JPS5898692A - Rotary compressor - Google Patents

Rotary compressor

Info

Publication number
JPS5898692A
JPS5898692A JP19930681A JP19930681A JPS5898692A JP S5898692 A JPS5898692 A JP S5898692A JP 19930681 A JP19930681 A JP 19930681A JP 19930681 A JP19930681 A JP 19930681A JP S5898692 A JPS5898692 A JP S5898692A
Authority
JP
Japan
Prior art keywords
discharge valve
discharge
compressor
valve device
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19930681A
Other languages
Japanese (ja)
Inventor
Hiroshi Kitayama
浩 北山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP19930681A priority Critical patent/JPS5898692A/en
Publication of JPS5898692A publication Critical patent/JPS5898692A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • F04C29/126Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type
    • F04C29/128Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type of the elastic type, e.g. reed valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To reduce an electric power consumption by a method wherein overheated gas, flowing into an evaporator from the compressor while it is stopped, is intercepted to reduce the temperature rise of the evaporator. CONSTITUTION:The gas of refrigerant medium, discharged into an enclosed vessel 2, is flowed into second discharging port 21 and is flowed to the condenser of a refrigerating cycle from a discharging pipe 22 through an inflow path 23. A pressure in a cylinder chamber 11 and the same in the enclosed vessel 2 become equal by the stop of a compressing element 4 and a discharge valve 15 closes the first discharging port 14 and the second discharging port 21. Accodingly, the inflow of the overheated refrigerant medium gas through the cndenser of the refrigerating device is prevented while the compressor is stopped to prevent the temperature rise of the evaporator, therefore, the electric power consumption may be reduced.

Description

【発明の詳細な説明】 本発明は冷凍装置の運動効率の向上を図るロータリーコ
ンプレッサに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rotary compressor that improves the motion efficiency of a refrigeration system.

日本市場においてはルームエアコンを中心とす化の点よ
り全盛をきわめている。一方家庭用冷蔵庫などに使用さ
れる小形コンプレッサはレシプロ式が主流であった。こ
れは小形即ち小気筒容積のコンプレッサであるためロー
タリー化を図った場合には圧縮要素を構成するシリンダ
、ピストン等よりの洩れ損失が大きく、その効率がレシ
プロ式より低いためであった。しかし、近年の加工技術
の向上により前記洩れ損失も小さくなり、大巾な、効率
向上が図れ、家庭用冷蔵庫の如き小形圧縮機にもロータ
リーコンプレッサが採用されているのが現況である。
In the Japanese market, it is at its peak in terms of commercialization, mainly in room air conditioners. On the other hand, the mainstream of small compressors used in household refrigerators and the like was the reciprocating type. This is because the compressor is small, ie, has a small cylinder volume, so if it is made rotary, leakage loss from the cylinder, piston, etc. that constitute the compression element is large, and its efficiency is lower than that of the reciprocating type. However, with recent improvements in processing technology, the leakage loss has become smaller and efficiency has been greatly improved, and rotary compressors are now being used in small compressors such as household refrigerators.

しかし、ロータリーコンプレッサの効率はカロリメータ
テストの如き連続運転状態で評価した効率と家庭用冷蔵
庫に組込んで評価するJIS09607による「家庭用
冷蔵庫の消費電力試験」に従って評価した効率が大巾に
異ることが判明した。その−例を1己述するとコンプレ
ッサのカロリメータテストにおけるエネルギー有効率(
1!:I!:R)はレシプロ式に比べてロータリ一式は
約1.2倍で3 /、−ミ あるにもかかわらず、家庭用冷蔵庫の消費電力試験にお
ける消費電力量はレシプロ式に比べてロータリ一式は約
6チ程度の低減であり、実装時の効率は大巾に低下して
いるのが実情である。この原因はサーモスタットによシ
温度制御されているコンプレッサの停止中に密閉容器内
の多量の高温高圧ガスがコンプレッサの圧縮要素のメカ
ニカルシール部分を介してシリンダ室に流入し、流入し
た過熱ガスはンリンダ室→サクシコンライ/→エバポレ
ータへと流入するものと、密閉容器→コンデンサ→キャ
ピラリーチューブ→エバポレータへと流入する2流路よ
り流入し、エバポレータを加熱するので最終的には冷蔵
庫の熱負荷となり、冷蔵庫の運転率の増大をまねき、消
費電力量の増加となり運転効率の低下をきたしている訳
である。特にロータリ一式は密閉容器内が高温高圧の大
容量容器であり、エバポレータに流入する熱量も非常に
大きい訳である。前記欠点を除去するためには一般的な
方法としてコンプレッサの吐出管および吸入管に電磁弁
等を設ける方法があるが高価であると共に電磁弁自身が
電力を消費するので効率の低下をきたすと共に、作動不
良の発生、溶接部分の増加による洩れの危険率の増大な
どの信頼性の低下をきたす等の欠点を有している。尚吐
出管または吸入管のいずれか一方に電磁弁を設けても2
流路の一方が成立するためほとんど効果のないことも確
認している。
However, the efficiency of a rotary compressor is significantly different between the efficiency evaluated under continuous operation conditions such as a calorimeter test and the efficiency evaluated by incorporating it into a home refrigerator according to the "Power consumption test for home refrigerators" according to JIS 09607. There was found. To give an example of this, the energy efficiency rate in a compressor calorimeter test (
1! :I! :R) is about 1.2 times that of the reciprocating type for the rotary set, which is 3/, -mi. However, in the power consumption test of a household refrigerator, the power consumption of the rotary set is about 1.2 times that of the reciprocating type. This is a reduction of about 6 inches, and the actual situation is that the efficiency at the time of mounting is greatly reduced. The cause of this is that while the compressor, whose temperature is controlled by a thermostat, is stopped, a large amount of high-temperature, high-pressure gas in the closed container flows into the cylinder chamber through the mechanical seal of the compression element of the compressor, and the superheated gas that flows into the cylinder is It flows through two channels: one flows from the chamber to the evaporator, and the other flows from the sealed container to the condenser to the capillary tube to the evaporator, which heats the evaporator, resulting in a heat load on the refrigerator. This results in an increase in the operating rate, an increase in power consumption, and a decrease in operating efficiency. In particular, the rotary set is a large capacity sealed container with high temperature and high pressure inside, and the amount of heat flowing into the evaporator is also very large. In order to eliminate the above-mentioned drawbacks, a common method is to provide a solenoid valve or the like in the discharge pipe and suction pipe of the compressor, but this method is expensive, and the solenoid valve itself consumes electricity, resulting in a decrease in efficiency. It has drawbacks such as a decrease in reliability, such as occurrence of malfunction and increased risk of leakage due to an increase in the number of welded parts. In addition, even if a solenoid valve is installed on either the discharge pipe or the suction pipe, 2
It has also been confirmed that there is almost no effect because one side of the flow path is established.

本発明は以上の点を鑑みてシ/プレッサの停止時にコン
プレッサよりコンデンサおよびサクションラインへ流出
する過熱ガスを閉塞し、家庭用冷蔵庫の如き小形冷凍装
置に用いた時にも高効率な運転を可能にするロータリー
コンプレッサを提供せんとするものである。
In view of the above points, the present invention blocks the superheated gas flowing from the compressor to the condenser and suction line when the compressor is stopped, thereby enabling highly efficient operation even when used in small refrigeration equipment such as household refrigerators. The purpose of the present invention is to provide a rotary compressor that does the following:

以下に第1図〜第4図を用いて本発明の一実施例につい
て説明する。1はいわゆるローリングピストン式ロータ
リーコンプレッサで、密閉容器2′′内には電動要素3
と圧縮要素4を圧入固着している。中空円筒状のシリン
ダ6の軸心には前記電動要素3に直結し偏心部6&を有
するシャフト6がその軸心が一致する様に取りつけであ
る。シャツ在に設けられ前記ローラ7の僻遠部はシリン
ダ6の内面と微小間隙を有して気密を保持している。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 4. 1 is a so-called rolling piston type rotary compressor, and an electric element 3 is installed in a sealed container 2''.
The compression element 4 is press-fitted and fixed. A shaft 6, which is directly connected to the electric element 3 and has an eccentric portion 6&, is attached to the axis of the hollow cylindrical cylinder 6 so that its axes coincide with each other. The remote part of the roller 7 provided in the shirt has a small gap with the inner surface of the cylinder 6 to maintain airtightness.

シリンダ5には細溝8を設け、細溝8内には摺動自在に
平板状のベーンeを収納し、ベーン9はバネ10によっ
てローラ7に密着する様に付勢され、シリンダ室11を
高圧側と低圧側に仕切っている。
A narrow groove 8 is provided in the cylinder 5, and a flat plate-shaped vane e is slidably accommodated in the narrow groove 8. The vane 9 is urged by a spring 10 to tightly contact the roller 7, and the cylinder chamber 11 is It is divided into high pressure side and low pressure side.

なお前記シリンダ室11を構成するためシリンダ5の両
側には側板12,13が強固に取りつけられている。側
板12には、第1吐出孔14.吐出バルブ15およびバ
ルブストップ16を備えた第1吐出弁装置17を設けて
おり、シリンダ室11よりの冷媒ガスはいったん密閉容
器2内に吐出される。一方シリンダ6の吸入路18には
冷媒ガスを吸入中は開路し、逆方向には閉路する低圧側
逆止弁19を設けている。2oは第2吐出弁装置で、第
1吐出孔14と並設して側板12に形成した第2吐出孔
21と、密閉容器2外へ延出した吐出管22(吐出路)
に連通して第2吐出孔21と略直交した流出路23と、
第1吐出弁装置17と兼用した吐出バルブ16と、同じ
く第1吐出弁装置1了と兼用したバルブストップ16と
で構成されており、特に第2吐出孔21は、上記したよ
うに第1吐出孔14と、吐出バルブ16およびバルブス
トップ16を固定するボルト24との間で第1吐出孔1
4の近傍に並ぶよう位置している。そして吐出バルブ1
6が第1吐出口14を閉じた時は第2吐出孔21も同時
に閉じ、吐出バルブ16が第1吐出孔14を開路させた
時は同時に第2吐出孔21も開路するようになっている
。そしてこのロータリーコンプレッサ1の吐出管22と
吸入側間にはコンデンサ、キャピラリチューブ、エバポ
レータ(いずれも図示せず)を接続して冷凍サイクルが
構成される。
In order to constitute the cylinder chamber 11, side plates 12 and 13 are firmly attached to both sides of the cylinder 5. The side plate 12 has a first discharge hole 14. A first discharge valve device 17 including a discharge valve 15 and a valve stop 16 is provided, and the refrigerant gas from the cylinder chamber 11 is once discharged into the closed container 2. On the other hand, the suction passage 18 of the cylinder 6 is provided with a low-pressure side check valve 19 that is open when refrigerant gas is being sucked and closed in the opposite direction. 2o is a second discharge valve device, which includes a second discharge hole 21 formed in the side plate 12 in parallel with the first discharge hole 14, and a discharge pipe 22 (discharge path) extending outside the closed container 2.
an outflow path 23 communicating with the second discharge hole 21 and substantially perpendicular to the second discharge hole 21;
It is composed of a discharge valve 16 that also serves as the first discharge valve device 17, and a valve stop 16 that also serves as the first discharge valve device 1. In particular, the second discharge hole 21 is connected to the first discharge valve as described above. The first discharge hole 1 is connected between the hole 14 and the bolt 24 that fixes the discharge valve 16 and the valve stop 16.
They are located close to number 4. and discharge valve 1
When the discharge valve 16 closes the first discharge port 14, the second discharge hole 21 is also closed, and when the discharge valve 16 opens the first discharge hole 14, the second discharge hole 21 is also opened at the same time. . A condenser, a capillary tube, and an evaporator (all not shown) are connected between the discharge pipe 22 and the suction side of the rotary compressor 1 to form a refrigeration cycle.

次に作用について述べる。まずコンプレッサ1が運転中
は圧縮要素4の圧縮作用によりシリンダ6に設けら゛れ
た吸入路18は低圧力となり低圧側逆止弁19は開路伏
卯となる。また圧縮要素4の圧縮作用によってシリンダ
室11内で圧縮された冷媒ガスの圧力が、密閉容器2内
の圧力より太き7 l 2 くなった時、差圧により吐出バルブ16はバルブストッ
プ16に密着するようになり、第1吐出弁装置17は開
略し、圧縮冷媒ガスは密閉容器2内に吐出される。第2
吐出弁装置20の吐出バルブ16は、第1吐出弁装置1
7と兼用しているので、シリンダ室11内の圧力が密閉
容器2内の圧力より尺きくなってバルブストップ16に
密着するようになった時、第3図に示すように、第2吐
出弁装置2oは第1吐出弁装置17と同様に開路状態と
なる。従って密閉容器2内の吐出された冷媒ガスは、第
2吐出孔21に流入し流出路23を通って吐出管22よ
り冷凍サイクルのコンデンサ(図示せず)へと流れてい
く。
Next, we will discuss the effect. First, while the compressor 1 is in operation, the pressure in the suction passage 18 provided in the cylinder 6 becomes low due to the compression action of the compression element 4, and the low-pressure side check valve 19 becomes open. Further, when the pressure of the refrigerant gas compressed in the cylinder chamber 11 by the compression action of the compression element 4 becomes 7 l 2 greater than the pressure in the closed container 2, the discharge valve 16 is set to the valve stop 16 due to the differential pressure. The first discharge valve device 17 is opened and the compressed refrigerant gas is discharged into the closed container 2. Second
The discharge valve 16 of the discharge valve device 20 is the first discharge valve device 1
7, so when the pressure inside the cylinder chamber 11 becomes higher than the pressure inside the closed container 2 and comes into close contact with the valve stop 16, the second discharge valve is opened as shown in FIG. The device 2o is in an open state like the first discharge valve device 17. Therefore, the refrigerant gas discharged from the closed container 2 flows into the second discharge hole 21, passes through the outlet passage 23, and flows from the discharge pipe 22 to a condenser (not shown) of the refrigeration cycle.

次に停止中について述べる。圧縮要素4の停止によりシ
リンダ室11へは、シリンダ6と側板12.13などの
微小隙間より高圧冷媒ガスが徐々に流入するので、吸入
路18に設けである低圧側逆止弁19は閉路し、冷凍サ
イクルのエバポレータ(図示せず)への過熱冷媒ガスの
流入を防止し、エバボレー′夕の温度上昇を防止する。
Next, let's talk about stopping. When the compression element 4 is stopped, high-pressure refrigerant gas gradually flows into the cylinder chamber 11 through a small gap between the cylinder 6 and the side plate 12.13, so the low-pressure side check valve 19 provided in the suction path 18 closes. This prevents superheated refrigerant gas from flowing into the evaporator (not shown) of the refrigeration cycle, thereby preventing a temperature rise during the evaporator.

また圧縮要素4の停止により、シリンダ室11内の圧力
と密閉容器2内の圧力は等しくなり、第4図に示すよう
に、吐出バルブ16は、第1吐出孔14および第2吐出
孔21を閉路する。従ってコンプレッサ1の停止中の過
熱冷媒ガスが冷凍装置のコンデンサを介してエバポレー
タへの流入を防止し、エバポレータの温度上昇を防止す
る。
Further, by stopping the compression element 4, the pressure in the cylinder chamber 11 and the pressure in the closed container 2 become equal, and the discharge valve 16 opens the first discharge hole 14 and the second discharge hole 21, as shown in FIG. Close the circuit. Therefore, the superheated refrigerant gas while the compressor 1 is stopped is prevented from flowing into the evaporator through the condenser of the refrigeration system, thereby preventing the temperature of the evaporator from rising.

上述したように本発明は、吸入路に低圧側逆止弁を設け
、圧縮要素の第1吐出弁装置と同期してコンプレッサ運
転中は開路し、コンプレッサ停止中は閉路する第2吐出
弁装置を設けたので、コンプレッサ停止中にコンプレッ
サよりコンデンサお 。
As described above, the present invention provides a low-pressure side check valve in the suction passage, and a second discharge valve device that opens when the compressor is operating and closes when the compressor is stopped in synchronization with the first discharge valve device of the compression element. Because of this, when the compressor is stopped, the capacitor is removed from the compressor.

よびサクションラインを介してエバポレータへ流入する
過熱ガスを閉塞する。従って従来品に比ベエバポレータ
の温度上昇が少なく運転率の低減。
and the superheated gas flowing into the evaporator via the suction line. Therefore, compared to conventional products, the temperature rise of the evaporator is smaller and the operating rate is reduced.

消費電力の低減が図れるとともに、従来のような電磁弁
が不要なので省電力にもなり、また作動不良の発生、溶
接部増加による洩れの危険率が少なくなり信頼性の向上
が図れる。また第2吐出弁装慣は、第1吐出弁装置と並
設してあり、吐出バルブを第1吐出弁装置と兼用してい
るので、部品数の増加はなく組立も容易に出来るという
効果が得られる。
In addition to reducing power consumption, there is no need for a conventional solenoid valve, which saves power, and reduces the risk of malfunctions and leaks due to an increased number of welded parts, improving reliability. In addition, the second discharge valve arrangement is installed in parallel with the first discharge valve device, and the discharge valve is also used as the first discharge valve device, so there is no increase in the number of parts and assembly is easy. can get.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例におけるロータリーコンプレ
ッサの断面図、第2図は第1図のト」′線における断面
図、第3図は第2図のト」′線における断面図でコンプ
レッサ運転中を示し、第4図は第3図相当のコンプレッ
サ停止中の状態を示す断面図である。 4・・・・・・圧縮要素、11・・・・・・シリンダ室
、16・・・・・・吐11臂クルブ、17・・・・・・
第1吐出弁装置、18・・・・・・吸入路、19・・・
・・・低圧側逆止弁、20・・・・・・第2吐出弁装置
、22・・・・・・吐出管(吐出路)。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 a 第3図 第4図 員  23
Fig. 1 is a sectional view of a rotary compressor according to an embodiment of the present invention, Fig. 2 is a sectional view taken along the line T'' in Fig. 1, and Fig. 3 is a sectional view taken along the line T'' in Fig. 2. FIG. 4 is a sectional view showing the compressor in a stopped state corresponding to FIG. 3. 4...Compression element, 11...Cylinder chamber, 16...Discharge 11 arm club, 17...
First discharge valve device, 18... Suction passage, 19...
...Low pressure side check valve, 20...Second discharge valve device, 22...Discharge pipe (discharge path). Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure a Figure 3 Figure 4 Member 23

Claims (2)

【特許請求の範囲】[Claims] (1)圧縮要素の吸入路に低圧側逆止弁を設け、前記圧
縮要素のシリンダ室を構成する側板に、圧縮された冷媒
ガスを密閉容器内へ吐出させる第1吐出弁装置と、密閉
容器内の冷媒ガスを吐出路に吐出させる第2の吐出弁装
置とを有し、この第2の吐出弁装置を前記第1の吐出弁
装置と同期して開閉するよう構成したロータリーコンプ
レッサ。
(1) A low-pressure side check valve is provided in the suction path of the compression element, and a first discharge valve device for discharging compressed refrigerant gas into a closed container is provided on a side plate constituting a cylinder chamber of the compression element, and the closed container a second discharge valve device for discharging refrigerant gas therein to a discharge passage, and the second discharge valve device is configured to open and close in synchronization with the first discharge valve device.
(2)前記第2吐出弁装置の吐出孔を開閉する吐出バル
ブを前記第1吐出弁装置の吐出バルブと兼用した特許請
求の範囲第1項記載のロータ11−コンプレッサ。
(2) The rotor 11-compressor according to claim 1, wherein the discharge valve for opening and closing the discharge hole of the second discharge valve device also serves as the discharge valve of the first discharge valve device.
JP19930681A 1981-12-09 1981-12-09 Rotary compressor Pending JPS5898692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19930681A JPS5898692A (en) 1981-12-09 1981-12-09 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19930681A JPS5898692A (en) 1981-12-09 1981-12-09 Rotary compressor

Publications (1)

Publication Number Publication Date
JPS5898692A true JPS5898692A (en) 1983-06-11

Family

ID=16405602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19930681A Pending JPS5898692A (en) 1981-12-09 1981-12-09 Rotary compressor

Country Status (1)

Country Link
JP (1) JPS5898692A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4781551A (en) * 1986-06-30 1988-11-01 Matsushita Refrigeration Company Rotary compressor with low-pressure and high-pressure gas cut-off valves
EP3330544A1 (en) * 2016-11-30 2018-06-06 Mitsubishi Heavy Industries Thermal Systems, Ltd. Compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4781551A (en) * 1986-06-30 1988-11-01 Matsushita Refrigeration Company Rotary compressor with low-pressure and high-pressure gas cut-off valves
EP3330544A1 (en) * 2016-11-30 2018-06-06 Mitsubishi Heavy Industries Thermal Systems, Ltd. Compressor

Similar Documents

Publication Publication Date Title
TWI223054B (en) Refrigeration system and method of controlling a refrigeration system
US4545215A (en) Refrigeration apparatus
JPS5898692A (en) Rotary compressor
JPS59104050A (en) Refrigerator
JPH02290470A (en) Moving closing valve in cooling system
JPS5896195A (en) Rotary compressor
JP3481243B2 (en) Starter for small refrigeration system
JPS5896196A (en) Rotary compressor
JPS6345595Y2 (en)
JPS6143991Y2 (en)
JPS6358278B2 (en)
JPS5867991A (en) Rotary compressor
JPS592454Y2 (en) Heat pump refrigeration equipment
JPS6353461B2 (en)
JPS5898693A (en) Rotary compressor
JPS5862471A (en) Refrigerator
JPS5862463A (en) Refrigerator
JPS6229789A (en) Rotary compressor
JPH01269865A (en) Refrigerating device
JPS58133571A (en) Refrigeration cycle of air conditioner
JPS58120087A (en) Hot-water supplying machine
JPS6059498B2 (en) Refrigeration equipment capacity control method
JPS5899657A (en) Refrigerator
JPS5852956A (en) Refrigerator
JPH026983B2 (en)