JPH04184B2 - - Google Patents

Info

Publication number
JPH04184B2
JPH04184B2 JP56093572A JP9357281A JPH04184B2 JP H04184 B2 JPH04184 B2 JP H04184B2 JP 56093572 A JP56093572 A JP 56093572A JP 9357281 A JP9357281 A JP 9357281A JP H04184 B2 JPH04184 B2 JP H04184B2
Authority
JP
Japan
Prior art keywords
pressure
pressure side
low
valve device
side valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56093572A
Other languages
Japanese (ja)
Other versions
JPS57207760A (en
Inventor
Mitsuru Morita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP56093572A priority Critical patent/JPS57207760A/en
Publication of JPS57207760A publication Critical patent/JPS57207760A/en
Publication of JPH04184B2 publication Critical patent/JPH04184B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Description

【発明の詳細な説明】 本発明はロータリーコンプレツサを使用する冷
凍装置に関し、その省エネルギーを図らんとする
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refrigeration system using a rotary compressor, and is intended to save energy.

ロータリーコンプレツサは高効率小形であると
の理由により日本国内に於てはルームエアコン中
心に広く使用されている。一方家庭用冷蔵庫のよ
うな小形コンプレツサについては従来は加工精度
の点よりレシプロ式コンプレツサの方が高効率で
あつたが最近の加工技術、設計技術の向上により
小形コンプレツサの分野でもロータリーコンプレ
ツサの方が高効率になつてきた。しかし、ロータ
リーコンプレツサ単体でのカロリメータテストで
はレシプロ式に比べて約20%程度の効率向上にな
つているにもかかわらず実際に家庭用冷蔵庫に取
りつけて、JIS C 9607電気冷蔵庫及び電気冷蔵
庫の消費電力量試験で測定した時の効果は半減し
てせいぜい約10%程度の消費電力量の低減程度に
なつている。この原因は本発明者の究研によると
ロータリーコンプレツサが停止中に密閉容器内に
多量に滞留する過度のスパーヒートガスがエバポ
レータに流入し、エバポレータを加熱し、冷蔵庫
の熱負荷となつているためである。そして、その
流れは2系路あり第1回路は圧縮要素のメカニカ
ルシールを介してスーパーヒートガスがシリンダ
室に流れ、サクシヨンラインを経てエバポレータ
に流入する系路と、第2回路は密閉容器からコン
デンサへと流れ、コンデンサで放熱し常温のスー
パーヒートガスとなつてキヤピラリーチユーブを
介してエバポレータへ流入する回路である。スー
パーヒートガスの影響度の大きいのは過熱の高い
前記第1回路である。この改善策としての一般的
な手法は第1回路に対しては逆止弁が適切であ
り、第2回路に対してはコンプレツサの運転停止
に応動する電磁弁である。この方法では、電磁弁
が高価であり、また電力を消費するし電気回路も
複雑になり、更に作動音がする等の欠点を有して
いる。
Rotary compressors are widely used in room air conditioners in Japan because they are highly efficient and compact. On the other hand, for small compressors such as household refrigerators, reciprocating compressors have traditionally been more efficient in terms of processing accuracy, but with recent improvements in processing and design technology, rotary compressors have become more efficient in the field of small compressors. has become highly efficient. However, although a calorimeter test using a rotary compressor alone shows that the efficiency is approximately 20% higher than that of a reciprocating type, when it is actually installed in a household refrigerator, the consumption of JIS C 9607 electric refrigerators and electric refrigerators is The effect measured in the power consumption test was halved, to a reduction of about 10% in power consumption at most. According to research conducted by the present inventor, the cause of this is that when the rotary compressor is stopped, an excessive amount of sparheat gas that remains in the closed container flows into the evaporator, heats the evaporator, and becomes a heat load on the refrigerator. It's for a reason. The flow has two paths: the first path is where the superheat gas flows into the cylinder chamber through the mechanical seal of the compression element, and flows into the evaporator via the suction line, and the second path is from the airtight container. In this circuit, the gas flows to the condenser, where it radiates heat, becomes room-temperature superheated gas, and flows into the evaporator via the capillary tube. The superheat gas has a large influence on the first circuit, which is highly overheated. A common approach to this improvement is to use a check valve for the first circuit and a solenoid valve for the second circuit to respond to the shutdown of the compressor. This method has the disadvantages that the solenoid valve is expensive, consumes electric power, has a complicated electric circuit, and makes operating noise.

本発明は以上の欠点に鑑みて、安価で、電気的
な制御を必要とせず、静粛でかつコンプレツサ単
体と同等以上の高効率化をシステムとして図れる
省エネルギー形の冷凍装置を提供せんとするもの
である。
In view of the above drawbacks, the present invention seeks to provide an energy-saving refrigeration system that is inexpensive, does not require electrical control, is quiet, and can achieve higher efficiency than a single compressor. be.

以下に本発明の一実施例について説明する。1
はロータリーコンプレツサで密閉容器2と圧縮要
素3と図示しない電動要素で構成されている。冷
凍装置はロータリーコンプレツサ1、コンデンサ
4、本発明の主要部である流体制御弁5の高圧回
路5a、キヤピラリーチユーブ6、エバポレータ
7、流体制御弁5の低圧回路5b、サクシヨンラ
イン8、コンプレツサ1を順次環状に連結して成
る。
An embodiment of the present invention will be described below. 1
The rotary compressor is composed of a closed container 2, a compression element 3, and an electric element (not shown). The refrigeration system includes a rotary compressor 1, a condenser 4, a high pressure circuit 5a of a fluid control valve 5 which is the main part of the present invention, a capillary reach tube 6, an evaporator 7, a low pressure circuit 5b of the fluid control valve 5, a suction line 8, and a compressor. 1 are sequentially connected in a ring.

流体制御弁5は高圧側ケーシング9と高圧側ケ
ーシング9の下方に位置する低圧側ケーシング1
0とで外殻11を形成している。高圧側ケーシン
グ9と低圧側ケーシング10との間には外殻11
内を高圧側ケーシング9側の高圧回路5aと低圧
側ケーシング10側の低圧回路5bとに仕切り、
高圧回路5aの圧力と低圧回路5bの圧力の圧力
差に応じて中央部が上下動するダイヤフラム(圧
力応動体)12を配設してある。高圧側ケーシン
グ9と低圧側ケーシング10はそれぞれの相対す
る面を広くして互いにダイヤフラム(圧力応動
体)12を介して熱交換し易いようにしてある。
ダイヤフラム(圧力応動体)12の方にはダイヤ
フラム(圧力応動体)12の過度の動きを規制す
るとともにダイヤフラム(圧力応動体)12の破
損を防止するリテイナー13を配設してある。リ
テイナー13には低圧回路5bの圧力を正しく感
知するための複個の小孔13a,13b……を設
けてある。高圧側ケーシング9の中央部からずれ
た位置にはコンデンサ4と高圧回路5aとを連通
させる高圧入側口管9aを設けてある。高圧側ケ
ーシング9の中央上部にはキヤピラリーチユーブ
6と高圧回路5aとを連通させる上方向に伸びる
高圧側出口管9bを設けてある。高圧側ケーシン
グ9の中央部には高圧回路5aに連通する高圧側
弁室9cを設けてある。高圧側弁室9cの上部に
は高圧側弁座9dを設けてある。高圧側出口管9
bは高圧側弁座9dの部分で高圧側弁室9c連通
するように高圧側ケーシング9に設けてある。高
圧側弁室9cはボール弁(高圧弁)14を上下動
自在に収納している。高圧側弁座9dは上方に押
し上げられたボール弁(高圧弁)14によつて閉
塞可能に構成されている。ダイヤフラム(圧力応
動体)12は冷凍装置の運転中高圧回路5aの圧
力と低圧回路5bの圧力との圧力差により変形し
てダイヤフラム(圧力応動体)12の中央部と高
圧側弁座9dとの間隔を開け、高圧回路5aの圧
力と低圧回路5bの圧力とが略等圧時に復元して
ダイヤフラム(圧力応動体)12の付勢力でボー
ル弁(高圧弁)14を高圧側弁座9dに押し付け
るように設けられている。高圧側弁装置15は高
圧側ケーシング9と高圧側弁室9cと高圧側弁座
9dとダイヤフラム(圧力応動体)12とボール
弁(高圧弁)14とからなつている。低圧側ケー
シング10の中央下部にはエバポレータ7と低圧
回路5bとを連通させる下方向に伸びる低圧側入
口管10aを設けてある。低圧側ケーシング10
の中央部からずれた位置にはロータリーコンプレ
ツサ1と低圧回路5bとを連通させる低圧側出口
管10bを設けてある。低圧側ケーシング10の
中央部には低圧回路5bに連通する低圧側弁室1
0cを設けてある。低圧側弁室10cの下部には
低圧側弁座10dを設けてある。低圧側入口管1
0aは低圧側弁座10dの部分で低圧側弁室10
cに連通するように低圧側ケーシング10に設け
てある。低圧側弁室10cはボール弁(低圧弁)
16を上下動自在に収納している。低圧側弁座1
0dは落下するボール弁(低圧弁)16によつて
閉塞可能に構成されている。低圧側弁装置17は
低圧側ケーシング10と低圧側弁室10cと低圧
側弁座10dとダイヤフラム(圧力応動体)12
とボール弁(低圧弁)16とからなつている。
The fluid control valve 5 includes a high pressure side casing 9 and a low pressure side casing 1 located below the high pressure side casing 9.
0 forms an outer shell 11. An outer shell 11 is provided between the high pressure side casing 9 and the low pressure side casing 10.
The inside is partitioned into a high-pressure circuit 5a on the high-pressure side casing 9 side and a low-pressure circuit 5b on the low-pressure side casing 10 side,
A diaphragm (pressure-responsive body) 12 is provided, the center of which moves up and down in accordance with the pressure difference between the pressure in the high-pressure circuit 5a and the pressure in the low-pressure circuit 5b. The high-pressure side casing 9 and the low-pressure side casing 10 have wide opposing surfaces so that they can easily exchange heat with each other via a diaphragm (pressure-responsive body) 12.
A retainer 13 is provided on the diaphragm (pressure responsive body) 12 to restrict excessive movement of the diaphragm (pressure responsive body) 12 and to prevent the diaphragm (pressure responsive body) 12 from being damaged. The retainer 13 is provided with a plurality of small holes 13a, 13b, . . . for correctly sensing the pressure of the low pressure circuit 5b. A high-pressure inlet side port pipe 9a is provided at a position offset from the center of the high-pressure side casing 9, which communicates the capacitor 4 with the high-voltage circuit 5a. A high-pressure side outlet pipe 9b extending upward is provided at the upper center of the high-pressure side casing 9 to communicate the capillary reach tube 6 and the high-pressure circuit 5a. A high-pressure side valve chamber 9c is provided in the center of the high-pressure side casing 9 and communicates with the high-pressure circuit 5a. A high pressure side valve seat 9d is provided above the high pressure side valve chamber 9c. High pressure side outlet pipe 9
b is provided in the high pressure side casing 9 so that the high pressure side valve seat 9d communicates with the high pressure side valve chamber 9c. The high-pressure side valve chamber 9c accommodates a ball valve (high-pressure valve) 14 so as to be movable up and down. The high pressure side valve seat 9d is configured to be closable by a ball valve (high pressure valve) 14 pushed upward. During operation of the refrigeration system, the diaphragm (pressure-responsive body) 12 is deformed due to the pressure difference between the pressure in the high-pressure circuit 5a and the pressure in the low-pressure circuit 5b, and the center portion of the diaphragm (pressure-responsive body) 12 and the high-pressure side valve seat 9d deform. By opening a gap, the pressure in the high pressure circuit 5a and the pressure in the low pressure circuit 5b are restored to substantially equal pressure, and the urging force of the diaphragm (pressure responsive body) 12 presses the ball valve (high pressure valve) 14 against the high pressure side valve seat 9d. It is set up like this. The high pressure side valve device 15 includes a high pressure side casing 9, a high pressure side valve chamber 9c, a high pressure side valve seat 9d, a diaphragm (pressure responsive body) 12, and a ball valve (high pressure valve) 14. A low-pressure side inlet pipe 10a extending downward is provided at the lower center of the low-pressure side casing 10 to connect the evaporator 7 and the low-pressure circuit 5b. Low pressure side casing 10
A low-pressure side outlet pipe 10b is provided at a position offset from the center of the rotary compressor 1 to connect the rotary compressor 1 and the low-pressure circuit 5b. A low pressure side valve chamber 1 communicating with the low pressure circuit 5b is provided in the center of the low pressure side casing 10.
0c is provided. A low pressure side valve seat 10d is provided at the lower part of the low pressure side valve chamber 10c. Low pressure side inlet pipe 1
0a is a portion of the low pressure side valve seat 10d and the low pressure side valve chamber 10
It is provided in the low pressure side casing 10 so as to communicate with c. The low pressure side valve chamber 10c is a ball valve (low pressure valve)
16 is housed so that it can be moved up and down. Low pressure side valve seat 1
0d is configured to be closable by a falling ball valve (low pressure valve) 16. The low pressure side valve device 17 includes a low pressure side casing 10, a low pressure side valve chamber 10c, a low pressure side valve seat 10d, and a diaphragm (pressure responsive body) 12.
and a ball valve (low pressure valve) 16.

次に作用について述べる。第1図は冷凍装置が
運転中の状態図を表わしたもので、冷凍装置の高
圧側は通常の高圧力であり、低圧側も通常の低圧
力であるため流体制御弁5のダイヤフラム(圧力
応動体)12は圧力差によつて中央部が下方に下
りリテイナー13に押しつけられている。そして
ボール弁(高圧弁)14は自重によりリテイナー
13上に落下しているのでボール弁(高圧弁)1
4と高圧側弁座9dは離れているため高圧側弁装
置15は開弁状態である。一方低圧側弁装置17
のボール弁(低圧弁)16はエバポレータ7より
ガス流により吹き上げられてボール弁(低圧弁)
16と低圧側弁座10dは離れているので低圧側
弁装置17は開弁状態となる。従つてロータリー
コンプレツサ1より吐出された冷媒ガスはコンデ
ンサ4、流体制御弁5の高圧回路5a、キヤピラ
リーチユーブ6、エバポレータ7、流体制御弁5
の低圧回路5b、サクシヨンライン8、ロータリ
ーコンプレツサ1へと支障なく流れて冷凍作用を
行う。
Next, we will discuss the effect. Figure 1 shows a state diagram when the refrigeration system is in operation.The high pressure side of the refrigeration system is at normal high pressure, and the low pressure side is also at normal low pressure. The center portion of the body 12 is pressed downwardly against the retainer 13 due to the pressure difference. Since the ball valve (high pressure valve) 14 has fallen onto the retainer 13 due to its own weight, the ball valve (high pressure valve) 1
4 and the high pressure side valve seat 9d are apart, the high pressure side valve device 15 is in an open state. On the other hand, the low pressure side valve device 17
The ball valve (low pressure valve) 16 is blown up by the gas flow from the evaporator 7 and becomes a ball valve (low pressure valve).
16 and the low pressure side valve seat 10d are apart, so the low pressure side valve device 17 is in an open state. Therefore, the refrigerant gas discharged from the rotary compressor 1 is sent to the condenser 4, the high pressure circuit 5a of the fluid control valve 5, the capillary reach tube 6, the evaporator 7, and the fluid control valve 5.
The low pressure circuit 5b, the suction line 8, and the rotary compressor 1 flow without any trouble to perform the refrigeration action.

次に冷凍装置の停止時の状態について第2図を
参照しながら説明する。ロータリーコンプレツサ
1の停止によりエバポレータ7よりのガス流が停
止するので流体制御弁5の低圧回路5b内のボー
ル弁(低圧弁)16は自重で落下し低圧側弁座1
0dに接して低圧側弁装置17が閉弁状態になり
過熱ガスがエバポレータ7に流入するのを防止す
ると同時に密閉容器2内の過熱ガスは圧縮要素の
図示しないシリンダ室に流入し、さらにサクシヨ
ンラインへと流入し、流体制御弁5の低圧回路5
bに流入するので前記低圧回路5bの圧力は急激
に上昇し、高圧回路5bの圧力と略等圧となる。
前記両回路5a,5bの圧力が略等圧になるとダ
イヤフラム(圧力応動体)12の復元力により前
記ダイヤフラム(圧力応動体)12の中央部は上
方に移動するので流体制御弁5の高圧回路5aの
ボール弁(高圧弁)14は高圧側弁座9dに押付
けられて高圧側弁装置15は閉弁状態となり過熱
ガスのエバポレータ7への流入を防止する。以上
のようにロータリーコンプレツサ1が停止すると
流体制御弁5の低圧側弁装置17と高圧側弁装置
15をほぼ同時に閉弁し、エバポレータ7へのス
ーパーヒートガスの流入を防止する。
Next, the state when the refrigeration system is stopped will be explained with reference to FIG. 2. When the rotary compressor 1 stops, the gas flow from the evaporator 7 stops, so the ball valve (low pressure valve) 16 in the low pressure circuit 5b of the fluid control valve 5 falls under its own weight, and the low pressure side valve seat 1
0d, the low-pressure side valve device 17 closes to prevent superheated gas from flowing into the evaporator 7, and at the same time, the superheated gas in the closed container 2 flows into the cylinder chamber (not shown) of the compression element, and further into the suction into the low pressure circuit 5 of the fluid control valve 5
b, the pressure in the low pressure circuit 5b rises rapidly and becomes approximately equal to the pressure in the high pressure circuit 5b.
When the pressures in both circuits 5a and 5b become approximately equal, the restoring force of the diaphragm (pressure-responsive body) 12 moves the center of the diaphragm (pressure-responsive body) 12 upward, so that the high-pressure circuit 5a of the fluid control valve 5 The ball valve (high pressure valve) 14 is pressed against the high pressure side valve seat 9d, and the high pressure side valve device 15 is in a closed state to prevent superheated gas from flowing into the evaporator 7. As described above, when the rotary compressor 1 stops, the low-pressure side valve device 17 and the high-pressure side valve device 15 of the fluid control valve 5 are closed almost simultaneously to prevent superheat gas from flowing into the evaporator 7.

また、ダイヤフラム(圧力応動体)12を高圧
側ケーシング9側に配置し、低圧側ケーシング1
0側にリテイナー13を配置しているので、冷凍
装置が運転中ならびに停止から運転状態に移行す
るとき低圧側弁装置が低圧や急激な圧力変動があ
つてもリテイナー13によりダイヤフラム(圧力
応動体)12の低圧側弁装置側への過度の移動が
防止されるので、ダイヤフラム(圧力応動体)1
2が移動しすぎて復元不可能になつたり、変形し
て動作不良になることがなくなるものである。
In addition, a diaphragm (pressure responsive body) 12 is arranged on the high pressure side casing 9 side, and a low pressure side casing 1
Since the retainer 13 is placed on the 0 side, the retainer 13 protects the diaphragm (pressure-responsive body) even if the low-pressure side valve device experiences low pressure or rapid pressure fluctuations when the refrigeration equipment is in operation or transitions from stop to operation. 12 is prevented from moving excessively toward the low pressure side valve device side, the diaphragm (pressure responsive body) 1
2 will not move too much and become impossible to restore, or deform and malfunction.

以上のように本発明の冷凍装置は、ロータリー
コンプレツサと、コンデンサと、流体制御弁の高
圧側弁装置と、減圧器と、エバポレータと、流体
制御弁の低圧側弁装置と、サクシヨンラインとを
順次環状に連結し、前記高圧側弁装置と前記低圧
側弁装置との間に前記高圧側弁装置内の圧力と前
記低圧側弁装置内の圧力との圧力差により応動す
る圧力応動体を設け、前記高圧側弁装置に前記圧
力応動体の応動で動作し且つ前記高圧側弁装置内
の圧力と前記低圧側弁装置内の圧力が略等圧時に
閉弁するように高圧弁を配置、前記低圧側弁装置
をチエツクバルブとしたので冷凍装置が運転中は
通常の冷媒循環を行い、冷凍装置が停止時にはチ
エツクバルブ機能を有する低圧側弁装置がただち
に閉弁すると同時に低圧回路の圧力が急上昇し高
圧側弁装置を閉弁するので、密閉容器内およびコ
ンデンサ内のスーパーヒートガスがサクシヨンラ
インおよびキヤピラリーチユーブ等を介してエバ
ポレータに流入するのを防止する。従つて流体制
御弁の無いものに比べて約25%と節電になると共
に前記両弁装置を熱交換的に一体に形成している
のでエバポレータを流した排熱である温度の低い
スーパーヒートガスによりコンデンサより流出す
る液冷媒の過冷却を行い冷凍効果を向上でき、更
に3%程度の省電力化が図れ、合計28%程度の省
電力が可能である。また電磁弁で制御するものに
比べて制御するのに電力を消費せず、又余分な電
気配線を必要とせず、又なめらかな作動を行うの
で騒音が発生しないなどの特徴を有するものであ
る。
As described above, the refrigeration system of the present invention includes a rotary compressor, a condenser, a high-pressure side valve device of a fluid control valve, a pressure reducer, an evaporator, a low-pressure side valve device of a fluid control valve, and a suction line. are sequentially connected in an annular manner, and a pressure-responsive body is provided between the high-pressure side valve device and the low-pressure side valve device, which responds to the pressure difference between the pressure in the high-pressure side valve device and the pressure in the low-pressure side valve device. and disposing a high pressure valve in the high pressure side valve device such that it operates in response to the pressure responsive body and closes when the pressure in the high pressure side valve device and the pressure in the low pressure side valve device are substantially equal; Since the low-pressure side valve device is a check valve, normal refrigerant circulation occurs when the refrigeration system is in operation, and when the refrigeration system is stopped, the low-pressure side valve device with a check valve function immediately closes, and the pressure in the low-pressure circuit increases rapidly. Since the high pressure side valve device is then closed, the superheated gas in the closed container and the condenser is prevented from flowing into the evaporator via the suction line, capillary reach tube, etc. Therefore, it saves about 25% of electricity compared to a device without a fluid control valve, and since both valve devices are integrally formed for heat exchange, the low temperature superheat gas, which is the waste heat from the evaporator, is used. By supercooling the liquid refrigerant flowing out of the condenser, the refrigeration effect can be improved, and power consumption can be further reduced by about 3%, making it possible to save about 28% in total. In addition, compared to those controlled by electromagnetic valves, they consume less power for control, do not require extra electrical wiring, and operate smoothly so they do not generate noise.

また、圧力応動体を高圧側ケーシング側に配置
し、低圧側ケーシング側にリテイナーを配置して
いるので、冷凍装置が運転中ならびに停止から運
転状態に移行するとき低圧側弁装置が低圧や急激
な圧力変動があつてもリテイナーにより圧力応動
体の低圧側弁装置側への過度の移動が防止される
ので、圧力応動体が移動しすぎて復元不可能にな
つたり、変形して動作不良になることがなくなる
ものである。
In addition, the pressure-responsive body is placed on the high-pressure side casing side and the retainer is placed on the low-pressure side casing side, so when the refrigeration equipment is in operation or transitions from stop to operation, the low-pressure side valve device is activated by low pressure or sudden changes. Even if pressure fluctuates, the retainer prevents the pressure-responsive body from moving excessively toward the low-pressure side valve device, so the pressure-responsive body moves too much and becomes impossible to restore, or deforms and malfunctions. Things will disappear.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す冷凍装置の運
転中の回路図、第2図は該冷凍装置の停止中の回
路図である。 1……ロータリーコンプレツサ、4……コンデ
ンサ、5……流体制御弁、6……キヤピラリーチ
ユーブ(減圧器)、7……エバポレータ、8……
サクシヨンライン、12……ダイヤフラム(圧力
応動体)、14……ボール弁(高圧弁)、15……
高圧側弁装置、17……低圧側弁装置。
FIG. 1 is a circuit diagram of a refrigeration system showing an embodiment of the present invention when it is in operation, and FIG. 2 is a circuit diagram of the refrigeration system when it is stopped. 1... Rotary compressor, 4... Condenser, 5... Fluid control valve, 6... Capillary reach tube (pressure reducer), 7... Evaporator, 8...
Suction line, 12...Diaphragm (pressure responsive body), 14...Ball valve (high pressure valve), 15...
High pressure side valve device, 17...low pressure side valve device.

Claims (1)

【特許請求の範囲】[Claims] 1 ロータリーコンプレツサと、コンデンサと、
流体制御弁の高圧側弁装置と、減圧器と、エバポ
レータと、流体制御弁の低圧側弁装置と、サクシ
ヨンラインとを順次環状に連結したものであつ
て、前記高圧側弁装置の外殻を形成する高圧側ケ
ーシングと低圧側弁装置の外殻を形成する低圧側
ケーシングとの間に前記低圧側弁装置内圧力と前
記低圧側弁装置内の圧力と前記低圧側弁装置の圧
力との圧力差により応動する圧力応動体と、この
圧力応動体の過度の動きを規制するリテイナーと
を設け、このリテイナーを低圧側ケーシング側に
位置させて圧力応動体を経て低圧側の圧力を伝え
る小孔を設け、前記高圧側弁装置に前記圧力応動
体の応動で動作し且つ前記高圧側弁装置内の圧力
と前記低圧側弁装置内の圧力が略等圧時に閉弁す
るように高圧弁を配置し、前記低圧側弁装置をチ
エツクバルブとしたことを特徴とする冷凍装置。
1 rotary compressor, capacitor,
A high-pressure side valve device of a fluid control valve, a pressure reducer, an evaporator, a low-pressure side valve device of a fluid control valve, and a suction line are sequentially connected in an annular manner, and the outer shell of the high-pressure side valve device The internal pressure of the low pressure side valve device, the pressure inside the low pressure side valve device, and the pressure of the low pressure side valve device are between the high pressure side casing forming the outer shell of the low pressure side valve device and the low pressure side casing forming the outer shell of the low pressure side valve device. A pressure-responsive body that responds to a pressure difference and a retainer that restricts excessive movement of this pressure-responsive body are provided, and this retainer is located on the low-pressure side casing side to transmit the pressure on the low-pressure side through the pressure-responsive body. and a high pressure valve is arranged in the high pressure side valve device such that it operates in response to the pressure responsive body and closes when the pressure in the high pressure side valve device and the pressure in the low pressure side valve device are substantially equal pressures. A refrigeration system characterized in that the low pressure side valve device is a check valve.
JP56093572A 1981-06-16 1981-06-16 Refrigerator Granted JPS57207760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56093572A JPS57207760A (en) 1981-06-16 1981-06-16 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56093572A JPS57207760A (en) 1981-06-16 1981-06-16 Refrigerator

Publications (2)

Publication Number Publication Date
JPS57207760A JPS57207760A (en) 1982-12-20
JPH04184B2 true JPH04184B2 (en) 1992-01-06

Family

ID=14085965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56093572A Granted JPS57207760A (en) 1981-06-16 1981-06-16 Refrigerator

Country Status (1)

Country Link
JP (1) JPS57207760A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR811326A (en) * 1936-01-21 1937-04-12 Sulzer Ag Compression refrigeration machine
US2326093A (en) * 1940-05-29 1943-08-03 Detroit Lubricator Co Refrigerating system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR811326A (en) * 1936-01-21 1937-04-12 Sulzer Ag Compression refrigeration machine
US2326093A (en) * 1940-05-29 1943-08-03 Detroit Lubricator Co Refrigerating system

Also Published As

Publication number Publication date
JPS57207760A (en) 1982-12-20

Similar Documents

Publication Publication Date Title
JPH04184B2 (en)
JPS59104050A (en) Refrigerator
JPS6353463B2 (en)
JPS5899671A (en) Fluid control valve for refrigerator
JPH0335590B2 (en)
CN212227298U (en) Air supplementing and pressure relieving device for low-temperature module unit
JPS5899656A (en) Refrigerator
JPH0138234B2 (en)
JPS5896954A (en) Refrigerator
JPS6325260B2 (en)
JPS6333105Y2 (en)
JPS6325257B2 (en)
JPS59115940A (en) Refrigerator
JPH025316Y2 (en)
JPS5862463A (en) Refrigerator
JPS5852956A (en) Refrigerator
JPS5852957A (en) Refrigerator
JPS6358278B2 (en)
JPS6325258B2 (en)
JPS5899674A (en) Refrigerator
JPS5862471A (en) Refrigerator
JPS5899652A (en) Refrigerator
JPS5898692A (en) Rotary compressor
JPS5822832A (en) Air conditioner
JPH10196548A (en) Compressor