JPH10325479A - Cold storage and refrigerating device, refrigerant bypass valve for correcting flow rate, and temperature expansion valve - Google Patents

Cold storage and refrigerating device, refrigerant bypass valve for correcting flow rate, and temperature expansion valve

Info

Publication number
JPH10325479A
JPH10325479A JP9135169A JP13516997A JPH10325479A JP H10325479 A JPH10325479 A JP H10325479A JP 9135169 A JP9135169 A JP 9135169A JP 13516997 A JP13516997 A JP 13516997A JP H10325479 A JPH10325479 A JP H10325479A
Authority
JP
Japan
Prior art keywords
pressure
refrigerant
valve
snap action
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9135169A
Other languages
Japanese (ja)
Other versions
JP3712827B2 (en
Inventor
Morio Kaneko
守男 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP13516997A priority Critical patent/JP3712827B2/en
Publication of JPH10325479A publication Critical patent/JPH10325479A/en
Application granted granted Critical
Publication of JP3712827B2 publication Critical patent/JP3712827B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube

Abstract

PROBLEM TO BE SOLVED: To provide a cold storage and refrigerating device to perform proper correction of a flow rate of a refrigerant during a low condensing pressure without exercising an influence on the opening characteristics of a temperature expansion valve when a condensing pressure is in a steady pressure state. SOLUTION: In a cold storage refrigerating device, a circulation refrigerant flow rate is controlled corresponding to a temperature load amount of an evaporator 9, and a temperature expansion valve 7 to keep the degree of superheat of a refrigerant on the outlet side of the evaporator is located in a refrigerant circulation route. A bypass valve 101 for correcting a refrigerant flow rate provided with a valve element 113 to open and close a bypass passage 101 and a snap action pressure-sensitive element 131 turned over and opened and closed in a direction in which the valve element 113 is opened is arranged in the middle of a bypass passage 99 bypassing the temperature expansion valve 7. When a refrigerant pressure Pc on the outlet side of a condenser 3 exceeds a pressure equivalent to mechanical resistance of the snap action pressure-sensitive element 131, the snap action pressure-sensitive element 131 effects snap action to turn over and deform in a direction in which the valve element 113 is closed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、冷凍冷蔵装置お
よび冷媒流量補正用バイパス弁および温度膨張弁に関
し、さらに詳細には、蒸発器の温度負荷量に相応して循
環冷媒流量を制御し、蒸発器出口側の冷媒の過熱度を所
定値に保つ型式の温度膨張弁を含む冷凍冷蔵装置および
その冷凍冷蔵装置で使用される冷媒流量補正用バイパス
弁、温度膨張弁に関し、特に凝縮器の出口側の冷媒圧力
が規定値より低い場合の冷媒流量補正に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating / refrigeration apparatus, a bypass valve for correcting a refrigerant flow rate, and a temperature expansion valve, and more particularly, to controlling a flow rate of a circulating refrigerant in accordance with a temperature load of an evaporator to evaporate. Refrigeration apparatus including a temperature expansion valve of a type that maintains the degree of superheat of the refrigerant at the outlet of the vessel at a predetermined value, and a bypass valve for correcting the flow rate of refrigerant used in the refrigeration apparatus, and a temperature expansion valve, particularly the outlet side of a condenser The refrigerant flow correction when the refrigerant pressure is lower than a specified value.

【0002】[0002]

【従来の技術】一般に、冷凍冷蔵装置では、温度膨張弁
によって蒸発器の温度負荷量に相応して凝縮器より蒸発
器へ流れる循環冷媒流量を制御し、この流量制御によっ
て蒸発器出口側の冷媒の過熱度を所定値に保つことが行
われている。
2. Description of the Related Art In general, in a refrigerating and refrigerating apparatus, a flow rate of a circulating refrigerant flowing from a condenser to an evaporator is controlled by a temperature expansion valve in accordance with a temperature load of the evaporator. Is maintained at a predetermined value.

【0003】温度膨張弁による冷媒流量は、温度膨張弁
前後の冷媒圧力差を決める凝縮器の出口側の冷媒圧力と
(以下、凝縮圧力と略称することがある)、蒸発器入口
(膨張弁出口)側の冷媒圧力と、温度膨張弁の開弁量と
により決まる。
[0003] The flow rate of the refrigerant by the temperature expansion valve is determined by the refrigerant pressure at the outlet side of the condenser which determines the refrigerant pressure difference before and after the temperature expansion valve (hereinafter sometimes abbreviated as condensation pressure), and the evaporator inlet (expansion valve outlet). ) Side and the opening amount of the temperature expansion valve.

【0004】凝縮圧力が低下すると、膨張弁前後の冷媒
圧力差が小さくなることや、膨張弁入口側の冷媒状態が
気液二相状態になることにより、蒸発器への冷媒供給量
が不足し、蒸発器出口側の冷媒温度(過熱度)が著しく
高くなり、温度制御が困難になる。このことにより、圧
縮機の吸入冷媒の過熱度が著しく高くなり、これに応じ
て圧縮機が吐出する冷媒温度が高くなり、また圧縮機へ
の冷凍機オイル戻り不足が生じ、圧縮機の損傷、破壊が
生じる虞れがある。
When the condensing pressure decreases, the refrigerant pressure difference before and after the expansion valve decreases, and the refrigerant state at the expansion valve inlet side becomes a gas-liquid two-phase state. In addition, the refrigerant temperature (degree of superheat) at the evaporator outlet side becomes extremely high, and it becomes difficult to control the temperature. As a result, the degree of superheat of the refrigerant sucked into the compressor becomes extremely high, the temperature of the refrigerant discharged from the compressor increases accordingly, and insufficient return of the refrigerating machine oil to the compressor occurs. Destruction may occur.

【0005】また、凝縮圧力が低下すると、蒸発器の能
力を確保できなくなることにより、冷房効果、除湿効果
が低減し、また蒸発器の結氷により熱交換効率の低下す
ることによって蒸発器の能力が低下し、このことによっ
ても冷房効果、除湿効果が低減することになる。
[0005] When the condensing pressure is lowered, the cooling and dehumidifying effects are reduced because the capacity of the evaporator cannot be ensured, and the capacity of the evaporator is reduced because the heat exchange efficiency is reduced due to the freezing of the evaporator. The cooling effect and the dehumidifying effect are also reduced.

【0006】冷凍冷蔵装置での凝縮圧力(温度)は、基
本的には、凝縮器の熱交換能力と熱交換する負荷温度
(外気温度)および熱量(冷媒循環量)により決まり、
凝縮圧力制御により凝縮圧力を所定値に保つ冷凍冷蔵装
置がある。
[0006] The condensing pressure (temperature) in the refrigerator is basically determined by the heat exchange capacity of the condenser, the load temperature (outside air temperature) and the amount of heat exchanged (refrigerant circulation amount).
There is a refrigerating and refrigerating apparatus that keeps the condensing pressure at a predetermined value by controlling the condensing pressure.

【0007】凝縮圧力制御は、凝縮器が水冷式のもので
ある場合には、冷却水の温度と流量により凝縮圧力が決
まるから、冷却水流量制御式の凝縮圧力制御弁によっ
て、設定された凝縮圧力に対して冷却水流量を増減制御
することにより、凝縮圧力(温度)を設定圧に保つこと
が行われる。
When the condenser is of a water-cooled type, the condensing pressure is determined by the temperature and flow rate of the cooling water. By controlling the flow rate of the cooling water with respect to the pressure, the condensing pressure (temperature) is maintained at the set pressure.

【0008】凝縮器が空冷式のものである場合には、外
気雰囲気温度と冷却ファンの風量により凝縮圧力が決ま
るから、冷媒バイパス式の凝縮圧力制御弁(HPR)に
よって、凝縮器を流れる冷媒の流量を制御することによ
り、あるいは冷却ファンの回転数制御により、凝縮圧力
(温度)を設定圧に保つことが行われる。
When the condenser is of an air-cooled type, the condensation pressure is determined by the outside air temperature and the air volume of the cooling fan. Therefore, the refrigerant bypass type condensation pressure control valve (HPR) controls the refrigerant flowing through the condenser. The condensing pressure (temperature) is maintained at a set pressure by controlling the flow rate or by controlling the rotation speed of the cooling fan.

【0009】しかし、上述のような凝縮圧力制御は、圧
縮機負荷を増加させ、省エネルギに反する制御であり、
また、冬季等の低温時、特に起動時には、凝縮温度が低
く、所要の凝縮圧力が得られなくなることがある。
However, the above-mentioned condensing pressure control increases the load on the compressor and is a control against energy saving.
In addition, when the temperature is low in winter or the like, particularly at the time of startup, the condensing temperature is low, and a required condensing pressure may not be obtained.

【0010】これに加えて、圧縮機を停止した直後の、
圧縮機よりも凝縮器側、つまり下流側の冷媒が高温高圧
であり、圧縮機よりも蒸発器側、つまり上流側の冷媒が
低温低圧である状態のまま、温度膨張弁の閉弁により凝
縮器側から蒸発器側への冷媒の供給を絶ち、そのままの
状態で圧縮機を再び駆動すると、圧縮機の上流側と下流
側の冷媒の圧力差により圧縮機に大きな負荷がかかり、
例えばカーエアコンのようなエンジンの回転を利用して
圧縮機を駆動する場合には、圧縮機のみならずエンジン
などの動力供給源にまで負荷の影響による故障が発生す
る虞がある。
In addition to this, immediately after stopping the compressor,
The condenser on the condenser side, that is, the downstream side of the compressor has high temperature and high pressure, and the refrigerant on the evaporator side, that is, the upstream side of the compressor has low temperature and low pressure. When the supply of the refrigerant from the side to the evaporator side is cut off and the compressor is driven again in the same state, a large load is applied to the compressor due to the pressure difference between the upstream and downstream sides of the compressor,
For example, when a compressor is driven by using the rotation of an engine such as a car air conditioner, there is a possibility that a failure occurs due to the load not only in the compressor but also in a power supply source such as an engine.

【0011】上述のような問題点に鑑み、特開昭60−
142175号公報に示されている温度膨張弁では、弁
体を閉弁方向へ付勢する過熱度設定用のばねを感温型の
形状記憶合金によりばねにより構成し、凝縮温度を形状
記憶合金製ばねにより直接感知するようにし、凝縮温度
が低い時には、凝縮温度が高い時に比して過熱度設定ば
ね圧を下げて温度膨張弁の開弁量を増やし、蒸発器への
冷媒供給量を確保するようにしている。
In view of the above problems, Japanese Patent Application Laid-Open
In the temperature expansion valve disclosed in Japanese Patent No. 142175, a spring for setting the degree of superheat for urging the valve body in the valve closing direction is formed of a temperature-sensitive shape memory alloy by a spring, and the condensing temperature is made of a shape memory alloy. A direct sensing is performed by a spring. When the condensing temperature is low, the superheat degree setting spring pressure is lowered to increase the opening amount of the temperature expansion valve and secure the supply amount of the refrigerant to the evaporator as compared with when the condensing temperature is high. Like that.

【0012】また、スナップアクション感圧素子(反転
板ばね)を使用した膨張弁として、実開平5−5497
2号公報には、蒸発器の出口側冷媒流路を流れる低圧室
の圧力と、蒸発器から送り出される冷媒の温度に相応し
て変化する圧力を与えられる高圧室の圧力との差によっ
て応動する反転板ばねを設け、その圧力差が所定値以上
になれば、反転板ばねの反転動作によって弁体の最大リ
フト量を拡大し、膨張弁の開弁量を増やして蒸発器への
冷媒供給量を確保する膨張弁が示されている。
An expansion valve using a snap action pressure-sensitive element (reversing leaf spring) is disclosed in Japanese Utility Model Laid-Open No. 5-5497.
In Japanese Patent Application Publication No. 2 (1993) -207, the pressure of the low-pressure chamber flowing through the outlet-side refrigerant flow path of the evaporator is changed by the difference between the pressure of the high-pressure chamber that is given a pressure that changes in accordance with the temperature of the refrigerant discharged from the evaporator. A reversing leaf spring is provided, and when the pressure difference exceeds a predetermined value, the maximum lift amount of the valve body is expanded by reversing operation of the reversing leaf spring, and the amount of refrigerant supply to the evaporator is increased by increasing the opening amount of the expansion valve. Are shown.

【0013】また、スナップアクション感圧素子(反転
板ばね)を使用した他の膨張弁として、実開平5−54
973号公報には、蒸発器の出口側冷媒流路を流れる低
圧室の圧力と、蒸発器から送り出される冷媒の温度に相
応して変化する圧力を与えられる高圧室の圧力との差に
よって応動する反転板ばねを設け、その圧力差が所定値
以上になれば、反転板ばねの反転動作によって弁体の最
大リフト量を縮小し、膨張弁の開弁量を減らして蒸発器
への冷媒供給量を低減し、圧縮機の過大な負荷がかかる
ことを回避する膨張弁が示されている。
Another expansion valve using a snap action pressure sensitive element (reversing leaf spring) is disclosed in Japanese Utility Model Laid-Open No. 5-54.
No. 973 discloses that the pressure of the low-pressure chamber flowing through the outlet-side refrigerant flow path of the evaporator is changed by the difference between the pressure of the high-pressure chamber which is given a pressure that changes in accordance with the temperature of the refrigerant discharged from the evaporator. A reversing leaf spring is provided, and when the pressure difference exceeds a predetermined value, the maximum lift amount of the valve body is reduced by the reversing operation of the reversing leaf spring, the opening amount of the expansion valve is reduced, and the amount of refrigerant supplied to the evaporator is reduced. An expansion valve is shown that reduces the overload and avoids overloading the compressor.

【0014】[0014]

【発明が解決しようとする課題】特開昭60−1421
75号公報に示されている温度膨張弁は、凝縮温度(圧
力)が低い時には、温度膨張弁の開弁量を増やし、蒸発
器への冷媒供給量を確保すると云う所期の目的を達成で
きるが、しかし、この温度膨張弁では、必要特性に対す
る形状記憶合金製ばねの設計、調整が難しく、定常時
(凝縮圧力が定常圧の時)の温度膨張弁の開弁特性に影
響を与え、定常時の冷凍冷蔵装置の性能を低下させる可
能性がある。
Problems to be Solved by the Invention JP-A-60-1421
The temperature expansion valve disclosed in Japanese Patent Publication No. 75 can achieve the intended purpose of increasing the opening amount of the temperature expansion valve when the condensing temperature (pressure) is low, and ensuring the supply of the refrigerant to the evaporator. However, with this thermal expansion valve, it is difficult to design and adjust the shape memory alloy spring to the required characteristics, and this affects the valve opening characteristics of the thermal expansion valve in a steady state (when the condensing pressure is a steady pressure). There is a possibility that the performance of the freezer / refrigerator at all times is reduced.

【0015】実開平5−54972号公報に示されてい
る膨張弁は、蒸発器の出口側冷媒流路を流れる低圧室の
圧力と蒸発器から送り出される冷媒の温度に相応して変
化する圧力を与えられる高圧室の圧力との差が所定値以
上になれば、換言すれば、過熱度が所定値以上になれ
ば、反転板ばねが反転動作し、膨張弁の開弁量を増やし
て蒸発器への冷媒供給量を確保するものであるから、過
熱度が所定値以上になれば蒸発器への冷媒供給量が増え
ず、低凝縮圧力時の冷媒流量補正を適切に行うことがで
きない。また、この膨張弁では、反転板ばねが膨張弁の
最大開弁量を直接設定するから、構造上、所要の冷媒供
給量特性を得るためには、製作上の精度を要求される。
The expansion valve disclosed in Japanese Utility Model Laid-Open No. 5-54972 is designed to control the pressure of the low-pressure chamber flowing through the refrigerant flow path on the outlet side of the evaporator and the pressure that changes in accordance with the temperature of the refrigerant discharged from the evaporator. If the difference from the given pressure of the high-pressure chamber becomes equal to or more than a predetermined value, in other words, if the degree of superheat becomes equal to or more than a predetermined value, the reversing leaf spring performs a reversing operation, increasing the opening amount of the expansion valve and increasing the evaporator. Since the amount of refrigerant supplied to the evaporator is ensured, the amount of refrigerant supplied to the evaporator does not increase when the degree of superheat exceeds a predetermined value, and the refrigerant flow rate correction at low condensing pressure cannot be performed properly. In addition, in this expansion valve, since the reversing leaf spring directly sets the maximum valve opening amount of the expansion valve, in order to obtain a required refrigerant supply characteristic, structural precision is required.

【0016】実開平5−54973号公報に示されてい
る膨張弁は、蒸発器の出口側冷媒流路を流れる低圧室の
圧力と蒸発器から送り出される冷媒の温度に相応して変
化する圧力を与えられる高圧室の圧力との差が所定値以
上になれば、換言すれば、高負荷時には、反転板ばねが
反転動作し、膨張弁の開弁量を減らして蒸発器への冷媒
供給量を低減するものであるから、起動時などの高負荷
時に圧縮機の駆動負荷が過大になることを回避できる
が、低凝縮圧力時の冷媒流量補正を行うことはできな
い。
The expansion valve disclosed in Japanese Utility Model Laid-Open Publication No. 5-54973 is designed to control the pressure of the low-pressure chamber flowing through the outlet-side refrigerant flow path of the evaporator and the pressure that changes in accordance with the temperature of the refrigerant discharged from the evaporator. If the difference from the given pressure of the high-pressure chamber becomes equal to or more than a predetermined value, in other words, at a high load, the reversing leaf spring operates reversely, reducing the amount of opening of the expansion valve and reducing the amount of refrigerant supplied to the evaporator. Since the load is reduced, the driving load of the compressor can be prevented from becoming excessive when the load is high, such as at the time of starting, but the refrigerant flow rate correction at the time of low condensing pressure cannot be performed.

【0017】この発明は、上述の如き問題点に着目して
なされたものであり、凝縮圧力が定常圧状態の時の温度
膨張弁の開弁特性に影響を与えることなく、低凝縮圧力
時の冷媒流量補正を適切に行い、圧縮機の駆動時に無用
な負荷がかかるのを防止することができる冷凍冷蔵装
置、冷媒流量補正用バイパス弁および温度膨張弁を提供
することを目的としている。
The present invention has been made in view of the above-mentioned problems, and does not affect the valve opening characteristics of the temperature expansion valve when the condensing pressure is in a steady pressure state. It is an object of the present invention to provide a refrigeration apparatus, a bypass valve for refrigerant flow correction, and a temperature expansion valve, which can appropriately correct refrigerant flow and prevent unnecessary load from being applied when the compressor is driven.

【0018】[0018]

【課題を解決するための手段】上述の目的を達成するた
めに、請求項1に記載の発明による冷凍冷蔵装置は、蒸
発器の温度負荷量に相応して循環冷媒流量を制御し、蒸
発器出口側の冷媒の過熱度を所定値に保つ温度膨張弁を
冷媒循環経路に有する冷凍冷蔵装置において、前記温度
膨張弁をバイパスするバイパス通路の途中に冷媒流量補
正用バイパス弁が設けられ、当該冷媒流量補正用バイパ
ス弁は、前記バイパス通路を開閉する弁体と、凝縮器の
出口側の冷媒圧力に感応してスナップアクションし当該
冷媒圧力が所定値以下の場合には前記弁体を開弁させる
スナップアクション感圧素子とを有しているものであ
る。
In order to achieve the above object, a refrigeration apparatus according to the first aspect of the present invention controls a flow rate of a circulating refrigerant in accordance with a temperature load of an evaporator. In a refrigerating and refrigerating apparatus having a temperature expansion valve for maintaining a superheat degree of a refrigerant at an outlet side at a predetermined value in a refrigerant circulation path, a bypass valve for correcting a refrigerant flow rate is provided in a bypass passage that bypasses the temperature expansion valve. The bypass valve for flow rate correction snap-actions in response to the refrigerant pressure at the outlet side of the condenser and the valve element that opens and closes the bypass passage, and opens the valve element when the refrigerant pressure is equal to or lower than a predetermined value. And a snap action pressure-sensitive element.

【0019】請求項3に記載の発明による冷媒流量補正
用バイパス弁は、蒸発器の温度負荷量に相応して循環冷
媒流量を制御し、蒸発器出口側の冷媒の過熱度を所定値
に保つ温度膨張弁を冷媒循環経路に有する冷凍冷蔵装置
で使用される冷媒流量補正用バイパス弁であって、当該
冷媒流量補正用バイパス弁は、前記温度膨張弁をバイパ
スするバイパス通路の途中に設けられ、当該バイパス通
路を開閉する弁体と、凝縮器の出口側の冷媒圧力に感応
してスナップアクションし当該冷媒圧力が所定値以下の
場合には前記弁体を開弁させるスナップアクション感圧
素子とを有しているものである。
The bypass valve for correcting the refrigerant flow according to the third aspect of the invention controls the circulating refrigerant flow in accordance with the temperature load of the evaporator, and maintains the superheat degree of the refrigerant at the evaporator outlet side at a predetermined value. A refrigerant flow rate correction bypass valve used in a refrigeration apparatus having a temperature expansion valve in a refrigerant circulation path, the refrigerant flow rate correction bypass valve is provided in the middle of a bypass passage that bypasses the temperature expansion valve, A valve element that opens and closes the bypass passage, and a snap action pressure-sensitive element that performs a snap action in response to the refrigerant pressure on the outlet side of the condenser and opens the valve element when the refrigerant pressure is equal to or less than a predetermined value. It is what you have.

【0020】請求項5に記載の発明による温度膨張弁
は、蒸発器の温度負荷量に相応して循環冷媒流量を制御
し、蒸発器出口側の冷媒の過熱度を所定値に保つ冷凍冷
蔵装置用の温度膨張弁において、蒸発器の温度負荷量に
相応して循環冷媒流量を制御するための主弁ポート部を
バイパスして入口ポートと出口ポートとを連通接続する
バイパス通路と、前記バイパス通路を開閉するバイパス
弁体と、凝縮器の出口側の冷媒圧力に感応してスナップ
アクションし当該冷媒圧力が所定値以下の場合には前記
バイパス弁体を開弁させるスナップアクション感圧素子
とを組み込まれているものである。
According to a fifth aspect of the present invention, there is provided a temperature expansion valve for controlling a flow rate of a circulating refrigerant in accordance with a temperature load of an evaporator to maintain a superheat degree of a refrigerant at an evaporator outlet side at a predetermined value. A temperature expansion valve for bypassing a main valve port for controlling a flow rate of a circulating refrigerant in accordance with a temperature load of an evaporator to connect an inlet port and an outlet port, and the bypass passage. And a snap action pressure sensitive element that snaps in response to the refrigerant pressure on the outlet side of the condenser and opens the bypass valve when the refrigerant pressure is equal to or lower than a predetermined value. It is what has been.

【0021】請求項2に記載の発明による冷凍冷蔵装置
は、請求項1に記載の冷凍冷蔵装置において、また、請
求項4に記載の発明による冷媒流量補正用バイパス弁
は、請求項3に記載の冷媒流量補正用バイパス弁におい
て、さらに、請求項6に記載の発明による温度膨張弁
は、請求項5に記載の温度膨張弁において、いずれも、
前記スナップアクション感圧素子の一方の側に、前記凝
縮器の出口側の冷媒圧力に感応した前記スナップアクシ
ョン感圧素子のスナップアクションによる閉弁側への移
動量を規定する移動空間室が画定され、前記スナップア
クション感圧素子の他方の側に前記凝縮器の出口側の冷
媒圧力を与えられる圧力室が画定され、前記スナップア
クション感圧素子は、前記圧力室の圧力が前記スナップ
アクション感圧素子自身に設定された機械的対抗相当圧
力以上の時には、該機械的対抗相当圧力に抗して前記圧
力室の圧力により閉弁側に反転変形し、前記圧力室の圧
力が前記機械的対抗相当圧力以下である時には、該機械
的対抗相当圧力により開弁側に反転変形するものであ
る。
The refrigeration apparatus according to the second aspect of the present invention is the refrigeration apparatus according to the first aspect, and the bypass valve for correcting the refrigerant flow rate according to the fourth aspect of the invention is the third aspect. In the refrigerant flow rate correction bypass valve, the temperature expansion valve according to the invention according to claim 6 is the temperature expansion valve according to claim 5,
On one side of the snap action pressure sensing element, a movement space chamber is defined which defines the amount of movement of the snap action pressure sensing element toward the valve closing side by the snap action in response to the refrigerant pressure on the outlet side of the condenser. A pressure chamber is provided on the other side of the snap action pressure sensitive element for receiving a refrigerant pressure at the outlet side of the condenser, and the snap action pressure sensitive element is configured such that the pressure of the pressure chamber is the snap action pressure sensitive element. When the pressure is equal to or higher than the mechanical counter pressure, the pressure in the pressure chamber is reversed to the valve closing side against the mechanical counter pressure, and the pressure in the pressure chamber is reduced to the mechanical counter pressure. In the following cases, the valve is reversely deformed to the valve-opening side by the mechanical counter pressure.

【0022】請求項1に記載の発明による冷凍冷蔵装置
では、凝縮器の出口側の冷媒圧力(凝縮圧力)が所定値
以下になると、冷媒流量補正用バイパス弁のスナップア
クション感圧素子がスナップアクションし、冷媒流量補
正用バイパス弁の弁体を開弁し、バイパス通路を冷媒が
流れるようになる。これにより蒸発器への冷媒供給量な
ど、循環冷媒流量が増加する。
In the refrigeration apparatus according to the first aspect of the present invention, when the refrigerant pressure (condensation pressure) on the outlet side of the condenser falls below a predetermined value, the snap action pressure-sensitive element of the bypass valve for correcting the refrigerant flow rate has a snap action. Then, the valve body of the bypass valve for refrigerant flow correction is opened, and the refrigerant flows through the bypass passage. Thereby, the circulating refrigerant flow rate such as the refrigerant supply amount to the evaporator increases.

【0023】請求項2に記載の発明による冷凍冷蔵装置
では、冷媒流量補正用バイパス弁の圧力室の圧力、すな
わち凝縮器の出口側の冷媒圧力が、スナップアクション
感圧素子自身に設定された機械的対抗相当圧力以上であ
る時には、この機械的対抗相当圧力に抗して圧力室の圧
力により閉弁側に反転変形し、圧力室の圧力がスナップ
アクション感圧素子の機械的対抗相当圧力以下である
時、すなわち低凝縮圧時には、この機械的対抗相当圧力
によって開弁側に反転変形する。
In the refrigeration apparatus according to the second aspect of the present invention, the pressure in the pressure chamber of the bypass valve for correcting the refrigerant flow, that is, the refrigerant pressure on the outlet side of the condenser is set in the snap action pressure sensitive element itself. When the pressure is equal to or higher than the mechanical opposition equivalent pressure, the pressure in the pressure chamber is reversed to the valve closing side against the mechanical opposition equivalent pressure, and the pressure in the pressure chamber becomes lower than the mechanical opposition equivalent pressure of the snap action pressure sensitive element. At a certain time, that is, at the time of low condensing pressure, the valve is reversely deformed to the valve-opening side by the mechanical counter pressure.

【0024】請求項3に記載の発明による冷媒流量補正
用バイパス弁では、凝縮器の出口側の冷媒圧力(凝縮圧
力)が所定値以下になると、スナップアクション感圧素
子のスナップアクションによって弁体が開弁し、バイパ
ス通路を冷媒が流れるようになる。これにより蒸発器へ
の冷媒供給量など、循環冷媒流量が増加する。
According to the third aspect of the present invention, when the refrigerant pressure (condensing pressure) on the outlet side of the condenser falls below a predetermined value, the snap action of the snap action pressure-sensitive element causes the valve element to move. The valve opens to allow the refrigerant to flow through the bypass passage. Thereby, the circulating refrigerant flow rate such as the refrigerant supply amount to the evaporator increases.

【0025】請求項4に記載の発明による冷媒流量補正
用バイパス弁では、圧力室の圧力、すなわち凝縮器の出
口側の冷媒圧力が、スナップアクション感圧素子自身に
設定された機械的対抗相当圧力以上である時には、この
機械的対抗相当圧力に抗して圧力室の圧力により閉弁側
に反転変形し、圧力室の圧力がスナップアクション感圧
素子の機械的対抗相当圧力以下である時、すなわち低凝
縮圧時には、この機械的対抗相当圧力によって開弁側に
反転変形する。
In the bypass valve for correcting the refrigerant flow rate according to the present invention, the pressure in the pressure chamber, that is, the refrigerant pressure on the outlet side of the condenser is equal to the mechanical counter pressure set in the snap action pressure sensitive element itself. When it is above, when the pressure of the pressure chamber is reversed to the valve closing side against the mechanical counter pressure, the pressure of the pressure chamber is equal to or less than the mechanical counter pressure of the snap action pressure sensitive element, At the time of low condensing pressure, the valve is reversely deformed toward the valve opening side by the mechanical equivalent pressure.

【0026】請求項5に記載の発明による温度膨張弁で
は、凝縮器の出口側の冷媒圧力(凝縮圧力)が所定値以
下になると、スナップアクション感圧素子のスナップア
クションによってバイパス弁体が開弁し、バイパス通路
を冷媒が流れるようになる。これにより蒸発器への冷媒
供給量など、循環冷媒流量が増加する。
In the temperature expansion valve according to the fifth aspect of the present invention, when the refrigerant pressure (condensation pressure) at the outlet of the condenser falls below a predetermined value, the bypass valve is opened by the snap action of the snap action pressure-sensitive element. Then, the refrigerant flows through the bypass passage. Thereby, the circulating refrigerant flow rate such as the refrigerant supply amount to the evaporator increases.

【0027】請求項6に記載の発明による温度膨張弁で
は、圧力室の圧力、すなわち凝縮器の出口側の冷媒圧力
が、スナップアクション感圧素子自身に設定された機械
的対抗相当圧力以上である時には、この機械的対抗相当
圧力に抗して圧力室の圧力により閉弁側に反転変形し、
圧力室の圧力がスナップアクション感圧素子の機械的対
抗相当圧力以下である時、すなわち低凝縮圧時には、こ
の機械的対抗相当圧力によって開弁側に反転変形する。
[0027] In the temperature expansion valve according to the sixth aspect of the present invention, the pressure in the pressure chamber, that is, the refrigerant pressure on the outlet side of the condenser is equal to or higher than the mechanical counter pressure set in the snap action pressure sensitive element itself. At times, the pressure in the pressure chamber is reversed to the valve closing side against the mechanical opposition equivalent pressure,
When the pressure in the pressure chamber is equal to or lower than the mechanical opposing pressure of the snap action pressure-sensitive element, that is, at the time of a low condensing pressure, the valve is reversely deformed to the valve opening side by the mechanical opposing equivalent pressure.

【0028】[0028]

【発明の実施の形態】以下に添付の図を参照してこの発
明の実施の形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0029】(実施の形態1)図1〜図3はこの発明に
よる温度膨張弁およびその温度膨張弁を含む冷凍冷蔵装
置を示している。冷凍冷蔵装置は、通常の冷凍冷蔵装置
と同等に、圧縮機1、凝縮器(コンデンサ)3、レシー
バ5、温度膨張弁7、蒸発器(エバポレータ)9を有
し、これらは冷媒管11、13、15、17、19a、
19bによりループ接続されている。
(Embodiment 1) FIGS. 1 to 3 show a temperature expansion valve and a refrigeration apparatus including the temperature expansion valve according to the present invention. The refrigerating and refrigerating apparatus has a compressor 1, a condenser (condenser) 3, a receiver 5, a temperature expansion valve 7, and an evaporator (evaporator) 9 like the ordinary refrigerating and refrigerating apparatus. , 15, 17, 19a,
19b is connected in a loop.

【0030】温度膨張弁7は、ハウジング本体21を有
している。ハウジング本体21は、入口ポート23と出
口ポート(膨張室)25とを有し、入口ポート23と出
口ポート25との間に、主弁室27、主弁ポート29を
有している。また、ハウジング本体21には、蒸発器9
より圧縮機1への冷媒通路の一部をなす貫通冷媒通路2
2が形成されており、この貫通冷媒通路22の両側に冷
媒管19a、19bが連通接続されている。
The temperature expansion valve 7 has a housing body 21. The housing body 21 has an inlet port 23 and an outlet port (expansion chamber) 25, and has a main valve chamber 27 and a main valve port 29 between the inlet port 23 and the outlet port 25. Further, the evaporator 9 is provided in the housing body 21.
The through refrigerant passage 2 which forms a part of the refrigerant passage to the compressor 1
2 are formed, and refrigerant pipes 19 a and 19 b are connected to both sides of the through refrigerant passage 22.

【0031】主弁室27にはボール状の主弁体31が設
けられている。主弁体31は、弁座部33に着座するこ
とにより主弁ポート29を閉じ、弁座部33よりの離間
量(リフト量)により開弁量(冷媒流量)を定量的に制
御する。
The main valve chamber 27 is provided with a ball-shaped main valve element 31. The main valve body 31 closes the main valve port 29 by sitting on the valve seat 33, and quantitatively controls the valve opening (refrigerant flow rate) by the amount of separation (lift) from the valve seat 33.

【0032】主弁室27には、ハウジング本体21に調
節可能にねじ止めされたアジャスタブルばねリテーナ3
5と、弁体側ばねリテーナ37と、アジャスタブルばね
リテーナ35と弁体側ばねリテーナ37との間に設けら
れた設定ばね39とが設けられている。
The main valve chamber 27 has an adjustable spring retainer 3 screwed to the housing body 21 in an adjustable manner.
5, a valve body-side spring retainer 37, and a setting spring 39 provided between the adjustable spring retainer 35 and the valve body-side spring retainer 37.

【0033】設定ばね39は、通常のばね材により構成
され、この設定ばね39が発生するばね荷重は、図1で
見て上向きの閉弁方向のばね荷重であり、対抗ばね荷重
を担っている。
The setting spring 39 is made of a normal spring material, and the spring load generated by the setting spring 39 is an upward spring load in the valve closing direction as viewed in FIG. 1 and bears an opposing spring load. .

【0034】ハウジング本体21にはダイヤフラムケー
ス41、43が取り付けられている。ダイヤフラムケー
ス41、43内にはダイヤフラム45が張られてあり、
ダイヤフラム45の上下両側に圧力室47、49が画定
されている。
Diaphragm cases 41 and 43 are attached to the housing body 21. A diaphragm 45 is stretched in the diaphragm cases 41 and 43,
Pressure chambers 47 and 49 are defined on both upper and lower sides of the diaphragm 45.

【0035】ダイヤフラムケース43には、冷媒管1
1、13、15、17、19a、19bを流れる冷媒と
同じ冷媒を圧力室47に封入する際に用いられ、封入後
に封止される封入管51が取付られており、ダイヤフラ
ム45の上側の圧力室47の内圧は、従来のものと同様
に、貫通冷媒通路22を横切って延在する連結棒57が
貫通冷媒通路22を流れる蒸発器9よりの冷媒流中に曝
されて、この連結棒57よりリテーナ55、ダイラフラ
ム45を経て圧力室47へ伝わる、蒸発器9の出口側の
冷媒温度に相応して変化する。
In the diaphragm case 43, the refrigerant pipe 1
A sealing pipe 51 which is used when sealing the same refrigerant as the refrigerant flowing through 1, 13, 15, 17, 19a, 19b into the pressure chamber 47, and is sealed after the sealing, is attached, and the pressure above the diaphragm 45 is increased. As in the prior art, the internal pressure of the chamber 47 is exposed to the connecting rod 57 extending across the through refrigerant passage 22 in the refrigerant flow from the evaporator 9 flowing through the through refrigerant passage 22, and this connecting rod 57 The temperature changes in accordance with the temperature of the refrigerant at the outlet side of the evaporator 9, which is transmitted to the pressure chamber 47 via the retainer 55 and the diaphragm 45.

【0036】ダイヤフラム45の下側の圧力室49は、
孔53によって貫通冷媒通路22と連通しており、蒸発
器9の出口側の冷媒圧力が及ぼされる。
The lower pressure chamber 49 of the diaphragm 45 is
The hole 53 communicates with the through refrigerant passage 22 and exerts a refrigerant pressure on the outlet side of the evaporator 9.

【0037】圧力室49には、ダイヤフラム45に応動
するリテーナ55が設けられており、リテーナ55と弁
体31とがハウジング本体21より上下動可能に支持さ
れた連結棒57によって連繋している。
The pressure chamber 49 is provided with a retainer 55 responsive to the diaphragm 45, and the retainer 55 and the valve element 31 are connected to each other by a connecting rod 57 supported up and down by the housing body 21.

【0038】上述の構造(通常構成)により、主弁体3
1は、圧力室47と圧力室49との差圧による開弁力
と、設定ばね39による閉弁力との平衡関係で開弁量を
設定される。これにより、温度膨張弁7は、従来のもの
と同様に、蒸発器9の温度負荷量に相応して開弁量を設
定され、蒸発器9の温度負荷量に相応して循環冷媒流量
を制御し、過熱度を規定値に保つ。
With the above structure (normal configuration), the main valve body 3
In 1, the valve opening amount is set in an equilibrium relationship between the valve opening force due to the pressure difference between the pressure chamber 47 and the pressure chamber 49 and the valve closing force by the setting spring 39. Accordingly, the temperature expansion valve 7 is set to the valve opening amount corresponding to the temperature load of the evaporator 9 and controls the flow rate of the circulating refrigerant according to the temperature load of the evaporator 9 as in the conventional case. And maintain the superheat at the specified value.

【0039】ハウジング本体21には主弁ポート29を
バイパスして入口ポート23と出口ポート25とを連通
接続するバイパス通路59が形成されており、バイパス
通路59は、バイパス通路入口59aによって入口ポー
ト23に開口し、バイパス通路出口59bによって出口
ポート25に開口している。ハウジング本体21には、
バイパス通路59の途中に相当する部位にバイパス弁室
61が形成されている。バイパス弁室61はシール部材
63を挟んでスナップリング65によってハウジング本
体21に気密に装着されたカバー67によって密閉され
ている。
The housing main body 21 is formed with a bypass passage 59 which bypasses the main valve port 29 and connects the inlet port 23 and the outlet port 25 for communication. The bypass passage 59 is formed by the bypass passage inlet 59a. At the outlet port 25 by the bypass passage outlet 59b. In the housing body 21,
A bypass valve chamber 61 is formed at a position corresponding to the middle of the bypass passage 59. The bypass valve chamber 61 is sealed by a cover 67 airtightly attached to the housing body 21 by a snap ring 65 with the seal member 63 interposed therebetween.

【0040】バイパス弁室61にはボール状のバイパス
弁体69が設けられている。バイパス弁体69は、弁座
部71に着座することによりバイパス通路入口59aと
バイパス通路出口59bとの間に形成されているバイパ
ス弁ポート73を閉じ、弁座部71より離間することに
よりバイパス弁ポート73を開く。
The bypass valve chamber 61 is provided with a ball-shaped bypass valve body 69. The bypass valve body 69 closes the bypass valve port 73 formed between the bypass passage inlet 59 a and the bypass passage outlet 59 b by sitting on the valve seat 71, and separates from the valve seat 71 to bypass the valve. Open port 73.

【0041】カバー67と弁体側ばねリテーナ75との
間には戻しばね77が設けらており、戻しばね77はバ
イパス弁体69を閉弁方向へ付勢している。
A return spring 77 is provided between the cover 67 and the valve body-side spring retainer 75, and the return spring 77 urges the bypass valve body 69 in the valve closing direction.

【0042】ハウジング本体21には、シール部材7
9、ばねリテーナ81、スナップアクション感圧素子8
3、カバープレート85がスナップリング87によって
順に取り付けられている。
The housing body 21 includes a sealing member 7.
9, spring retainer 81, snap action pressure sensitive element 8
3. The cover plate 85 is sequentially attached by the snap ring 87.

【0043】スナップアクション感圧素子83は、ハウ
ジング本体21より自身の軸線方向に移動可能に支持さ
れた連結棒91によってバイパス弁体69と連繋されて
いて、スナップアクション感圧素子83のスナップアク
ションがバイパス弁体69に伝わるように構成されてい
る。そして、このスナップアクション感圧素子83は、
バイパス弁体69が弁座部71より離間してバイパス弁
ポート73を開く向きに反転変形していて、このスナッ
プアクション感圧素子83自身が有する機械的対抗相当
圧力以上の圧力を連結棒91側から受けると、バイパス
弁体69が弁座部71に着座しバイパス弁ポート73を
閉じる向きに反転変形するように構成されている。
The snap action pressure-sensitive element 83 is connected to the bypass valve body 69 by a connecting rod 91 movably supported in its own axial direction from the housing body 21, and the snap action of the snap action pressure-sensitive element 83 is performed. It is configured to be transmitted to the bypass valve body 69. And this snap action pressure sensitive element 83
The bypass valve body 69 is separated from the valve seat portion 71 and is reversely deformed in a direction to open the bypass valve port 73, and applies a pressure equal to or higher than the mechanical opposing equivalent pressure of the snap action pressure sensing element 83 itself to the connecting rod 91 side. , The bypass valve body 69 is configured to be seated on the valve seat portion 71 and reversely deformed in a direction to close the bypass valve port 73.

【0044】また、スナップアクション感圧素子83と
カバープレート85との間には、連結棒91側からスナ
ップアクション感圧素子83が受ける圧力によってバイ
パス弁体69がバイパス弁ポート73を開く向きに反転
変形する際の、連結棒91の軸方向におけるスナップア
クション感圧素子83の移動量を規定するために、カバ
ープレート85にスナップアクション感圧素子83が接
触する位置を最大移動量とする移動空間室82が画定さ
れている。さらに、スナップアクション感圧素子83の
連結棒91側、つまり、ばねリテーナ81とスナップア
クション感圧素子83との間には圧力室89が画定され
ており、圧力室89には凝縮器3の出口側の冷媒圧力
(凝縮圧力Pc)を導入される。
Further, between the snap action pressure sensing element 83 and the cover plate 85, the bypass valve body 69 reverses the opening direction of the bypass valve port 73 by the pressure received by the snap action pressure sensing element 83 from the connecting rod 91 side. In order to define the amount of movement of the snap action pressure sensing element 83 in the axial direction of the connecting rod 91 when deforming, the moving space chamber in which the position where the snap action pressure sensing element 83 contacts the cover plate 85 is the maximum movement amount. 82 is defined. A pressure chamber 89 is defined between the snap action pressure-sensitive element 83 and the connecting rod 91, that is, between the spring retainer 81 and the snap action pressure-sensitive element 83. The pressure chamber 89 has an outlet of the condenser 3 in the pressure chamber 89. Side refrigerant pressure (condensing pressure Pc) is introduced.

【0045】そして、連結棒91を介したスナップアク
ション感圧素子83とバイパス弁体69との連繋によ
り、バイパス弁体69は、スナップアクション感圧素子
83が図3で見て左側に反転変形した状態にある時に
は、戻しばね77のばね力により弁座部71に着座して
バイパス弁ポート73を閉じ、これに対しスナップアク
ション感圧素子83が図3で見て右側(図示状態)に反
転変形した状態にある時には、戻しばね77のばね力に
抗して弁座部71より離間してバイパス弁ポート73を
開くようになる。
Then, by the connection between the snap action pressure sensing element 83 and the bypass valve body 69 via the connecting rod 91, the bypass valve body 69 is deformed by reversing the snap action pressure sensing element 83 to the left as viewed in FIG. When in the state, the spring force of the return spring 77 is seated on the valve seat portion 71 to close the bypass valve port 73, and the snap action pressure-sensitive element 83 is reversely deformed to the right side (illustrated state) in FIG. In this state, the bypass valve port 73 is opened apart from the valve seat 71 against the spring force of the return spring 77.

【0046】スナップアクション感圧素子83は、圧力
室89の圧力、すなわち凝縮圧力Pcが所定値、つま
り、スナップアクション感圧素子83の機械的対抗相当
圧力以上である場合には、この機械的対抗相当圧力に抗
してスナップアクションにより図3で見て左側に反転変
形した状態になり、圧力室89の圧力(凝縮圧力Pc)
が所定値以下になると、すなわち凝縮圧力時には、スナ
ップアクション感圧素子83の機械的対抗相当圧力によ
り戻しばね77のばね力に抗してスナップアクションし
て図3で見て右側に反転変形した状態になる。
When the pressure in the pressure chamber 89, that is, the condensing pressure Pc is equal to or higher than a predetermined value, that is, the pressure equivalent to the mechanical resistance of the snap action pressure-sensitive element 83, the snap-action pressure-sensitive element 83 is turned on. The state is reversed to the left as viewed in FIG. 3 by snap action against the equivalent pressure, and the pressure in the pressure chamber 89 (condensing pressure Pc)
Is smaller than a predetermined value, that is, at the time of condensing pressure, the snap action is performed against the spring force of the return spring 77 by the mechanical opposing equivalent pressure of the snap action pressure sensing element 83, and the snap action is reversed to the right as viewed in FIG. become.

【0047】上述の構成により、凝縮圧力Pcが所定値
以上であれば、スナップアクション感圧素子83は図3
で見て左側に反転変形した状態にあり、バイパス弁体6
9は、戻しばね77のばね力によって弁座部71に着座
し、バイパス弁ポート73を閉じている。
With the above configuration, if the condensing pressure Pc is equal to or higher than a predetermined value, the snap action pressure-sensitive element 83
And the bypass valve 6
9 is seated on the valve seat portion 71 by the spring force of the return spring 77 and closes the bypass valve port 73.

【0048】従って、凝縮圧力Pcが所定値以上である
定常時には、バイパス通路59における冷媒流量は零に
なり、冷凍冷蔵装置における循環冷媒流量は主弁体31
の開弁量により通常通りに決まる。
Therefore, in a steady state in which the condensing pressure Pc is equal to or higher than a predetermined value, the refrigerant flow rate in the bypass passage 59 becomes zero, and the circulating refrigerant flow rate in the refrigerating / refrigeration apparatus becomes the main valve element 31
Is determined as usual by the amount of valve opening.

【0049】これに対し、凝縮圧力Pcが所定値以下に
なると、スナップアクション感圧素子83がその機械的
対抗相当圧力により戻しばね77のばね力に抗してスナ
ップアクションして図3で見て右側に反転変形し、バイ
パス弁体69が連結棒91によって押されて弁座部71
より離間し、バイパス弁ポート73を開くようになる。
On the other hand, when the condensing pressure Pc falls below a predetermined value, the snap action pressure-sensitive element 83 snaps against the spring force of the return spring 77 due to its mechanical opposing equivalent pressure, and as shown in FIG. The bypass valve body 69 is inverted and deformed to the right, and the bypass valve body 69 is pushed by the connecting rod 91 so that the valve seat 71
As the distance increases, the bypass valve port 73 is opened.

【0050】従って、凝縮圧力Pcが所定値以下になる
と、バイパス通路59を冷媒が流れるようになり、この
バイパス冷媒流量分だけ、定常時により冷凍冷蔵装置に
おける循環冷媒流量が増えることになる。
Therefore, when the condensing pressure Pc becomes equal to or lower than the predetermined value, the refrigerant flows through the bypass passage 59, and the flow rate of the circulating refrigerant in the refrigerating and refrigerating apparatus increases by the flow rate of the bypass refrigerant.

【0051】これにより、凝縮圧力Pcが低い時に蒸発
器9に供給される冷媒の流量が増加し、凝縮圧力Pcが
定常圧状態の時の温度膨張弁7の開弁特性に影響を与え
ることなく、低凝縮圧力時の冷媒流量不足が解消され
る。
As a result, the flow rate of the refrigerant supplied to the evaporator 9 increases when the condensing pressure Pc is low, and does not affect the valve opening characteristics of the temperature expansion valve 7 when the condensing pressure Pc is in a steady pressure state. Insufficient refrigerant flow at low condensing pressure is eliminated.

【0052】低凝縮圧力時にバイパス弁体69が開弁し
てバイパス通路59を冷媒が流れているときも、温度膨
張弁7によって過熱度を所定値に保つ制御がフィードバ
ック制御式に行われるから、この時も過熱度が所定値に
保たれ、年間を通して冷凍冷蔵装置の性能が維持され
る。
Even when the bypass valve body 69 is opened at the time of low condensing pressure and the refrigerant is flowing through the bypass passage 59, the control for maintaining the superheat degree at the predetermined value by the temperature expansion valve 7 is performed in a feedback control manner. Also at this time, the degree of superheat is maintained at a predetermined value, and the performance of the refrigerator is maintained throughout the year.

【0053】しかも、蒸発器9側、つまり圧縮機1の上
流側の冷媒温度(圧力)が凝縮器3側、つまり圧縮機1
の下流側の冷媒温度(圧力)よりも大変低い状態で圧縮
機1が停止した場合でも、バイパス弁体69の開弁によ
ってバイパス通路59を冷媒が流れることにより、圧縮
機1の上流側と下流側の冷媒圧力の差が緩和されるの
で、その後の再駆動時に大きな負荷が圧縮機1にかかる
ことも回避され、これにより圧縮機1の寿命が確保され
る。
Moreover, the refrigerant temperature (pressure) on the evaporator 9 side, that is, on the upstream side of the compressor 1, is on the condenser 3 side, that is, on the compressor 1 side.
Even when the compressor 1 is stopped in a state where the temperature is very lower than the refrigerant temperature (pressure) on the downstream side of the compressor 1, the refrigerant flows through the bypass passage 59 by opening the bypass valve body 69, so that the upstream side and the downstream side of the compressor 1 Since the difference in refrigerant pressure on the side is reduced, a large load is prevented from being applied to the compressor 1 at the time of subsequent re-driving, whereby the life of the compressor 1 is ensured.

【0054】バイパス弁体69は、スナップアクション
感圧素子83のスナップアクションによって閉弁位置と
開弁位置の2位置のみを取るから、図4に示されている
ように、バイパス冷媒流量は、閉弁(バイパス弁閉)時
の0と開弁(バイパス弁開)時の所定値Q’とにオン・
オフ的に決まり、その切換圧は、スナップアクション感
圧素子83の機械的対抗相当圧力によって決まる。
Since the bypass valve body 69 takes only two positions, the valve closing position and the valve opening position, by the snap action of the snap action pressure sensing element 83, as shown in FIG. ON when the valve (bypass valve closed) and the predetermined value Q 'when the valve is open (bypass valve open)
The switching pressure is determined by the mechanical action equivalent pressure of the snap action pressure sensing element 83.

【0055】これらのことにより、凝縮圧力に感応する
スナップアクション感圧素子83の特性設定を任意にで
き、またバイパス弁開閉特性、バイパス冷媒流量の設
定、すなわち低凝縮圧力時の冷媒流量補正特性の設定
を、温度膨張弁7の機能、特性設定とは個別に、容易
に、正確かつ適切に行えるようになると共に、取付後の
調整が不要になる。
With these features, it is possible to arbitrarily set the characteristics of the snap action pressure-sensitive element 83 which responds to the condensing pressure, and to set the bypass valve opening / closing characteristics and the bypass refrigerant flow rate, that is, the refrigerant flow correction characteristics at low condensing pressure. The setting can be easily, accurately and appropriately performed independently of the function and the characteristic setting of the temperature expansion valve 7, and the adjustment after the mounting becomes unnecessary.

【0056】また、バイパス弁体69の開閉動作は、圧
力スイッチと電磁開閉弁との組み合わせによる低凝縮圧
力時の冷媒流量補正装置と等価のものなり、これを低コ
スト及び省エネルギーで実現することができる。
The opening and closing operation of the bypass valve body 69 is equivalent to a refrigerant flow correction device at the time of low condensing pressure by a combination of a pressure switch and an electromagnetic on-off valve, and can be realized at low cost and energy saving. it can.

【0057】また、バイパス通路59、バイパス弁体6
9、戻しばね77、スナップアクション感圧素子83等
によるバイパス弁構造が温度膨張弁7に組み込まれてい
ることにより、取付性、スペース性がよい。
The bypass passage 59 and the bypass valve 6
9. By mounting the bypass valve structure including the return spring 77, the snap action pressure sensing element 83, and the like in the temperature expansion valve 7, the mounting property and the space property are good.

【0058】(実施の形態2)図5はこの発明による冷
媒流量補正用バイパス弁およびその冷媒流量補正用バイ
パス弁を含む冷凍冷蔵装置を示している。なお、図5に
おいて、図1に対応する部分は図1に付した符号と同一
の符号を付けてその説明を省略する。
(Embodiment 2) FIG. 5 shows a refrigerant flow correction bypass valve according to the present invention and a refrigeration apparatus including the refrigerant flow correction bypass valve. In FIG. 5, portions corresponding to those in FIG. 1 are denoted by the same reference numerals as those in FIG. 1, and description thereof is omitted.

【0059】この実施の形態による冷凍冷蔵装置では、
温度膨張弁7をバイパスして冷媒管15と17とを接続
するバイパス配管99が設けられており、このバイパス
配管99の途中に、当該バイパス配管99をオン・オフ
的に開閉する冷媒流量補正用バイパス弁101が設けら
れている。
In the freezing and refrigeration apparatus according to this embodiment,
A bypass pipe 99 for bypassing the temperature expansion valve 7 and connecting the refrigerant pipes 15 and 17 is provided. In the middle of the bypass pipe 99, a refrigerant flow correction for opening and closing the bypass pipe 99 in an on / off manner. A bypass valve 101 is provided.

【0060】冷媒流量補正用バイパス弁101はハウジ
ング本体103を有している。ハウジング本体103
は、凝縮器3側に入口ポート105を、蒸発器9側に出
口ポート107を、入口ポート105と出口ポート10
7との間に弁室109および弁ポート111を有してい
る。
The refrigerant flow rate compensating bypass valve 101 has a housing body 103. Housing body 103
Are the inlet port 105 on the condenser 3 side, the outlet port 107 on the evaporator 9 side, the inlet port 105 and the outlet port 10.
7, a valve chamber 109 and a valve port 111 are provided.

【0061】弁室109にはボール状の弁体113が設
けられている。弁体113は、弁座部115に着座する
ことにより弁ポート111を閉じ、弁座部115より離
間することにより弁ポート111を開く。
The valve chamber 109 is provided with a ball-shaped valve element 113. The valve body 113 closes the valve port 111 by sitting on the valve seat 115, and opens the valve port 111 by separating from the valve seat 115.

【0062】ハウジング本体103には、シール部材1
17を挟んでスナップリング119によってばねリテー
ナ121が気密に装着されている。ばねリテーナ121
と弁体側ばねリテーナ123との間には戻しばね125
が設けられており、戻しばね125は弁体113を閉弁
方向へ付勢している。また、ハウジング本体103に
は、シール部材127、リテーナ129、スナップアク
ション感圧素子131、カバープレート133が順に取
り付けられている。
The housing body 103 includes a sealing member 1
The spring retainer 121 is hermetically mounted by a snap ring 119 with the 17 interposed therebetween. Spring retainer 121
Between the spring retainer 123 and the valve body side spring 125
The return spring 125 urges the valve body 113 in the valve closing direction. Further, a seal member 127, a retainer 129, a snap action pressure-sensitive element 131, and a cover plate 133 are sequentially attached to the housing body 103.

【0063】スナップアクション感圧素子131は、ハ
ウジング本体103より自身の軸線方向に移動可能に支
持された連結棒137によって弁体113と連繋されて
いて、スナップアクション感圧素子131のスナップア
クションが弁体113に伝わるように構成されている。
そして、このスナップアクション感圧素子131は、弁
体113が弁座部115より離間して弁ポート111を
開く向きに反転変形していて、このスナップアクション
感圧素子131自身が有する機械的対抗相当圧力以上の
圧力を連結棒137側から受けると、弁体113が弁座
部115に着座し弁ポート111を閉じる向きに反転変
形するように構成されている。
The snap action pressure-sensitive element 131 is connected to the valve body 113 by a connecting rod 137 movably supported in its own axial direction from the housing main body 103. It is configured to be transmitted to the body 113.
The snap action pressure-sensitive element 131 is reversely deformed in a direction in which the valve body 113 is separated from the valve seat portion 115 and opens the valve port 111, and the snap-action pressure-sensitive element 131 itself has mechanical opposition. When a pressure equal to or higher than the pressure is received from the connecting rod 137 side, the valve body 113 is configured to reversely deform in a direction to close the valve port 111 by sitting on the valve seat 115.

【0064】また、スナップアクション感圧素子131
とカバープレート133との間には、連結棒137側か
らスナップアクション感圧素子131が受ける圧力によ
って弁体113が弁ポート111を開く向きに反転変形
する際の、連結棒137の軸方向におけるスナップアク
ション感圧素子131の移動量を規定するために、カバ
ープレート133にスナップアクション感圧素子131
が接触する位置を最大移動量とする移動空間室132が
画定されている。さらに、スナップアクション感圧素子
13の連結棒137側、つまり、ばねリテーナ129と
スナップアクション感圧素子131との間には圧力室1
35が画定されており、圧力室135には凝縮器3の出
口側の冷媒圧力(凝縮圧力Pc)を導入される。
The snap action pressure sensitive element 131
When the valve body 113 is reversely deformed in a direction in which the valve port 111 is opened by the pressure applied to the snap action pressure-sensitive element 131 from the connection rod 137 side, the connection rod 137 is positioned between the connection rod 137 and the cover plate 133. In order to regulate the amount of movement of the action pressure sensitive element 131, the snap action pressure sensitive element 131 is attached to the cover plate 133.
A moving space chamber 132 having a maximum moving amount at a position where the moving space 132 contacts is defined. Further, the pressure chamber 1 is located between the spring rod 129 and the snap action pressure-sensitive element 131 on the connection rod 137 side of the snap action pressure-sensitive element 13.
A refrigerant pressure (condensing pressure Pc) on the outlet side of the condenser 3 is introduced into the pressure chamber 135.

【0065】そして、連結棒137を介したスナップア
クション感圧素子131と弁体113との連繋により、
弁体113は、スナップアクション感圧素子131が図
5で見て上側に反転変形した状態にある時には、戻しば
ね125のばね力により弁座部115に着座して弁ポー
ト111を閉じ、これに対しスナップアクション感圧素
子131が図5で見て下側(図示状態)に反転変形した
状態にある時には、戻しばね125のばね力に抗して弁
座部115より離間して弁ポート111を開くようにな
る。
Then, by connecting the snap action pressure-sensitive element 131 and the valve body 113 via the connecting rod 137,
When the snap-action pressure-sensitive element 131 is in a state of being turned upside down as viewed in FIG. 5, the valve body 113 is seated on the valve seat 115 by the spring force of the return spring 125 to close the valve port 111, and On the other hand, when the snap action pressure sensing element 131 is in a state of being inverted and deformed downward (shown in FIG. 5) in FIG. 5, the valve port 111 is separated from the valve seat 115 against the spring force of the return spring 125. Become open.

【0066】スナップアクション感圧素子131は、圧
力室135の圧力、すなわち凝縮圧力Pcが所定値、つ
まり、スナップアクション感圧素子137の機械的対抗
相当圧力以上である場合には、この機械的対抗相当圧力
に抗してスナップアクションにより図5で見て上側に反
転に変形した状態になり、圧力室135の圧力(凝縮圧
力Pc)が所定値以下になると、すなわち低凝縮圧力時
には、スナップアクション感圧素子131の機械的対抗
相当圧力により戻しばね125のばね力に抗してスナッ
プアクションして図5で見て下側に反転変形した状態に
なる。
When the pressure in the pressure chamber 135, that is, the condensing pressure Pc is equal to or higher than a predetermined value, that is, the pressure equivalent to the mechanical resistance of the snap action pressure-sensitive element 137, the snap-action pressure-sensitive element 131 is used. When the pressure (condensing pressure Pc) in the pressure chamber 135 becomes lower than a predetermined value, that is, at the time of a low condensing pressure, the snap action is sensed. The snap action is performed against the spring force of the return spring 125 by the mechanical opposing equivalent pressure of the pressure element 131, and the state is inverted and deformed downward as seen in FIG. 5.

【0067】上述の構成により、凝縮圧力Pcが所定値
以上であれば、スナップアクション感圧素子131は図
5で見て上側に反転変形した状態にあり、弁体113
は、戻しばね125のばね力によって弁座部115着座
し、弁ポート111を閉じている。
With the above configuration, if the condensing pressure Pc is equal to or higher than the predetermined value, the snap action pressure-sensitive element 131 is in a state of being turned upside down in FIG.
Is seated on the valve seat 115 by the spring force of the return spring 125, and closes the valve port 111.

【0068】従って、凝縮圧力Pcが所定値以上である
定常時には、バイパス配管99における冷媒流量は零に
なり、冷凍冷蔵装置における循環冷媒流量は温度膨張弁
7の開弁量により通常通りに決まる。
Accordingly, in the steady state where the condensing pressure Pc is equal to or higher than the predetermined value, the flow rate of the refrigerant in the bypass pipe 99 becomes zero, and the flow rate of the circulating refrigerant in the refrigerating / refrigerating apparatus is normally determined by the opening amount of the temperature expansion valve 7.

【0069】これに対し、凝縮圧力Pcが所定値以下に
なると、スナップアクション感圧素子131がその機械
的対抗相当圧力により戻しばね125のばね力に抗して
スナップアクションして図5で見て下側に反転変形し、
弁体113が連結棒137によって押されて弁座部11
5より離間し、弁ポート111を開くようになる。
On the other hand, when the condensing pressure Pc falls below a predetermined value, the snap action pressure-sensitive element 131 snaps against the spring force of the return spring 125 due to its mechanical opposing equivalent pressure, and as shown in FIG. Invert to the lower side,
The valve body 113 is pushed by the connecting rod 137 and the valve seat 11
5, and the valve port 111 is opened.

【0070】従って、この実施の形態でも、凝縮圧力P
cが所定値以下になると、バイパス配管99を冷媒が流
れるようになり、このバイパス冷媒流量分だけ、定常時
により冷凍冷蔵装置における循環冷媒流量が増えること
になる。
Therefore, also in this embodiment, the condensing pressure P
When c becomes equal to or less than a predetermined value, the refrigerant flows through the bypass pipe 99, and the flow rate of the circulating refrigerant in the refrigerating / refrigeration apparatus is increased by the amount of the bypass refrigerant flow in a steady state.

【0071】これにより、凝縮圧力Pcが低い時に蒸発
器9に供給される冷媒の流量が増加し、凝縮圧力Pcが
定常圧状態の時の温度膨張弁7の開弁特性に影響を与え
ることなく、低凝縮圧力時の冷媒流量不足が解消され
る。
As a result, the flow rate of the refrigerant supplied to the evaporator 9 increases when the condensing pressure Pc is low, without affecting the valve opening characteristics of the temperature expansion valve 7 when the condensing pressure Pc is in a steady pressure state. Insufficient refrigerant flow at low condensing pressure is eliminated.

【0072】また、この実施の形態でも、低凝縮圧力時
に弁体113が開弁してバイパス配管99を冷媒が流れ
ているときも、温度膨張弁7によって過熱度を所定値に
保つ制御がフィードバック制御式に行われるから、低凝
縮圧力時でも過熱度が所定値に保たれ、年間を通して冷
凍冷蔵装置の性能が維持される。
Also in this embodiment, even when the valve element 113 is opened at the time of low condensing pressure and the refrigerant is flowing through the bypass pipe 99, the control for maintaining the degree of superheat at a predetermined value by the temperature expansion valve 7 is a feedback. Since the control is performed in a controlled manner, the degree of superheat is maintained at a predetermined value even at a low condensing pressure, and the performance of the refrigeration apparatus is maintained throughout the year.

【0073】しかも、この実施の形態でも、蒸発器9
側、つまり圧縮機1の上流側の冷媒温度(圧力)が凝縮
器3側、つまり圧縮機1の下流側の冷媒温度(圧力)よ
りも大変低い状態で圧縮機1が停止した場合でも、弁体
113の開弁によってバイパス配管99を冷媒が流れる
ことにより、圧縮機1の上流側と下流側の冷媒圧力の差
が緩和されるので、その後の再駆動時に大きな負荷が圧
縮機1にかかることも回避され、これにより圧縮機1の
寿命が確保される。
Further, also in this embodiment, the evaporator 9
Even if the compressor 1 is stopped in a state where the refrigerant temperature (pressure) on the upstream side of the compressor 1, that is, the refrigerant temperature (pressure) on the condenser 3 side, that is, the refrigerant temperature on the downstream side of the compressor 1, is very low. Since the difference in refrigerant pressure between the upstream side and the downstream side of the compressor 1 is reduced by flowing the refrigerant through the bypass pipe 99 by opening the valve of the body 113, a large load is applied to the compressor 1 at the time of subsequent re-drive. Is also avoided, so that the life of the compressor 1 is ensured.

【0074】なお、温度膨張弁7の封入管51は蒸発器
9の出口側の冷媒管19を流れる冷媒温度に感応するよ
うに取り付けられ、封入管51と温度膨張弁7の圧力室
47とはキャピラリチューブ52により接続されてい
る。この温度膨張弁7は従来通りのものでよい。
The sealing pipe 51 of the temperature expansion valve 7 is attached so as to be sensitive to the temperature of the refrigerant flowing through the refrigerant pipe 19 on the outlet side of the evaporator 9. They are connected by a capillary tube 52. This temperature expansion valve 7 may be a conventional one.

【0075】また、この実施の形態でも、弁体113
は、スナップアクション感圧素子131のスナップアク
ションによって閉弁位置と開弁位置の2位置のみを取る
から、実施の形態1における場合と同様に、図4に示さ
れているように、バイパス冷媒流量は、閉弁(バイパス
弁閉)時の0と開弁(バイパス弁開)時の所定値Q’と
にオン・オフ的に決まり、その切換圧は、スナップアク
ション感圧素子131の機械的対抗相当圧力によって決
まる。
Also in this embodiment, the valve body 113
Takes only two positions, a valve closing position and a valve opening position, by the snap action of the snap action pressure-sensitive element 131. Therefore, similarly to the first embodiment, as shown in FIG. Is determined on / off by 0 when the valve is closed (bypass valve is closed) and a predetermined value Q ′ when the valve is opened (bypass valve is open), and the switching pressure is determined by the mechanical resistance of the snap action pressure sensitive element 131. Determined by the equivalent pressure.

【0076】これらのことにより、凝縮圧力に感応する
スナップアクション感圧素子131の特性設定を任意に
でき、またバイパス弁開閉特性、バイパス冷媒流量の設
定、すなわち低凝縮圧力時の冷媒流量補正特性の設定
を、温度膨張弁7の機能、特性設定とは個別に、容易
に、正確かつ適切に行えるようになると共に、取付後の
調整が不要になる。
With these features, it is possible to arbitrarily set the characteristics of the snap action pressure-sensitive element 131 that responds to the condensing pressure, and set the bypass valve opening / closing characteristics and the bypass refrigerant flow rate, that is, the refrigerant flow rate correction characteristics at low condensing pressure. The setting can be easily, accurately and appropriately performed independently of the function and the characteristic setting of the temperature expansion valve 7, and the adjustment after the mounting becomes unnecessary.

【0077】また、弁体113の開閉動作は、圧力スイ
ッチと電磁開閉弁との組み合わせによる低凝縮圧力時の
冷媒流量補正装置と等価のものとなり、これを低コスト
及び省エネルギーで実現することができる。
The opening and closing operation of the valve body 113 is equivalent to a refrigerant flow rate correction device at the time of low condensing pressure by a combination of a pressure switch and an electromagnetic on-off valve, and can be realized at low cost and energy saving. .

【0078】また、この実施の形態では、バイパス配管
99の出口側の接続は、要求特性等に応じて、図5に符
号99aにより示されているように、蒸発器9の中間部
や、図5に符号99bにより示されているように、蒸発
器9の出口部等に、容易に設計変更することができる。
In this embodiment, the connection on the outlet side of the bypass pipe 99 is made in accordance with the required characteristics and the like, as shown by reference numeral 99a in FIG. As indicated by reference numeral 99b in FIG. 5, the design of the outlet portion of the evaporator 9 and the like can be easily changed.

【0079】[0079]

【発明の効果】以上の説明から理解される如く、請求項
1に記載の発明による冷凍冷蔵装置によれば、蒸発器の
温度負荷量に相応して循環冷媒流量を制御し、蒸発器出
口側の冷媒の過熱度を所定値に保つ温度膨張弁を冷媒循
環経路に有する冷凍冷蔵装置において、前記温度膨張弁
をバイパスするバイパス通路の途中に冷媒流量補正用バ
イパス弁が設けられ、当該冷媒流量補正用バイパス弁
は、前記バイパス通路を開閉する弁体と、凝縮器の出口
側の冷媒圧力に感応してスナップアクションし当該冷媒
圧力が所定値以下の場合には前記弁体を開弁させるスナ
ップアクション感圧素子とを有しているものとした。
As will be understood from the above description, according to the refrigeration apparatus of the first aspect, the flow rate of the circulating refrigerant is controlled in accordance with the temperature load of the evaporator, and the outlet side of the evaporator is controlled. In a refrigerating and refrigerating apparatus having a temperature expansion valve for maintaining a degree of superheat of a refrigerant at a predetermined value in a refrigerant circulation path, a bypass valve for refrigerant flow correction is provided in a bypass passage that bypasses the temperature expansion valve, and the refrigerant flow correction is performed. A bypass valve for opening and closing the bypass passage, and a snap action in response to a refrigerant pressure on the outlet side of the condenser, and a snap action for opening the valve element when the refrigerant pressure is equal to or lower than a predetermined value. And a pressure-sensitive element.

【0080】このため、凝縮器の出口側の冷媒圧力が所
定値以下になると、スナップアクション感圧素子がスナ
ップアクションし、冷媒流量補正用バイパス弁の弁体を
開弁し、バイパス通路を冷媒が流れるようになるから、
凝縮圧力が定常圧状態の時の温度膨張弁の開弁特性に影
響を与えることなく、低凝縮圧力時には循環冷媒流量が
増加し、蒸発器への冷媒供給量不足が解消され、低凝縮
圧力時でも所要の冷房、除湿効果が得られ、また、圧縮
機への冷凍機オイル戻り不足が生じることも回避され、
圧縮機の寿命を確保することができる。
Therefore, when the refrigerant pressure on the outlet side of the condenser becomes equal to or lower than a predetermined value, the snap action pressure-sensitive element performs a snap action, opens the valve body of the refrigerant flow rate correction bypass valve, and the refrigerant flows through the bypass passage. Because it will flow
Without affecting the valve opening characteristics of the temperature expansion valve when the condensing pressure is in the steady pressure state, the flow rate of the circulating refrigerant increases at low condensing pressure, and the shortage of refrigerant supply to the evaporator is eliminated. However, the required cooling and dehumidifying effects are obtained, and it is also possible to prevent insufficient refrigeration oil return to the compressor,
The life of the compressor can be ensured.

【0081】しかも、蒸発器側、つまり圧縮機の上流側
の冷媒温度(圧力)が凝縮器側、つまり圧縮機の下流側
の冷媒温度(圧力)よりも大変低い状態で圧縮機が停止
した場合でも、スナップアクション感圧素子のスナップ
アクションによる冷媒流量補正用バイパス弁の弁体の開
弁によってバイパス通路を冷媒が流れて、凝縮器側から
蒸発器側への供給冷媒流量が増加することにより、圧縮
機の上流側と下流側の冷媒圧力の差が緩和されるので、
その後の再駆動時に大きな負荷が圧縮機にかかることも
回避され、これによっても圧縮機の寿命を確保すること
ができる。
Further, when the compressor is stopped in a state where the refrigerant temperature (pressure) on the evaporator side, ie, the upstream side of the compressor, is much lower than the refrigerant temperature (pressure) on the condenser side, ie, the downstream side of the compressor. However, the refrigerant flows through the bypass passage due to the opening of the valve body of the refrigerant flow rate correction bypass valve by the snap action of the snap action pressure-sensitive element, and the flow rate of the refrigerant supplied from the condenser side to the evaporator side increases. Since the difference in refrigerant pressure between the upstream and downstream sides of the compressor is reduced,
It is also possible to prevent a large load from being applied to the compressor at the time of subsequent re-driving, whereby the life of the compressor can be ensured.

【0082】請求項3に記載の発明による冷媒流量補正
用バイパス弁によれば、蒸発器の温度負荷量に相応して
循環冷媒流量を制御し、蒸発器出口側の冷媒の過熱度を
所定値に保つ温度膨張弁を冷媒循環経路に有する冷凍冷
蔵装置で使用される冷媒流量補正用バイパス弁であっ
て、当該冷媒流量補正用バイパス弁は、前記温度膨張弁
をバイパスするバイパス通路の途中に設けられ、当該バ
イパス通路を開閉する弁体と、凝縮器の出口側の冷媒圧
力に感応してスナップアクションし当該冷媒圧力が所定
値以下の場合には前記弁体を開弁させるスナップアクシ
ョン感圧素子とを有しているものとした。
According to the bypass valve for correcting the refrigerant flow rate according to the third aspect of the invention, the circulating refrigerant flow rate is controlled in accordance with the temperature load of the evaporator, and the superheat degree of the refrigerant at the evaporator outlet side is set to a predetermined value. A refrigerant flow rate correction bypass valve used in a refrigeration apparatus having a temperature expansion valve in the refrigerant circulation path, wherein the refrigerant flow rate correction bypass valve is provided in the middle of a bypass passage that bypasses the temperature expansion valve. A valve element that opens and closes the bypass passage, and a snap action pressure-sensitive element that snaps in response to the refrigerant pressure on the outlet side of the condenser and opens the valve element when the refrigerant pressure is equal to or less than a predetermined value. And

【0083】このため、凝縮器の出口側の冷媒圧力が所
定値以下になると、スナップアクション感圧素子のスナ
ップアクションによって弁体が開弁し、バイパス通路を
冷媒が流れるようになるから、凝縮圧力が定常圧状態の
時の温度膨張弁の開弁特性に影響を与えることなく、低
凝縮圧力時には循環冷媒流量が増加し、蒸発器への冷媒
供給量不足が解消され、低凝縮圧力時でも所要の冷房、
除湿効果が得られ、また、圧縮機への冷凍機オイル戻り
不足が生じることも回避され、圧縮機の寿命を確保する
ことができる。
For this reason, when the refrigerant pressure at the outlet side of the condenser becomes equal to or lower than a predetermined value, the snap action of the snap action pressure-sensitive element causes the valve body to open and the refrigerant to flow through the bypass passage. Does not affect the valve opening characteristics of the temperature expansion valve in the steady pressure state, the flow rate of the circulating refrigerant increases at low condensing pressure, and the shortage of refrigerant supply to the evaporator is eliminated. Air conditioning,
The dehumidifying effect can be obtained, and insufficient return of the refrigerator oil to the compressor can be avoided, and the life of the compressor can be ensured.

【0084】しかも、蒸発器側、つまり圧縮機の上流側
の冷媒温度(圧力)が凝縮器側、つまり圧縮機の下流側
の冷媒温度(圧力)よりも大変低い状態で圧縮機が停止
した場合でも、スナップアクション感圧素子のスナップ
アクションによる弁体の開弁によってバイパス通路を冷
媒が流れて、凝縮器側から蒸発器側への供給冷媒流量が
増加することにより、圧縮機の上流側と下流側の冷媒圧
力の差が緩和されるので、その後の再駆動時に大きな負
荷が圧縮機にかかることも回避され、これによっても圧
縮機の寿命を確保することができる。
Further, when the compressor is stopped in a state where the refrigerant temperature (pressure) on the evaporator side, that is, the upstream side of the compressor, is much lower than the refrigerant temperature (pressure) on the condenser side, that is, the downstream side of the compressor. However, the refrigerant flows through the bypass passage by the opening of the valve body by the snap action of the snap action pressure-sensitive element, and the flow rate of the supplied refrigerant from the condenser side to the evaporator side increases, so that the upstream side and the downstream side of the compressor are increased. Since the difference in refrigerant pressure on the side is reduced, a large load is prevented from being applied to the compressor at the time of subsequent re-driving, whereby the life of the compressor can be ensured.

【0085】請求項5に記載の発明による温度膨張弁に
よれば、蒸発器の温度負荷量に相応して循環冷媒流量を
制御し、蒸発器出口側の冷媒の過熱度を所定値に保つ冷
凍冷蔵装置用の温度膨張弁において、蒸発器の温度負荷
量に相応して循環冷媒流量を制御するための主弁ポート
部をバイパスして入口ポートと出口ポートとを連通接続
するバイパス通路と、前記バイパス通路を開閉するバイ
パス弁体と、凝縮器の出口側の冷媒圧力に感応してスナ
ップアクションし当該冷媒圧力が所定値以下の場合には
前記バイパス弁体を開弁させるスナップアクション感圧
素子とを組み込まれているものとした。
According to the fifth aspect of the present invention, the refrigeration system controls the circulating refrigerant flow rate in accordance with the temperature load of the evaporator, and maintains the superheat degree of the refrigerant at the evaporator outlet side at a predetermined value. In a temperature expansion valve for a refrigeration device, a bypass passage that connects and connects an inlet port and an outlet port by bypassing a main valve port portion for controlling a circulating refrigerant flow rate in accordance with a temperature load of an evaporator, A bypass valve element for opening and closing the bypass passage, and a snap action pressure-sensitive element for performing a snap action in response to the refrigerant pressure on the outlet side of the condenser and opening the bypass valve element when the refrigerant pressure is equal to or less than a predetermined value. Was incorporated.

【0086】このため、凝縮器の出口側の冷媒圧力が所
定値以下になると、スナップアクション感圧素子のスナ
ップアクションによってバイパス弁体が開弁し、バイパ
ス通路を冷媒が流れるようになるから、凝縮圧力が定常
圧状態の時の温度膨張弁の開弁特性に影響を与えること
なく、低凝縮圧力時には循環冷媒流量が増加し、蒸発器
への冷媒供給量不足が解消され、低凝縮圧力時でも所要
の冷房、除湿効果が得られ、また、圧縮機への冷凍機オ
イル戻り不足が生じることも回避され、圧縮機の寿命を
確保することができる。
When the refrigerant pressure on the outlet side of the condenser becomes equal to or lower than a predetermined value, the snap action of the snap action pressure-sensitive element opens the bypass valve body and the refrigerant flows through the bypass passage. Without affecting the valve opening characteristics of the temperature expansion valve when the pressure is in a steady pressure state, the circulating refrigerant flow rate increases at low condensing pressure, the shortage of refrigerant supply to the evaporator is eliminated, and even at low condensing pressure. The required cooling and dehumidifying effects can be obtained, and the occurrence of insufficient return of the refrigerating machine oil to the compressor can be avoided, and the life of the compressor can be ensured.

【0087】しかも、蒸発器側、つまり圧縮機の上流側
の冷媒温度(圧力)が凝縮器側、つまり圧縮機の下流側
の冷媒温度(圧力)よりも大変低い状態で圧縮機が停止
した場合でも、スナップアクション感圧素子のスナップ
アクションによるバイパス弁体の開弁によってバイパス
通路を冷媒が流れて、凝縮器側から蒸発器側への供給冷
媒流量が増加することにより、圧縮機の上流側と下流側
の冷媒圧力の差が緩和されるので、その後の再駆動時に
大きな負荷が圧縮機にかかることも回避され、これによ
っても圧縮機の寿命を確保することができる。
Further, when the compressor is stopped in a state where the refrigerant temperature (pressure) on the evaporator side, that is, on the upstream side of the compressor is much lower than the refrigerant temperature (pressure) on the condenser side, that is, on the downstream side of the compressor. However, the refrigerant flows through the bypass passage due to the opening of the bypass valve by the snap action of the snap action pressure-sensitive element, and the flow rate of the supplied refrigerant from the condenser side to the evaporator side increases. Since the difference in the refrigerant pressure on the downstream side is reduced, a large load is prevented from being applied to the compressor at the time of subsequent re-driving, whereby the life of the compressor can be ensured.

【0088】請求項2に記載の発明による冷凍冷蔵装置
は、請求項1に記載の冷凍冷蔵装置において、また、請
求項4に記載の発明による冷媒流量補正用バイパス弁
は、請求項3に記載の冷媒流量補正用バイパス弁におい
て、さらに、請求項6に記載の発明による温度膨張弁
は、請求項5に記載の温度膨張弁において、いずれも、
前記スナップアクション感圧素子の一方の側に、前記凝
縮器の出口側の冷媒圧力に感応した前記スナップアクシ
ョン感圧素子のスナップアクションによる閉弁側への移
動量を規定する移動空間室が画定され、前記スナップア
クション感圧素子の他方の側に前記凝縮器の出口側の冷
媒圧力を与えられる圧力室が画定され、前記スナップア
クション感圧素子は、前記圧力室の圧力が前記スナップ
アクション感圧素子自身に設定された機械的対抗相当圧
力以上の時には、該機械的対抗相当圧力に抗して前記圧
力室の圧力により閉弁側に反転変形し、前記圧力室の圧
力が前記機械的対抗相当圧力以下である時には、該機械
的対抗相当圧力により開弁側に反転変形するものとし
た。
The refrigeration apparatus according to the second aspect of the present invention is the refrigeration apparatus according to the first aspect, and the bypass valve for refrigerant flow correction according to the fourth aspect of the invention is the third aspect. In the refrigerant flow rate correction bypass valve, the temperature expansion valve according to the invention according to claim 6 is the temperature expansion valve according to claim 5,
On one side of the snap action pressure sensing element, a movement space chamber is defined which defines the amount of movement of the snap action pressure sensing element toward the valve closing side by the snap action in response to the refrigerant pressure on the outlet side of the condenser. A pressure chamber is provided on the other side of the snap action pressure sensitive element for receiving a refrigerant pressure at the outlet side of the condenser, and the snap action pressure sensitive element is configured such that the pressure of the pressure chamber is the snap action pressure sensitive element. When the pressure is equal to or higher than the mechanical counter pressure, the pressure in the pressure chamber is reversed to the valve closing side against the mechanical counter pressure, and the pressure in the pressure chamber is reduced to the mechanical counter pressure. In the following cases, the valve is reversely deformed to the valve opening side by the mechanical opposing equivalent pressure.

【0089】このため、弁体ないしバイパス弁体は、ス
ナップアクション感圧素子のスナップアクションによっ
て閉弁位置と開弁位置の2位置のみを取り、バイパス冷
媒流量は、閉弁時の0と開弁時の所定値とにオン・オフ
的に決まるから、弁開閉特性をスナップアクション感圧
素子の機械的対抗相当圧力によって、正確、かつ確実に
設定でき、低凝縮圧時の冷媒流量補正が高精度に、しか
も確実に行われるようになると共に、取付後の調整が不
要になる。
For this reason, the valve body or the bypass valve body takes only two positions of the valve closing position and the valve opening position by the snap action of the snap action pressure sensing element. The valve opening / closing characteristics can be set accurately and reliably by the pressure equivalent to the mechanical action of the snap action pressure-sensitive element, and the refrigerant flow rate correction at low condensing pressure is highly accurate. In addition, the adjustment can be performed reliably, and the adjustment after the mounting becomes unnecessary.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明による温度膨張弁およびその温度膨張
弁を含む冷凍冷蔵装置の一つの実施の形態を示すシステ
ム構成図である。
FIG. 1 is a system configuration diagram showing one embodiment of a temperature expansion valve and a refrigeration apparatus including the temperature expansion valve according to the present invention.

【図2】図1に示されている温度膨張弁の側面図であ
る。
FIG. 2 is a side view of the thermal expansion valve shown in FIG.

【図3】図1のA−A線断面図である。FIG. 3 is a sectional view taken along line AA of FIG. 1;

【図4】この発明による温度膨張弁に組み込まれている
バイパス弁の開閉特性を示すグラフである。
FIG. 4 is a graph showing the opening / closing characteristics of a bypass valve incorporated in the thermal expansion valve according to the present invention.

【図5】この発明による冷媒流量補正用バイパス弁およ
びその冷媒流量補正用バイパス弁を含む冷凍冷蔵装置の
一つの実施の形態を示すシステム構成図である。
FIG. 5 is a system configuration diagram showing one embodiment of a refrigerant flow correction bypass valve and a refrigeration apparatus including the refrigerant flow correction bypass valve according to the present invention.

【符号の説明】[Explanation of symbols]

1 圧縮機 3 凝縮器 5 コンデンサ 7 温度膨張弁 9 蒸発器 21 ハウジング本体 22 貫通冷媒通路 23 入口ポート 25 出口ポート 27 主弁室 29 主弁ポート 31 主弁体 39 設定ばね 45 ダイヤフラム 47、49 圧力室 51 封入管 57 連結棒 59 バイパス通路 61 バイパス弁室 69 バイパス弁体 73 バイパス弁ポート 77 戻しばね 82 移動空間室 83 スナップアクション感圧素子 89 圧力室 91 連結棒 99 バイパス配管 101 冷媒流量補正用バイパス弁 105 入口ポート 107 出口ポート 109 弁室 111 弁ポート 113 弁体 125 戻しばね 131 スナップアクション感圧素子 132 移動空間室 135 圧力室 137 連結棒 DESCRIPTION OF SYMBOLS 1 Compressor 3 Condenser 5 Condenser 7 Temperature expansion valve 9 Evaporator 21 Housing main body 22 Through refrigerant passage 23 Inlet port 25 Outlet port 27 Main valve room 29 Main valve port 31 Main valve body 39 Setting spring 45 Diaphragm 47, 49 Pressure chamber 51 sealing pipe 57 connecting rod 59 bypass passage 61 bypass valve chamber 69 bypass valve body 73 bypass valve port 77 return spring 82 moving space chamber 83 snap action pressure sensitive element 89 pressure chamber 91 connecting rod 99 bypass piping 101 bypass valve for refrigerant flow correction 105 Inlet port 107 Outlet port 109 Valve chamber 111 Valve port 113 Valve body 125 Return spring 131 Snap action pressure sensitive element 132 Moving space chamber 135 Pressure chamber 137 Connecting rod

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 蒸発器の温度負荷量に相応して循環冷媒
流量を制御し、蒸発器出口側の冷媒の過熱度を所定値に
保つ温度膨張弁を冷媒循環経路に有する冷凍冷蔵装置に
おいて、 前記温度膨張弁をバイパスするバイパス通路の途中に冷
媒流量補正用バイパス弁が設けられ、当該冷媒流量補正
用バイパス弁は、前記バイパス通路を開閉する弁体と、
凝縮器の出口側の冷媒圧力に感応してスナップアクショ
ンし当該冷媒圧力が所定値以下の場合には前記弁体を開
弁させるスナップアクション感圧素子とを有しているこ
とを特徴とする冷凍冷蔵装置。
1. A refrigerating and refrigerating apparatus having a temperature expansion valve in a refrigerant circulation path for controlling a flow rate of a circulating refrigerant in accordance with a temperature load of an evaporator and maintaining a superheat degree of a refrigerant at an evaporator outlet side at a predetermined value. A refrigerant flow correction bypass valve is provided in the middle of a bypass passage that bypasses the temperature expansion valve, and the refrigerant flow correction bypass valve includes a valve body that opens and closes the bypass passage.
Refrigeration characterized by having a snap action pressure sensitive element that performs snap action in response to the refrigerant pressure on the outlet side of the condenser and opens the valve when the refrigerant pressure is equal to or lower than a predetermined value. Refrigeration equipment.
【請求項2】 前記スナップアクション感圧素子の一方
の側に、前記凝縮器の出口側の冷媒圧力に感応した前記
スナップアクション感圧素子のスナップアクションによ
る閉弁側への移動量を規定する移動空間室が画定され、
前記スナップアクション感圧素子の他方の側に前記凝縮
器の出口側の冷媒圧力を与えられる圧力室が画定され、
前記スナップアクション感圧素子は、前記圧力室の圧力
が前記スナップアクション感圧素子自身に設定された機
械的対抗相当圧力以上の時には、該機械的対抗相当圧力
に抗して前記圧力室の圧力により閉弁側に反転変形し、
前記圧力室の圧力が前記機械的対抗相当圧力以下である
時には、該機械的対抗相当圧力により開弁側に反転変形
することを特徴とする請求項1に記載の冷凍冷蔵装置。
2. A movement defining an amount of movement of the snap action pressure sensing element to a valve closing side by a snap action in response to a refrigerant pressure at an outlet side of the condenser, on one side of the snap action pressure sensing element. A space room is defined,
On the other side of the snap action pressure sensitive element a pressure chamber is provided which is provided with refrigerant pressure on the outlet side of the condenser,
When the pressure in the pressure chamber is equal to or higher than the mechanical opposition equivalent pressure set in the snap action pressure-sensing element itself, the snap action pressure-sensing element responds to the mechanical opposition equivalent pressure by the pressure in the pressure chamber. Reverse deformation to the valve closing side,
2. The refrigeration apparatus according to claim 1, wherein when the pressure in the pressure chamber is equal to or lower than the mechanical equivalent pressure, the pressure chamber is reversely deformed to the valve opening side by the mechanical equivalent pressure.
【請求項3】 蒸発器の温度負荷量に相応して循環冷媒
流量を制御し、蒸発器出口側の冷媒の過熱度を所定値に
保つ温度膨張弁を冷媒循環経路に有する冷凍冷蔵装置で
使用される冷媒流量補正用バイパス弁であって、 当該冷媒流量補正用バイパス弁は、前記温度膨張弁をバ
イパスするバイパス通路の途中に設けられ、当該バイパ
ス通路を開閉する弁体と、凝縮器の出口側の冷媒圧力に
感応してスナップアクションし当該冷媒圧力が所定値以
下の場合には前記弁体を開弁させるスナップアクション
感圧素子とを有していることを特徴とする冷媒流量補正
用バイパス弁。
3. A refrigerating and refrigerating apparatus having a temperature expansion valve in a refrigerant circulation path for controlling a flow rate of a circulating refrigerant in accordance with a temperature load of an evaporator and keeping a degree of superheat of the refrigerant at an evaporator outlet side at a predetermined value. A refrigerant flow rate correction bypass valve, wherein the refrigerant flow rate correction bypass valve is provided in the middle of a bypass passage that bypasses the temperature expansion valve, and a valve body that opens and closes the bypass passage, and an outlet of a condenser. A snap action pressure-sensitive element that performs a snap action in response to the refrigerant pressure on the side and opens the valve element when the refrigerant pressure is equal to or lower than a predetermined value. valve.
【請求項4】 前記スナップアクション感圧素子の一方
の側に、前記凝縮器の出口側の冷媒圧力に感応した前記
スナップアクション感圧素子のスナップアクションによ
る閉弁側への移動量を規定する移動空間室が画定され、
前記スナップアクション感圧素子の他方の側に前記凝縮
器の出口側の冷媒圧力を与えられる圧力室が画定され、
前記スナップアクション感圧素子は、前記圧力室の圧力
が前記スナップアクション感圧素子自身に設定された機
械的対抗相当圧力以上の時には、該機械的対抗相当圧力
に抗して前記圧力室の圧力により閉弁側に反転変形し、
前記圧力室の圧力が前記機械的対抗相当圧力以下である
時には、該機械的対抗相当圧力により開弁側に反転変形
することを特徴とする請求項3に記載の冷媒流量補正用
バイパス弁。
4. A movement that defines an amount of movement of the snap action pressure sensitive element to a valve closing side by a snap action in response to a refrigerant pressure at an outlet side of the condenser on one side of the snap action pressure sensitive element. A space room is defined,
On the other side of the snap action pressure sensitive element a pressure chamber is provided which is provided with refrigerant pressure on the outlet side of the condenser,
When the pressure in the pressure chamber is equal to or higher than the mechanical opposition equivalent pressure set in the snap action pressure-sensing element itself, the snap action pressure-sensing element responds to the mechanical opposition equivalent pressure by the pressure in the pressure chamber. Reverse deformation to the valve closing side,
4. The bypass valve according to claim 3, wherein when the pressure in the pressure chamber is equal to or lower than the mechanical counter pressure, the pressure chamber is reversely deformed to the valve opening side by the mechanical counter pressure.
【請求項5】 蒸発器の温度負荷量に相応して循環冷媒
流量を制御し、蒸発器出口側の冷媒の過熱度を所定値に
保つ冷凍冷蔵装置用の温度膨張弁において、 蒸発器の温度負荷量に相応して循環冷媒流量を制御する
ための主弁ポート部をバイパスして入口ポートと出口ポ
ートとを連通接続するバイパス通路と、前記バイパス通
路を開閉するバイパス弁体と、凝縮器の出口側の冷媒圧
力に感応してスナップアクションし当該冷媒圧力が所定
値以下の場合には前記バイパス弁体を開弁させるスナッ
プアクション感圧素子とを組み込まれていることを特徴
とする温度膨張弁。
5. A temperature expansion valve for a refrigerating and refrigerating apparatus for controlling a flow rate of a circulating refrigerant in accordance with a temperature load of an evaporator and maintaining a superheat degree of a refrigerant at an evaporator outlet side at a predetermined value. A bypass passage that bypasses the main valve port for controlling the circulating refrigerant flow rate in accordance with the load amount and connects and connects the inlet port and the outlet port; a bypass valve body that opens and closes the bypass passage; A temperature expansion valve incorporating a snap action pressure sensing element for performing a snap action in response to a refrigerant pressure on the outlet side and opening the bypass valve body when the refrigerant pressure is equal to or lower than a predetermined value. .
【請求項6】 前記スナップアクション感圧素子の一方
の側に、前記凝縮器の出口側の冷媒圧力に感応した前記
スナップアクション感圧素子のスナップアクションによ
る閉弁側への移動量を規定する移動空間室が画定され、
前記スナップアクション感圧素子の他方の側に前記凝縮
器の出口側の冷媒圧力を与えられる圧力室が画定され、
前記スナップアクション感圧素子は、前記圧力室の圧力
が前記スナップアクション感圧素子自身に設定された機
械的対抗相当圧力以上の時には、該機械的対抗相当圧力
に抗して前記圧力室の圧力により閉弁側に反転変形し、
前記圧力室の圧力が前記機械的対抗相当圧力以下である
時には、該機械的対抗相当圧力により開弁側に反転変形
することを特徴とする請求項5に記載の温度膨張弁。
6. A movement defining a movement amount of the snap action pressure sensitive element to a valve closing side by a snap action in response to a refrigerant pressure at an outlet side of the condenser, on one side of the snap action pressure sensitive element. A space room is defined,
On the other side of the snap action pressure sensitive element a pressure chamber is provided which is provided with refrigerant pressure on the outlet side of the condenser,
When the pressure in the pressure chamber is equal to or higher than the mechanical opposition equivalent pressure set in the snap action pressure-sensing element itself, the snap action pressure-sensing element responds to the mechanical opposition equivalent pressure by the pressure in the pressure chamber. Reverse deformation to the valve closing side,
6. The thermal expansion valve according to claim 5, wherein when the pressure in the pressure chamber is equal to or less than the mechanical counter pressure, the pressure chamber is reversely deformed to the valve opening side by the mechanical counter pressure.
JP13516997A 1997-05-26 1997-05-26 Refrigeration system, refrigerant flow rate correction bypass valve and temperature expansion valve Expired - Fee Related JP3712827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13516997A JP3712827B2 (en) 1997-05-26 1997-05-26 Refrigeration system, refrigerant flow rate correction bypass valve and temperature expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13516997A JP3712827B2 (en) 1997-05-26 1997-05-26 Refrigeration system, refrigerant flow rate correction bypass valve and temperature expansion valve

Publications (2)

Publication Number Publication Date
JPH10325479A true JPH10325479A (en) 1998-12-08
JP3712827B2 JP3712827B2 (en) 2005-11-02

Family

ID=15145455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13516997A Expired - Fee Related JP3712827B2 (en) 1997-05-26 1997-05-26 Refrigeration system, refrigerant flow rate correction bypass valve and temperature expansion valve

Country Status (1)

Country Link
JP (1) JP3712827B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1052463A3 (en) * 1999-05-11 2002-05-22 Fujikoki Corporation Expansion valve
EP1564509A1 (en) * 2004-02-13 2005-08-17 Fujikoki Corporation Expansion valve
WO2008074383A1 (en) * 2006-12-18 2008-06-26 Otto Egelhof Gmbh & Co. Kg Thermostatic expansion valve

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106247655B (en) * 2016-07-25 2019-03-08 华为技术有限公司 A kind of underloading desiccant cooling method and device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1052463A3 (en) * 1999-05-11 2002-05-22 Fujikoki Corporation Expansion valve
EP1564509A1 (en) * 2004-02-13 2005-08-17 Fujikoki Corporation Expansion valve
US7222502B2 (en) 2004-02-13 2007-05-29 Fujikoki Corporation Expansion valve
WO2008074383A1 (en) * 2006-12-18 2008-06-26 Otto Egelhof Gmbh & Co. Kg Thermostatic expansion valve

Also Published As

Publication number Publication date
JP3712827B2 (en) 2005-11-02

Similar Documents

Publication Publication Date Title
JP2604882B2 (en) Motor cooling device
US6672090B1 (en) Refrigeration control
US4788828A (en) Control device for use in a refrigeration circuit
US7380411B2 (en) Heat source unit with switching means between heating and cooling
WO2009096442A1 (en) Supercritical refrigeration cycle
JP2000241048A (en) Temperature-sensitive expansion valve
JP2004142701A (en) Refrigeration cycle
JP2001311567A (en) Freezer device and environmental test device using the same
JP3712827B2 (en) Refrigeration system, refrigerant flow rate correction bypass valve and temperature expansion valve
JP4100052B2 (en) Air conditioner
JPH09133435A (en) Expansion valve
JP3712828B2 (en) Refrigeration system, refrigerant flow rate correction bypass valve and temperature expansion valve
JP4610688B2 (en) Air-conditioning and hot-water supply system and control method thereof
JPH109644A (en) Air conditioner
JP2001324246A (en) Expansion valve and freezing cycle using it
JPH07332807A (en) Suprecooling control valve and refrigeration cycle
JP2000186870A (en) Control valve for refrigeration cycle
JP2003106694A (en) Air conditioner
JP3527387B2 (en) Temperature expansion valve
JPH09210480A (en) Two-stage compression type refrigerating apparatus
JP2001074321A (en) Supercritical vapor compressing cycle device and pressure control valve with release valve
JP2001116399A (en) Refrigeration cycle
JP3208889B2 (en) Refrigeration cycle
JP3807955B2 (en) Expansion valve
JPS63251760A (en) Refrigerator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees