JPH0536699B2 - - Google Patents
Info
- Publication number
- JPH0536699B2 JPH0536699B2 JP58050056A JP5005683A JPH0536699B2 JP H0536699 B2 JPH0536699 B2 JP H0536699B2 JP 58050056 A JP58050056 A JP 58050056A JP 5005683 A JP5005683 A JP 5005683A JP H0536699 B2 JPH0536699 B2 JP H0536699B2
- Authority
- JP
- Japan
- Prior art keywords
- valve
- pressure
- diaphragm
- valve device
- resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/141—Feedstock
Landscapes
- Devices That Are Associated With Refrigeration Equipment (AREA)
- Safety Valves (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
本発明は冷蔵庫、シヨーケース、エアコン等に
用いられる冷凍装置で特にコンプレツサとして密
閉容器内が高圧となるロータリーコンプレツサー
を使用したものに関する。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a refrigeration system used in a refrigerator, a storage case, an air conditioner, etc., and particularly relates to a refrigeration system using a rotary compressor as a compressor, which generates high pressure inside a closed container.
従来例の構成とその問題点
この種の冷凍装置として例えば冷蔵庫に採用さ
れるもので第1図に示すものがある。この図で1
はロータリーコンプレツサ、2はコンデンサ、3
は電磁弁、4は減圧器であるキヤピラリチユー
ブ、5はエバポレータ、6は逆止弁であり、電磁
弁3は冷蔵庫庫内温度を感知して開閉するサーモ
スタツト(図示せず)にてロータリーコンプレツ
サ1と同期してON−OFFするもので、ON時に
流路を開路、OFF時に閉路するものである。周
知のようにこの種のロータリーコンプレツサ1は
高圧容器型であり、冷媒の溶解する冷凍機油7を
容器8内に有している。Conventional Structure and Problems There is a refrigeration system of this type that is used in, for example, a refrigerator, as shown in FIG. In this diagram 1
is a rotary compressor, 2 is a capacitor, 3 is a rotary compressor,
is a solenoid valve, 4 is a capillary tube which is a pressure reducer, 5 is an evaporator, 6 is a check valve, and solenoid valve 3 is a rotary valve operated by a thermostat (not shown) that opens and closes by sensing the temperature inside the refrigerator. It turns ON and OFF in synchronization with the compressor 1, and opens the flow path when ON and closes the flow path when OFF. As is well known, this type of rotary compressor 1 is of a high-pressure container type, and contains refrigerating machine oil 7 in which a refrigerant is dissolved in a container 8.
この種の冷凍装置では運転中は周知の如くであ
るが、停止中には電磁弁3が閉路し、逆止弁6も
閉路するため、容器8内は高圧、高温に維持さ
れ、冷凍機油7は常に高圧、高温下にさらされる
ものである。 As is well known in this type of refrigeration system, during operation, the solenoid valve 3 closes and the check valve 6 also closes, so the inside of the container 8 is maintained at high pressure and high temperature, and the refrigeration oil 7 is constantly exposed to high pressure and high temperature.
また、この種の冷凍装置が運転される条件とし
ては低外気温から高外気温まであるため、ロータ
リーコンプレツサ1の容器8内の温度、圧力共に
その変動が大きい。 Furthermore, since the conditions under which this type of refrigeration system is operated range from low outside temperatures to high outside temperatures, both the temperature and pressure within the container 8 of the rotary compressor 1 fluctuate greatly.
冷凍機油8の冷媒に対する溶解量は第2図に示
すと特性を有する。つまり、同一圧力では温度が
低くなる程冷媒の溶解量が多く、同一温度では圧
力が高くなる程冷媒の溶解量が多くなる特性を有
している。一例を示すと、圧量8Kg/cm2Gのとき
に35%、圧力5Kg/cm2Gのときに21%の溶解量で
ある。図中破線ロに示す。従つて、外気温度によ
る溶解量の特性は第3図に示すものとなる。つま
り、外気温15℃と30℃とを比較すると溶解量にお
いて70g−40g=30gの差が生じ、全冷媒封入量
が例えば200gであればその量の15%に相当する
ものであり、換言すれば、外気温30℃で適正とな
る冷媒封入量とすると外気温15℃では30gの冷媒
不足となる第1の欠点を有していた。 The amount of refrigerating machine oil 8 dissolved in the refrigerant has characteristics as shown in FIG. In other words, at the same pressure, the lower the temperature, the greater the amount of refrigerant dissolved, and at the same temperature, the higher the pressure, the greater the amount of refrigerant dissolved. To give an example, the amount dissolved is 35% when the pressure is 8 kg/cm 2 G, and 21% when the pressure is 5 kg/cm 2 G. It is shown by the broken line B in the figure. Therefore, the characteristics of the amount of dissolution depending on the outside temperature are as shown in FIG. In other words, if you compare the outside temperature of 15℃ and 30℃, there will be a difference in the amount of melting of 70g - 40g = 30g, and if the total amount of refrigerant sealed is, for example, 200g, this will correspond to 15% of that amount. For example, if the amount of refrigerant charged is appropriate at an outside temperature of 30°C, the first drawback is that 30g of refrigerant is insufficient at an outside temperature of 15°C.
また、キヤピラリチユーブ4の絞り抵抗は固定
式であるため、通常、高外気温で適正となるよう
設定しており、低外気温になると抵抗が過剰とな
る傾向になる第2の欠点を有していた。 In addition, since the restriction resistance of the capillary tube 4 is fixed, it is normally set to be appropriate at high outside temperatures, and has the second drawback that the resistance tends to become excessive at low outside temperatures. Was.
また、上記第1、第2の欠点は相互に起因する
ものである。 Further, the first and second drawbacks described above are caused by each other.
発明の目的
かかる点に鑑み、本発明は低外気温における冷
媒循環量を確保し省電力を図れる冷凍装置を提供
せんとするものである。OBJECTS OF THE INVENTION In view of the above points, the present invention aims to provide a refrigeration system that can secure the amount of refrigerant circulation at low outside temperatures and save power.
発明の構成
上記目的を達成するため、本発明による冷凍装
置は、コンプレツサの起動、停止による急激な圧
力変化により開閉する開閉弁装置と、外気温度に
よる運転中の圧力の違いにより開度を制御する調
整弁装置とを有する流量制御弁を該装置内に介在
せしめたものである。Composition of the Invention In order to achieve the above object, the refrigeration system according to the present invention includes an on-off valve device that opens and closes due to sudden pressure changes caused by starting and stopping the compressor, and an opening degree that is controlled by the difference in pressure during operation depending on the outside air temperature. A flow rate control valve having a regulating valve device is interposed within the device.
実施例の説明
以下に本発明の一実施例を添付図面に従い説明
する。DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings.
図において、10は本発明による冷凍装置で冷
蔵庫(図示せず)の冷凍サイクルとして使用され
るものである。11はロータリーコンプレツサで
密閉容器12、機械部13、電動機14、冷凍機
油15より構成されている。16はコンデンサ、
17は流量制御弁、18はキヤプラリチユーブ、
19はエバポレータ、20は逆止弁、21はロー
タリーコンプレツサ11の吸込管であり順次環状
に連接されている。 In the figure, reference numeral 10 denotes a refrigeration system according to the present invention, which is used as a refrigeration cycle of a refrigerator (not shown). A rotary compressor 11 is composed of a sealed container 12, a mechanical part 13, an electric motor 14, and a refrigerating machine oil 15. 16 is a capacitor,
17 is a flow control valve, 18 is a capillary tube,
Reference numeral 19 is an evaporator, 20 is a check valve, and 21 is a suction pipe of the rotary compressor 11, which are successively connected in an annular manner.
次に流量制御弁17について説明する。22は
上ケーシング、23は下ケーシングで両者22,
23を密着して流量制御弁本体17を構成してい
る。24は両ケーシング22,23間に介在され
て本体17内を2室に区画するダイヤフラムで、
上室が弁室25、下室が感圧室26として構成さ
れている。27は均圧管で、感圧室26とロータ
リーコンプレツサ11、逆止弁20との間の吸込
管21とを連通している。28は感圧室26でダ
イヤフラム24と下ケーシング23との間に介在
したバイアスバネであり、ダイヤフラム24の圧
力変位を所定の値に設定するものであり、29は
下ケーシング23とダイヤフラム24との間でバ
イアスバネ28内に設けたストツパで、ダイヤフ
ラム24の過度な動きを規制するものである。 Next, the flow control valve 17 will be explained. 22 is the upper casing, 23 is the lower casing, both 22,
23 are brought into close contact with each other to form the flow control valve main body 17. A diaphragm 24 is interposed between the casings 22 and 23 and divides the inside of the main body 17 into two chambers.
The upper chamber is configured as a valve chamber 25, and the lower chamber is configured as a pressure sensitive chamber 26. A pressure equalizing pipe 27 communicates the pressure sensitive chamber 26 with the suction pipe 21 between the rotary compressor 11 and the check valve 20. 28 is a bias spring interposed between the diaphragm 24 and the lower casing 23 in the pressure sensitive chamber 26, and is used to set the pressure displacement of the diaphragm 24 to a predetermined value; A stopper is provided in the bias spring 28 between the diaphragms 24 and 28 to restrict excessive movement of the diaphragm 24.
弁室25内には開閉弁装置30が構成されてい
る。開閉弁装置30は中央を貫通する円形のポー
ト31と、該ポート31の下面に形成された弁座
32及びスプリング33の上端を保持する保持部
34を形成し上ケーシング22に取付けられるブ
ロツク35と、前記弁座32に当接するボール弁
36と、ボール弁36を接着保持するダイヤフラ
ム24と当接したホルダー37と、ブロツク35
の保持部34と、ホルダー37間に介在される上
記スプリング33とにより構成されている。 An on-off valve device 30 is configured within the valve chamber 25 . The on-off valve device 30 includes a circular port 31 passing through the center, a valve seat 32 formed on the lower surface of the port 31, and a block 35 that forms a holding part 34 that holds the upper end of a spring 33 and is attached to the upper casing 22. , a ball valve 36 that contacts the valve seat 32, a holder 37 that contacts the diaphragm 24 that adhesively holds the ball valve 36, and a block 35.
and the spring 33 interposed between the holder 37.
上ケーシング22には弁室25に開放されたコ
ンデンサ16からの入口管38とブロツク35の
上部から延在し、内部に調整弁装置39を備えキ
ヤピラリチユーブ18へ至る出口管40とを有し
ている。 The upper casing 22 has an inlet pipe 38 from the condenser 16 that is open to the valve chamber 25, and an outlet pipe 40 that extends from the upper part of the block 35, has a regulating valve device 39 inside, and leads to the capillary tube 18. ing.
この調整弁装置39は、前記ブロツク35の弁
座32と反対側のポート31に形成したテーパポ
ート44と、このテーパポート44の下流側に形
成したリテイーナ42と、このリテイーナ42と
テーパポアート44との間を移動しテーパポート
との隔間を調整するテーパ状に形成したニードル
43と、このニードル43と前記リテーナ42と
の間に設けた付勢バネとより形成している。 This regulating valve device 39 includes a taper port 44 formed in the port 31 on the opposite side of the valve seat 32 of the block 35, a retainer 42 formed on the downstream side of the taper port 44, and a connection between the retainer 42 and the taper port 44. The needle 43 is formed into a tapered shape and moves between the needles 43 and the retainer 42 to adjust the distance from the taper port, and a biasing spring is provided between the needle 43 and the retainer 42.
リテイーナ42は中央は貫通孔45を形成し、
外周凹部46を出口管40に形成した係合部47
にて固定され、付勢バネ41の一端を保持してい
る。付勢バネ41の他端はニードル43をテーパ
ポート44に押圧するようにニードル43の大径
部に当接している。ニードル43のテーパポート
44に対向する小径部には断面が略三角形の連結
棒48が当接されている。 The retainer 42 forms a through hole 45 in the center,
An engaging portion 47 in which an outer circumferential recess 46 is formed in the outlet pipe 40
, and holds one end of the biasing spring 41. The other end of the biasing spring 41 is in contact with the large diameter portion of the needle 43 so as to press the needle 43 against the taper port 44 . A connecting rod 48 having a substantially triangular cross section is brought into contact with a small diameter portion of the needle 43 facing the tapered port 44 .
連結棒48は前記ポート31内を摺動可能に備
えられ、下端はボール弁36に当接している。つ
まり、付勢バネ41により連結棒48を介してニ
ードル43はボール弁36と略結合されているも
のである。 The connecting rod 48 is slidably provided within the port 31, and its lower end abuts the ball valve 36. That is, the needle 43 is substantially connected to the ball valve 36 via the connecting rod 48 by the biasing spring 41.
次に開閉弁装置30とバイアスバネ28、スト
ツパ29及び調整弁装置39の関係について説明
する。 Next, the relationship between the on-off valve device 30, the bias spring 28, the stopper 29, and the regulating valve device 39 will be explained.
スプリング33はボール弁36を保持するホル
ダー37をダイヤフラム24の変位に確実に追従
せしめるためのもので、バイアスバネ28、スプ
リング33及び付勢バネ41の総合力で開閉弁装
置30が所定の圧力差Poで開路するよう設定し
ている。本実施例に於てはこの圧力差Poを2
Kg/cm2と設置している。従つて、密閉容器12、
コンデンサ16、及び流量制御弁17の弁室25
内の圧力と、逆止弁20とロータリーコンプレツ
サ11との間の吸込管21に連結された均圧管2
7にて連通した感圧室26の圧力との差、つまり
ダイヤフラム24の上下面の圧力差が2Kg/cm2以
上のときにはダイヤフラム24に作用する圧力差
による力がバイアスバネ28、スプリング33及
び付勢バネ41の総合力より大となりダイヤフラ
ム24は図中下方へ変位せしめられ、このダイヤ
フラム24の変位に追従するホルダー37、ボー
ル弁36も下方へ変位し、開閉弁装置30は開路
するものである。また、ボール弁36と連結棒4
8を介して略接合されるニードル43も下方へ変
位する。 The spring 33 is used to ensure that the holder 37 holding the ball valve 36 follows the displacement of the diaphragm 24, and the combined force of the bias spring 28, spring 33, and biasing spring 41 causes the opening/closing valve device 30 to maintain a predetermined pressure difference. It is set to open at Po. In this embodiment, this pressure difference Po is set to 2
Kg/cm 2 is installed. Therefore, the closed container 12,
Condenser 16 and valve chamber 25 of flow control valve 17
pressure equalizing pipe 2 connected to the suction pipe 21 between the check valve 20 and the rotary compressor 11
When the difference in pressure between the pressure in the pressure sensitive chamber 26 communicated at 7, that is, the pressure difference between the upper and lower surfaces of the diaphragm 24 is 2 kg/cm 2 or more, the force due to the pressure difference acting on the diaphragm 24 is applied to the bias spring 28, the spring 33, and the attachment. The force is greater than the total force of the force spring 41, and the diaphragm 24 is displaced downward in the figure, and the holder 37 and ball valve 36, which follow the displacement of the diaphragm 24, are also displaced downward, and the opening/closing valve device 30 is opened. . In addition, the ball valve 36 and the connecting rod 4
The needle 43, which is substantially joined via the needle 8, is also displaced downward.
従つて調整弁装置39のニードル43とテーパ
ポート44とで形成される流路はダイヤフラム2
4の変位が大きい程狭くなるように構成されてい
るものである。 Therefore, the flow path formed by the needle 43 and the taper port 44 of the regulating valve device 39 is connected to the diaphragm 2.
The larger the displacement of 4, the narrower it becomes.
また、バイアスバネ28、スプリング33及び
付勢バネ41の総合バネ定数とストツパ29との
関係に於ては、ダイヤフラム24に作用する圧力
差が設定値P1以上のときにダイヤフラム24が
ストツパ29に当接するように設計されている。
本実施例に於てはこの設定値P1を8Kg/cm2とし
ている。さらに調整弁装置39に於ては、ダイヤ
フラム24がストツパ29に当接した時にもニー
ドル43とテーパポート44とで形成される流路
は確保されるよう設計されている。 In addition, regarding the relationship between the overall spring constant of the bias spring 28, spring 33, and biasing spring 41 and the stopper 29, when the pressure difference acting on the diaphragm 24 is equal to or greater than the set value P1 , the diaphragm 24 is applied to the stopper 29. Designed to touch.
In this embodiment, this set value P 1 is set to 8 kg/cm 2 . Further, the regulating valve device 39 is designed so that even when the diaphragm 24 comes into contact with the stopper 29, the flow path formed by the needle 43 and the taper port 44 is secured.
上記の圧力差と開閉弁装置30のボール弁36
と弁座32とで形成される流路の抵抗R1、調整
弁装置39のニードル43とテーパポート44と
で形成される流路の抵抗R2及び両抵抗R1,R2の
総合抵抗Rは第5図に示す関係となる。すなわち
圧力差が所定値(Po=2Kg/cm2)以下では開閉
弁装置30が閉路しているため総合抵抗Rは∞と
なり、2Kg/cm2より僅かに大となつた点で最少抵
抗となる。更に圧力差が増加すると総合抵抗Rは
次第に増加し、設定値(P1=8Kg/cm2)以上で
は総合抵抗Rは一定する特性となる。従つて、流
量制御弁17を使用した冷凍装置10のキヤピラ
リチユーブ18の抵抗は従来のキヤピラチチユー
ブ4の抵抗Roより小さく設計されている。この
関係は第6図に示す通りであり、ダイヤフラム2
4に作用する圧力差が所定値(Po=2Kg/cm2)
以下では流量制御弁17とキヤピラリチユーブ1
8の合抵抗Rは∞であるが、圧力差が2Kg/cm2
より僅かに大となると抵抗は急激に減少し、従来
のキヤピラリチユーブ4の抵抗Roよりはるかに
少である。圧力差が増加するに従がい合抵抗R
は増加するが、従来のキヤピラリチユーブ4の抵
抗ROより少なくなつている。圧力差が設定値
(P1=8Kg/cm2)のポイントで合抵抗Rは従来の
キヤピラリチユーブ4の抵抗Roと同一となり、
それ以上の圧力差では同一のままである。 The above pressure difference and the ball valve 36 of the on-off valve device 30
and the valve seat 32, the resistance R2 of the flow path formed by the needle 43 and the taper port 44 of the regulating valve device 39, and the total resistance R of both resistances R1 and R2 . has the relationship shown in FIG. That is, when the pressure difference is below a predetermined value (Po=2Kg/cm 2 ), the on-off valve device 30 is closed, so the total resistance R becomes ∞, and the minimum resistance is reached at the point where it becomes slightly larger than 2Kg/cm 2 . As the pressure difference further increases, the total resistance R gradually increases, and the total resistance R becomes constant above the set value (P 1 =8 Kg/cm 2 ). Therefore, the resistance of the capillary tube 18 of the refrigeration system 10 using the flow control valve 17 is designed to be smaller than the resistance Ro of the conventional capillary tube 4. This relationship is as shown in Figure 6, and the diaphragm 2
The pressure difference acting on 4 is a predetermined value (Po=2Kg/cm 2 )
Below, the flow control valve 17 and the capillary tube 1
The combined resistance R of 8 is ∞, but the pressure difference is 2Kg/cm 2
When it becomes slightly larger, the resistance decreases rapidly and is much less than the resistance Ro of the conventional capillary tube 4. Compliant resistance R as pressure difference increases
Although the resistance increases, it is smaller than the resistance R O of the conventional capillary tube 4. At the point where the pressure difference is the set value (P 1 = 8Kg/cm 2 ), the combined resistance R is the same as the resistance Ro of the conventional capillary tube 4,
For higher pressure differences it remains the same.
次に上記構成による動作について説明する。ロ
ータリーコンプレツサ11の運転中は吸込管21
の圧力は低圧となり、逆止弁20を介在したエバ
ポレータ19、均圧管27で連通した感圧室26
も低圧となつている。一方、密閉容器12、コン
デンサ16及びこれと入口管38にて連通した弁
室25は高圧となる。従つて、ダイヤフラム24
の上面に高圧、下面に低圧が作用し、この圧力差
による作用力がバイアスバネ28、スプリング3
3、付勢バネ41の総合力により大となり下方へ
変位している。このダイヤフラム24の変位に応
動してホルダー37及びボール弁36もスプリン
グ33にて下方へ変位し、開閉弁装置30は開路
している。また調整弁装置39は前記圧力差によ
りニードル43とテーパポート44との流路は変
化するが、冷媒は入口管38→弁室25→円形の
ポート31と三角形の連結棒48との隔間の流路
→ニードル43とテーパポート44の流路→出口
管40→キヤピラリチユーブ18へと流れ、通常
の冷却運転が行なわれている。 Next, the operation of the above configuration will be explained. During operation of the rotary compressor 11, the suction pipe 21
The pressure of
The pressure is also low. On the other hand, the airtight container 12, the condenser 16, and the valve chamber 25 communicating therewith through the inlet pipe 38 are at high pressure. Therefore, the diaphragm 24
High pressure acts on the top surface and low pressure acts on the bottom surface, and the acting force due to this pressure difference acts on the bias spring 28 and the spring 3.
3. Due to the overall force of the biasing spring 41, the force is increased and is displaced downward. In response to this displacement of the diaphragm 24, the holder 37 and the ball valve 36 are also displaced downward by the spring 33, and the on-off valve device 30 is opened. Further, in the regulating valve device 39, the flow path between the needle 43 and the taper port 44 changes due to the pressure difference, but the refrigerant flows between the inlet pipe 38 → the valve chamber 25 → the circular port 31 and the triangular connecting rod 48. The liquid flows from the flow path to the flow path of the needle 43 and taper port 44 to the outlet pipe 40 to the capillary tube 18, and a normal cooling operation is performed.
ロータリーコンプレツサ11の運転中には冷凍
機油15により機械部13のメカニカルシールは
確実にされているが、ロータリーコンプレツサ1
1が停止するとメカニカルシールが破れ、密閉容
器12内の高圧ガスは吸込管21へと逆流する。
この逆流により逆止弁20は閉路し、吸込管21
内の圧力は急激に上昇し、高圧側とバランスす
る。同時に均圧管27で連通した管圧室26内の
圧力も急激に上昇し、ダイヤフラム24に作用す
る圧力差は減少し、バイアスバネ28、スプリン
グ33及び付勢バネ41の総合力によりダイヤフ
ラム24は上方へ変位せしめられ開閉弁装置30
は閉路し、高圧冷媒が低圧のエバポレータ19へ
流入することを防止し、停止中も運転中と同一の
圧力状態を維持している。 While the rotary compressor 11 is in operation, the mechanical part 13 is securely mechanically sealed by the refrigerating machine oil 15, but the rotary compressor 1
1 stops, the mechanical seal is broken and the high pressure gas inside the closed container 12 flows back into the suction pipe 21.
This backflow causes the check valve 20 to close, and the suction pipe 21
The pressure inside rises rapidly and balances out with the high pressure side. At the same time, the pressure within the pipe pressure chamber 26 communicated with the pressure equalizing pipe 27 also rises rapidly, the pressure difference acting on the diaphragm 24 decreases, and the combined force of the bias spring 28, spring 33, and biasing spring 41 forces the diaphragm 24 upward. The on-off valve device 30 is displaced to
is closed, preventing high-pressure refrigerant from flowing into the low-pressure evaporator 19, and maintains the same pressure state during stoppage as during operation.
この状態から再起動すると前述のロータリーコ
ンプレツサ11の運転中と同様に吸込管21及び
これと均圧管27で連通された感圧室26内は低
圧となり、ダイヤフラム24に作用する圧力差に
て開閉弁装置30は開路する。この時、圧力状態
は停止中も継続して運転安定状態が維持されてい
るため、起動時から正常な冷却運転が行なわれる
ものである。 When the rotary compressor 11 is restarted from this state, the pressure inside the suction pipe 21 and the pressure sensitive chamber 26 communicated with it through the pressure equalization pipe 27 becomes low, and the pressure difference acting on the diaphragm 24 opens and closes Valve device 30 is opened. At this time, since the pressure state continues to be stable even during the stoppage, normal cooling operation is performed from the time of startup.
尚 ロータリーコンプレツサ11の停止後、弁
室25内と感圧室26内の圧力が瞬時にバランス
せず、完全にバランスするまで数分の時間を要す
る。従つて、開閉弁装置30の開閉圧力差を0
Kg/cm2とすると停止後にエバポレータ19への冷
媒流入が生じ、省電力効果が減少する。 Note that after the rotary compressor 11 is stopped, the pressures in the valve chamber 25 and the pressure-sensitive chamber 26 are not balanced instantly, and it takes several minutes until they are completely balanced. Therefore, the opening/closing pressure difference of the opening/closing valve device 30 is set to 0.
Kg/cm 2 , refrigerant flows into the evaporator 19 after stopping, reducing the power saving effect.
この減少を防止するためには停止後、弁室25
と感圧室26内の圧力差が大きい時に開閉弁装置
30を閉路させる必要がある。また、一般の冷蔵
庫等に於いては超低外気温である−15℃に於ても
冷却運転を保証する必要があるため、この低外気
温−15℃でも運転時に開閉弁装置30が開路しな
ければならない。従つて、本発明実施例では外気
温−15℃時の圧力差2.5Kg/cm2で開閉弁装置30
が開路するよう所定値Poを外気温−15℃時の弁
室25と感圧室26内の圧力差2.5Kg/cm2以下の
2Kg/cm2と設定しているものである。 In order to prevent this decrease, after stopping the valve chamber 25
It is necessary to close the on-off valve device 30 when the pressure difference in the pressure sensitive chamber 26 is large. In addition, in general refrigerators, etc., it is necessary to guarantee cooling operation even at extremely low outside temperatures of -15°C, so the on-off valve device 30 does not open during operation even at this low outside temperature of -15°C. There must be. Therefore, in the embodiment of the present invention, the on-off valve device 30 is operated at a pressure difference of 2.5 kg/cm 2 when the outside temperature is -15°C.
In order to open the circuit, the predetermined value Po is set to 2 kg/cm 2 which is less than 2.5 kg/cm 2 of the pressure difference between the valve chamber 25 and the pressure sensitive chamber 26 at an outside temperature of -15°C.
次に調整弁装置39の動作について詳述する。
例として外気温30℃と15℃について説明する。外
気温30℃では運転中の密閉容器12、コンデンサ
16及び弁室25内の圧力は一般の冷蔵庫等の冷
凍装置と同様に略9Kg/cm2G、吸込管21、エバ
ポレータ19及び感圧室26内の圧力は略0Kg/
cm2Gであり、ダイヤフラム24に作用する圧力差
は設定値(P1=8Kg/cm2)より大きな9Kg/cm2
となる。従つて、ダイヤフラム24はストツパ2
9に当接しており、調整弁装置39の抵抗は最大
の位置で固定され、流量調整弁17とキヤピラリ
チユーブ18の合抵抗は従来のキヤピラリチユー
ブ4の抵抗と同一となり、従来の冷凍装置と同一
の冷却を行なつている。 Next, the operation of the regulating valve device 39 will be described in detail.
As an example, we will explain outside temperatures of 30°C and 15°C. At an outside temperature of 30°C, the pressure inside the closed container 12, condenser 16, and valve chamber 25 during operation is approximately 9 kg/cm 2 G, the same as in a general refrigerator or other refrigeration equipment, and the suction pipe 21, evaporator 19, and pressure sensitive chamber 26. The pressure inside is approximately 0Kg/
cm 2 G, and the pressure difference acting on the diaphragm 24 is 9 Kg/cm 2 which is larger than the set value (P 1 = 8 Kg/cm 2 ).
becomes. Therefore, the diaphragm 24 is connected to the stopper 2
9, the resistance of the regulating valve device 39 is fixed at the maximum position, and the combined resistance of the flow regulating valve 17 and the capillary tube 18 is the same as the resistance of the conventional capillary tube 4. The same cooling is performed.
次に外気温15℃について説明する。 Next, we will explain the outside temperature of 15°C.
外気温15℃では、30℃の場合より冷媒の圧力が
下るので密閉容器12、コンデンサ16及び弁室
25内の圧力は一般の冷蔵庫等の冷凍装置と同様
に略6Kg/cm2Gであるが、エバポレータ19、吸
込管21及び感圧室26内圧力は一般の冷蔵庫等
の冷凍装置よりも高い略−0.1Kg/cm2Gとなつて
いる。従つてダイヤフラム24に作用する圧力差
は6.1Kg/cm2である。この圧力差は設定値(P1=
8Kg/cm2)より小であるため調整弁装置39の抵
抗は外気温30℃のときより小さくなつているた
め、流量調整弁17とキヤピラリチユーブ18の
合抵抗は従来のキヤピラリチユーブ4の抵抗より
小さくなつている。そのため一般の冷蔵庫等の冷
凍装置の外気温15℃での低圧圧力略−0.3Kg/cm2
Gより高い−0.1Kg/cm2Gとなつているものであ
る。 At an outside temperature of 15°C, the pressure of the refrigerant is lower than when it is at 30°C, so the pressure inside the sealed container 12, condenser 16, and valve chamber 25 is approximately 6 kg/cm 2 G, similar to a freezing device such as a general refrigerator. The internal pressures of the evaporator 19, suction pipe 21, and pressure sensitive chamber 26 are approximately -0.1 Kg/cm 2 G, which is higher than that of a freezing device such as a general refrigerator. Therefore, the pressure difference acting on the diaphragm 24 is 6.1 kg/cm 2 . This pressure difference is the set value (P 1 =
8 kg/cm 2 ), the resistance of the regulating valve device 39 is smaller than when the outside temperature is 30°C, so the combined resistance of the flow regulating valve 17 and the capillary tube 18 is smaller than that of the conventional capillary tube 4. It is smaller than the resistance. Therefore, the low pressure of a general refrigerator or other refrigeration device at an outside temperature of 15℃ is approximately -0.3Kg/cm 2
-0.1Kg/cm 2 G, which is higher than G.
外気温15℃での密閉容器12内の冷凍機油15
に溶解する冷媒量は従来の冷凍装置と同様に外気
温30℃のそれより大であるが、調整弁装置39の
抵抗が小さく、運転中の低圧圧力が高くなつてい
るため、ロータリーコンプレツサ11の吸込管2
1内の冷媒比容積が減少し、ロータリーコンプレ
ツサ11の機械部13の1回転当りで圧縮、循環
される冷媒量が増加し、ガス不足運転となること
はない。 Refrigerating machine oil 15 in a sealed container 12 at an outside temperature of 15°C
The amount of refrigerant dissolved in the refrigerant is larger than that at an outside temperature of 30°C, similar to the conventional refrigeration system, but since the resistance of the regulating valve device 39 is small and the low pressure during operation is high, the rotary compressor 11 Suction pipe 2
The specific volume of the refrigerant in the rotary compressor 11 decreases, and the amount of refrigerant compressed and circulated per rotation of the mechanical part 13 of the rotary compressor 11 increases, thereby preventing gas starvation operation.
従つて、冷凍機油15への冷媒溶解が増加し、
また、絞り抵抗が増加してガス不足運転が増加す
る低外気温ほどダイヤフラム24に作用する圧力
差は減少し、調整弁装置39の開度は増加する。
これにより、低外気温でも冷媒循環量を確保し、
ガス不足運転を防止することができるものであ
る。また、流量制御弁17は開閉弁装置30と調
整弁装置39とを同一の本体17内に構成してお
り逆止弁20は下流側の吸込管21と連通した感
圧室26とコンデンサ16と連通した弁室25の
圧力差で変位するダイヤフラム24にて開閉弁装
置30と調整弁装置39の相方を作動せしめてい
るため、冷凍装置10の構成が簡単で、配管等の
溶接個所も最小とすることができている。 Therefore, refrigerant dissolution into the refrigerating machine oil 15 increases,
Further, as the outside temperature becomes lower and the throttle resistance increases and gas starvation operation increases, the pressure difference acting on the diaphragm 24 decreases and the opening degree of the regulating valve device 39 increases.
This ensures a sufficient amount of refrigerant circulation even at low outside temperatures.
This can prevent gas shortage operation. The flow control valve 17 has an on-off valve device 30 and a regulating valve device 39 in the same main body 17, and the check valve 20 has a pressure sensitive chamber 26 and a condenser 16 communicating with the suction pipe 21 on the downstream side. Since the diaphragm 24, which is displaced by the pressure difference between the communicating valve chambers 25, operates the opening/closing valve device 30 and the regulating valve device 39, the configuration of the refrigeration device 10 is simple, and the number of welded parts such as piping is minimized. I am able to do that.
さらに、ダイヤフラム24の作動圧力差をコン
デンサ16と逆止弁20の下流側である吸込管2
1との圧力差としているため、一般に考えられる
コンデンサ16等の高圧圧力と大気圧との差圧力
差を利用するものに較べ、圧力差の変化が非常に
急激でかつコンプレツサ11の運転、停止と対応
しているためコンプレツサ11の運転、停止に確
実に対応して開閉弁装置30の開閉を可能として
いる。また、運転中の圧力差も高、低圧相方の圧
力差であるため、高圧圧力と大気圧等の圧力差を
利用するよりはるかに正確に調整弁装置39の調
整を可能としている。 Furthermore, the operating pressure difference between the diaphragm 24 and the suction pipe 2 downstream of the condenser 16 and the check valve 20 is
Since the pressure difference between the compressor 11 and Therefore, it is possible to open and close the on-off valve device 30 in reliable response to the operation and stop of the compressor 11. Further, since the pressure difference during operation is the pressure difference between high and low pressure partners, it is possible to adjust the regulating valve device 39 much more accurately than by using a pressure difference between high pressure and atmospheric pressure.
発明の効果
以上の説明からも明らかなように、本発明によ
る冷凍装置はコンプレツサの起動時に圧力変化で
開路し、停止時の圧力変化で閉路する開閉弁装置
と、コンプレツサ運転中の圧力に応動して流路の
開度を制御する調整弁装置とを備えた流量制御弁
を有するものであるため、開閉弁装置により電気
入力を必要とせずに従来の電磁弁と同様の作用を
なすことができ、停止中も運転中と同様の圧力状
態を維持し、起動直後より運転安定時の最も効率
のよい冷却運転を可能としている。Effects of the Invention As is clear from the above explanation, the refrigeration system according to the present invention includes an on-off valve device that opens due to a pressure change when the compressor is started and closes due to a pressure change when the compressor is stopped, and a shut-off valve device that responds to the pressure during compressor operation. Since the valve has a flow control valve equipped with a regulating valve device that controls the opening degree of the flow path, it can perform the same action as a conventional solenoid valve without requiring electrical input by using an on-off valve device. , the same pressure state as during operation is maintained even when stopped, enabling the most efficient cooling operation when operation is stable immediately after startup.
さらに、従来はガス不足運転を来していた低外
気温にても流路の開度を自動調整して適正な冷媒
循環量を確保することができ、低外気温から高外
気温まで適正な冷却運転を可能にするものである
から、特に外気温変化の大きな冷蔵庫等の冷凍装
置として大きな省電力が可能になるものである。 Furthermore, the opening of the flow path can be automatically adjusted to ensure an appropriate amount of refrigerant circulation even at low outside temperatures, which would conventionally result in gas starvation. Since it enables cooling operation, it enables large power savings, especially in refrigeration equipment such as refrigerators where outside temperature changes are large.
第1図は従来の冷凍装置のシステム図、第2図
は通常の冷凍機油への冷媒溶解特性図、第3図は
冷凍装置内の冷凍機油に溶解する冷媒量の外気温
変化図、第4図は本発明一実施例による冷凍装置
のシステム図、第5図は流量制御弁の流路抵抗特
性図、第6図は第1図の冷凍装置を第4図の冷凍
装置の減圧器抵抗特性図をそれぞれ示すものであ
る。
11……ロータリーコンプレツサ、16……コ
ンデンサ、17……流量調整弁、18……キヤピ
ラリチユーブ(減圧器)、19……エバポレータ、
20……逆止弁、24……ダイヤフラム、25…
…弁室、26……感圧室、37……均圧管、30
……開閉弁装置、32……弁座、36……弁、3
9……調整弁装置、43……ニードル、44……
テーパポート。
Figure 1 is a system diagram of a conventional refrigeration system, Figure 2 is a characteristic diagram of refrigerant dissolution in normal refrigeration oil, Figure 3 is a diagram of changes in the amount of refrigerant dissolved in refrigeration oil in the refrigeration equipment at outside temperature, and Figure 4 is a diagram of the change in outside temperature. Figure 5 is a system diagram of a refrigeration system according to an embodiment of the present invention, Figure 5 is a flow path resistance characteristic diagram of a flow control valve, Figure 6 is a pressure reducer resistance characteristic of the refrigeration system of Figure 1, and Figure 4 is a diagram of the pressure reducer resistance of the refrigeration system. The figures are shown respectively. 11... Rotary compressor, 16... Condenser, 17... Flow rate adjustment valve, 18... Capillary tube (pressure reducer), 19... Evaporator,
20...Check valve, 24...Diaphragm, 25...
... Valve chamber, 26 ... Pressure sensitive chamber, 37 ... Pressure equalization pipe, 30
...Opening/closing valve device, 32...Valve seat, 36...Valve, 3
9... Regulating valve device, 43... Needle, 44...
Tapered port.
Claims (1)
御弁17、減圧器18、エバポレータ19及び逆
止弁20を順次環状に連接してなるものであつ
て、前記流量制御弁17はケーシング22,23
内をダイヤフラム24により弁室25と感圧室2
6とに形成して開閉弁装置30と調整弁装置39
と設けるとともに、前記感圧室26と、コンプレ
ツサ11と逆止弁20との間に連結される均圧管
27を備え、前記開閉弁装置30を、弁座32
と、ダイヤフラム24の動きにて前記弁座32と
当接する位置としない位置とに移動する弁36と
より形成し、前記調整弁装置39を、開閉弁装置
30よりも下流側に配置し、前記ダイヤフラム2
4の動きにてテーパポート44との開口面積を変
化させるニードル43と、このニードル43に前
記ダイヤフラム24の動きを伝え高外気温時に開
口面積を大きくする方向へ移動させる連結棒48
とから形成してなる冷凍装置。1 A compressor 11, a condenser 16, a flow control valve 17, a pressure reducer 18, an evaporator 19, and a check valve 20 are sequentially connected in an annular manner.
A valve chamber 25 and a pressure sensitive chamber 2 are formed inside by a diaphragm 24.
6 to form an on-off valve device 30 and a regulating valve device 39.
and a pressure equalizing pipe 27 connected between the pressure sensitive chamber 26, the compressor 11 and the check valve 20, and the opening/closing valve device 30 is connected to the valve seat 32.
and a valve 36 that moves between a position in which it comes into contact with the valve seat 32 and a position in which it does not come into contact with the valve seat 32 by the movement of the diaphragm 24, and the regulating valve device 39 is arranged downstream of the on-off valve device 30, and diaphragm 2
4, and a connecting rod 48 that transmits the movement of the diaphragm 24 to the needle 43 and moves the needle 43 in the direction of increasing the opening area at high outside temperatures.
A refrigeration device formed from.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58050056A JPS59176544A (en) | 1983-03-24 | 1983-03-24 | Refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58050056A JPS59176544A (en) | 1983-03-24 | 1983-03-24 | Refrigerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59176544A JPS59176544A (en) | 1984-10-05 |
JPH0536699B2 true JPH0536699B2 (en) | 1993-05-31 |
Family
ID=12848337
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58050056A Granted JPS59176544A (en) | 1983-03-24 | 1983-03-24 | Refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59176544A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002286300A (en) * | 2001-03-28 | 2002-10-03 | Mitsubishi Electric Corp | Air conditioner |
-
1983
- 1983-03-24 JP JP58050056A patent/JPS59176544A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59176544A (en) | 1984-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3842616A (en) | Refrigerant expansion device | |
JPH0536699B2 (en) | ||
US2410795A (en) | Expansion valve | |
JPS59104050A (en) | Refrigerator | |
JPH06159270A (en) | Scroll compressor with overheat prevention device | |
US4848098A (en) | Refrigerating system | |
JPS6353463B2 (en) | ||
JPS6325255B2 (en) | ||
JPS5899671A (en) | Fluid control valve for refrigerator | |
JPS6329166A (en) | Expansion valve for refrigeration cycle | |
JPS59106771A (en) | High pressure valve | |
JPS5888577A (en) | Fluid control valve for refrigerator | |
JPS6016268A (en) | Cooling device | |
GB898327A (en) | High side pressure control for refrigerating systems | |
JPH10325479A (en) | Refrigeration equipment, refrigerant flow compensation bypass valve and temperature expansion valve | |
JP2678043B2 (en) | Fluid control valve | |
JPH0144796Y2 (en) | ||
JP2685293B2 (en) | Fluid control valve | |
JP2678057B2 (en) | Fluid control valve | |
JPS5895172A (en) | Fluid control valve for refrigerator | |
JPS63143471A (en) | Expansion valve | |
JPH05172407A (en) | Refrigeration equipment | |
JPS618577A (en) | Freezing and air-cooling device | |
JPS5899653A (en) | Refrigerator | |
JPH0120695B2 (en) |