en) Refrigeration cycle
JPS61114066A (en) Refrigerator
JPS62172156A (en) Refrigerator
JPS5899651A (en) Refrigerator