JPH11337194A - Chiller - Google Patents

Chiller

Info

Publication number
JPH11337194A
JPH11337194A JP14704698A JP14704698A JPH11337194A JP H11337194 A JPH11337194 A JP H11337194A JP 14704698 A JP14704698 A JP 14704698A JP 14704698 A JP14704698 A JP 14704698A JP H11337194 A JPH11337194 A JP H11337194A
Authority
JP
Japan
Prior art keywords
oil
compressor
pressure
valve
level controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14704698A
Other languages
Japanese (ja)
Inventor
Hiromitsu Moriyama
浩光 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14704698A priority Critical patent/JPH11337194A/en
Publication of JPH11337194A publication Critical patent/JPH11337194A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/03Oil level

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent refrigerating machine oil from being fed excessively from an oil tank to a compressor even if the difference between the inner pressure of the oil tank and the low pressure of refrigeration cycle increases. SOLUTION: The chiller has a refrigeration cycle comprising a condenser 8, a throttle 9, and an evaporator 10 coupled sequentially through piping and a plurality of compressors 12 having oil separators 3, 4 on the delivery side coupled in parallel through piping between the condenser 8 and the compressors 12. Oil level controllers 6, 7 of compressors 1, 2 fixed to the low pressure section thereof are coupled through piping with the oil separators 3, 4 and an oil tank 5 is coupled through piping with the low pressure side of refrigeration cycle via a check valve 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スーパーショーケ
ース、冷蔵庫、恒温槽等に使用される冷凍装置に係わ
り、冷媒にHCFC系とHFC系等の冷媒を用いる圧縮機を2
台以上搭載した冷凍機の圧縮機の油面制御に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating apparatus used for a super showcase, a refrigerator, a thermostat, etc., and relates to a compressor using an HCFC-based or HFC-based refrigerant as a refrigerant.
The present invention relates to oil level control of a compressor of a refrigerator equipped with more than one unit.

【0002】[0002]

【従来の技術】図8は例えば2台の圧縮機を搭載した冷
凍装置であり、図において、1は第1の低圧シェル式圧
縮機、2は第2の低圧シェル式圧縮機、3は第1の油分
離器、4は第2の油分離器、5はオイルタンク、6は第
1の機械式オイルレギュレータ、7は第2の機械式オイ
ルレギュレータ、8は凝縮器、9は絞り装置、10は蒸
発器、11は圧力調整弁であり、凝縮器8、絞り装置
9、蒸発器10を順次配管接続し、凝縮器8と蒸発器1
0間に吐出側に第1の油分離器3、第2の油分離器4を
それぞれ有する第1の低圧シェル式圧縮機1、第2の低
圧シェル式圧縮機2を並列に配管接続して冷凍サイクル
を構成している。前記第1の油分離器及び第2の油分離
器はそれぞれオイルタンク5に接続され、また、第1の
機械式オイルレギュレータ6及び第2の機械式オイルレ
ギュレータ7はそれぞれ第1の低圧シェル式圧縮機1及
び第2の低圧シェル式圧縮機2の低圧部に接続されると
ともに、オイルタンク5に接続されている。さらにオイ
ルタンク5は圧力調整弁11を介して冷凍サイクル低圧
側に配管接続されている。
2. Description of the Related Art FIG. 8 shows a refrigerating apparatus equipped with, for example, two compressors. In the drawing, reference numeral 1 denotes a first low-pressure shell compressor, 2 denotes a second low-pressure shell compressor, and 3 denotes a first low-pressure shell compressor. 1 is an oil separator, 4 is a second oil separator, 5 is an oil tank, 6 is a first mechanical oil regulator, 7 is a second mechanical oil regulator, 8 is a condenser, 9 is a throttle device, Reference numeral 10 denotes an evaporator, 11 denotes a pressure control valve, and a condenser 8, a throttle device 9, and an evaporator 10 are connected in series with a pipe, and the condenser 8 and the evaporator 1 are connected.
A first low-pressure shell-type compressor 1 and a second low-pressure shell-type compressor 2 each having a first oil separator 3 and a second oil separator 4 on the discharge side during a period of 0 are connected in parallel by piping. Constructs a refrigeration cycle. The first oil separator and the second oil separator are connected to an oil tank 5, respectively, and the first mechanical oil regulator 6 and the second mechanical oil regulator 7 are each a first low pressure shell type. The compressor 1 and the second low-pressure shell type compressor 2 are connected to a low-pressure portion of the compressor 2 and are also connected to an oil tank 5. Further, the oil tank 5 is connected to the refrigeration cycle on a low pressure side via a pressure regulating valve 11.

【0003】この装置の動作は第1の低圧シェル式圧縮
機1、第2の低圧シェル式圧縮機2より、冷媒ガスと共
に吐出された冷凍機油を第1の油分離器3、第2の油分
離器4にて冷媒ガスと分離し、低圧側への圧力逃がし回
路であるオイルタンク5と冷凍サイクル低圧側を接続し
た配管に設置した圧力調整弁11にて低圧と一定の差圧
を持った中間圧に保たれたオイルタンク5に一時溜め
る。第1の低圧シェル式圧縮機1、第2の低圧シェル式
圧縮機2にそれぞれ取付けられた第1の機械式オイルレ
ギュレータ6、第2の機械式オイルレギュレータ7にて
冷凍機油中のフロ−トで油面を検知し、前記圧縮機1、
2の油面高さを一定に保つようにしている。即ち、冷凍
機油の減少による油面の所定の高さ迄の下降にともなう
フロ−トの下降によりニ−ドル弁を開口し、前記差圧に
よりオイルタンク5より冷凍機油が供給され、冷凍機油
の供給によりフロ−トが所定の高さまで上昇し、ニ−ド
ル弁が閉鎖し冷凍機油の供給が停止され、前記圧縮機
1、2の油面高さを一定に保つようにしている。
The operation of this device is as follows. Refrigeration oil discharged together with refrigerant gas from the first low-pressure shell compressor 1 and the second low-pressure shell compressor 2 is supplied to a first oil separator 3 and a second oil separator. The refrigerant gas was separated from the refrigerant gas by the separator 4, and a low pressure and a constant differential pressure were obtained by the pressure regulating valve 11 installed in the pipe connecting the oil tank 5, which is a pressure relief circuit to the low pressure side, and the low pressure side of the refrigeration cycle. The oil is temporarily stored in the oil tank 5 maintained at the intermediate pressure. The first mechanical oil regulator 6 and the second mechanical oil regulator 7 attached to the first low-pressure shell compressor 1 and the second low-pressure shell compressor 2 respectively float the refrigerating machine oil. The oil level is detected by the compressor 1,
2 to keep the oil level constant. That is, the needle valve is opened by the lowering of the float following the lowering of the oil level to a predetermined height due to the decrease of the refrigerating machine oil, and the refrigerating machine oil is supplied from the oil tank 5 by the above-mentioned differential pressure. By the supply, the float rises to a predetermined height, the needle valve closes, the supply of the refrigerating machine oil is stopped, and the oil level of the compressors 1 and 2 is kept constant.

【0004】[0004]

【発明が解決しようとする課題】しかしながら外気温度
の上昇による高圧上昇により、オイルタンク5の内圧が
上昇し、オイルタンク5からサクション側への圧力逃し
回路上に取付けた圧力調整弁11の逃し量が足らずにオ
イルタンク5の内圧と冷凍サイクルの低圧との差圧が大
きくなり、圧縮機1、2に取付けた機械式オイルレギュ
レータ6、7の作動差圧以上の差圧がつくと、冷凍機油
がオイルタンク5から圧縮機1、2に過剰に流れ込むこ
とがあった。圧縮機に過剰の油が供給されると圧縮機
1、2の圧縮室への油の持ち上げ量が増加し、圧縮機
1、2が油圧縮をしてしまい、寿命を縮めることにな
る。
However, the internal pressure of the oil tank 5 rises due to the high pressure rise due to the rise of the outside air temperature, and the relief amount of the pressure regulating valve 11 mounted on the pressure relief circuit from the oil tank 5 to the suction side. When the pressure difference between the internal pressure of the oil tank 5 and the low pressure of the refrigerating cycle increases, and the differential pressure exceeds the operating differential pressure of the mechanical oil regulators 6 and 7 attached to the compressors 1 and 2, the refrigerating machine oil Excessively flowed into the compressors 1 and 2 from the oil tank 5 in some cases. If excess oil is supplied to the compressor, the amount of oil lifted to the compression chambers of the compressors 1 and 2 increases, and the compressors 1 and 2 perform oil compression, thereby shortening the life.

【0005】また、ポンプダウンによる冷凍サイクルの
停止時の低圧の急激な引き込みに対し、オイルタンク5
からサクション側への圧力逃がし回路上に設けた圧力調
整弁11が追従しきれずにオイルタンク5の内圧と冷凍
サイクルの低圧との差圧が急激に増加し、圧縮機1、2
に取付けた機械式オイルレギュレータ6、7の作動差圧
以上の差圧がつき、冷凍機油がオイルタンク5から圧縮
機1、2に過剰に流れ込むことがあった。圧縮機1、2
に過剰の油が供給されると圧縮機1、2の油の圧縮室へ
の持ち上げ量が増加し、圧縮機1、2が油圧縮をしてし
まい、寿命を縮めることになる。
[0005] In addition, when the refrigeration cycle is stopped due to the pump down, the low pressure is suddenly pulled in.
The pressure regulating valve 11 provided on the pressure relief circuit from the pressure to the suction side cannot follow up, and the differential pressure between the internal pressure of the oil tank 5 and the low pressure of the refrigeration cycle increases sharply, and the compressors 1, 2
, The refrigerating machine oil may excessively flow from the oil tank 5 into the compressors 1 and 2. Compressor 1, 2
When excessive oil is supplied to the compressor, the amount of lift of the oil of the compressors 1 and 2 to the compression chamber increases, and the compressors 1 and 2 perform oil compression, thereby shortening the service life.

【0006】また、冷凍サイクルの長期間の停止による
多量の液冷媒の圧縮機1、2等の低圧側への寝込み状態
からの起動において、低圧の急激な圧力変化が生じオイ
ルタンク5からサクション側への圧力逃し回路上に設置
した圧力調整弁11が追従しきれずにオイルタンク5内
圧と冷凍サイクル低圧との差圧が急激に増加し、圧縮機
1、2に取付けた機械式オイルレギュレータ6、7の作
動差圧以上の差圧がつき、冷凍機油がオイルタンク5か
ら圧縮機1、2に過剰に流れ込むことがあった。圧縮機
1、2に過剰の油が供給されると圧縮機1、2の油の圧
縮室への持ち上げ量が増加し、圧縮機1、2が油圧縮を
してしまい、寿命を縮めることになる。
Further, when a large amount of liquid refrigerant is started from a stagnation state on the low pressure side of the compressors 1 and 2 due to a long-term stoppage of the refrigeration cycle, a sudden low pressure change occurs and the oil tank 5 moves from the suction side to the suction side. The pressure regulating valve 11 installed on the pressure relief circuit cannot follow up, and the pressure difference between the internal pressure of the oil tank 5 and the low pressure of the refrigeration cycle rapidly increases, and the mechanical oil regulator 6 attached to the compressors 1 and 2 7, the refrigerating machine oil sometimes excessively flows from the oil tank 5 into the compressors 1 and 2. When excessive oil is supplied to the compressors 1 and 2, the amount of oil lifted into the compression chambers of the compressors 1 and 2 increases, and the compressors 1 and 2 perform oil compression and shorten the life. Become.

【0007】また、前記のような冷凍サイクルの長期間
停止の場合、液冷媒が圧縮機1、2の冷凍機油中に寝込
み、冷凍サイクルの起動時に寝込んだ冷媒が蒸発し、オ
イルフォーミングと言った現象が生じる。この際、オイ
ルレギュレータ6、7が誤動作を起し安定した油面制御
ができない。
In the case where the refrigeration cycle is stopped for a long period of time as described above, the liquid refrigerant falls into the refrigerating machine oil of the compressors 1 and 2, and the refrigerant that has fallen at the start of the refrigeration cycle evaporates, which is called oil forming. A phenomenon occurs. At this time, the oil regulators 6 and 7 malfunction, and stable oil level control cannot be performed.

【0008】また、圧縮機1、2に取付けた機械式オイ
ルレギュレータ6、7は作動差圧の範囲内でも多少の漏
れがあり圧縮機1、2の油面が必要以上に高くなること
がある。
Further, the mechanical oil regulators 6 and 7 mounted on the compressors 1 and 2 have some leakage even within the range of the operating differential pressure, and the oil levels of the compressors 1 and 2 may become higher than necessary. .

【0009】また、前記の課題は従来から使用している
HCFC系冷媒のみならず、HFC系冷媒でもる問題である。
またHFC系冷媒はその特性上、スラッジが発生しオイル
レギュレータ6、7のオリフィスを詰まらせる恐れが
る。
[0009] The above-mentioned problem has been conventionally used.
The problem is not only HCFC-based refrigerants but also HFC-based refrigerants.
Also, due to its characteristics, the HFC-based refrigerant may generate sludge and clog the orifices of the oil regulators 6 and 7.

【0010】この発明は、前記の問題点を解決するため
になされたものであり、オイルタンクの内圧の上昇、冷
凍サイクル低圧側の圧力低下等によりオイルタンク内圧
と冷凍サイクル低圧との差圧が大きくなってもオイルタ
ンクの冷凍機油が圧縮機に過剰に供給されることが防止
でき、オイルタンクより冷凍機油が安定して適正量戻さ
れることを目的とする。また、冷凍サイクルの長期間の
停止により、冷媒の冷凍機油中への寝込みによる起動時
の冷媒の急激な蒸発、オイルフォ−ミングが生じてもオ
イルタンクの冷凍機油が圧縮機に過剰に供給されること
が防止でき、オイルタンクの冷凍機油が圧縮機に安定し
て適正量戻されることを目的とする。また、スラッジが
発生し易いハイドロフルオルカ−ボンを冷媒として使用
しても冷凍機油が圧縮機に安定して適正量戻されること
を目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and the differential pressure between the internal pressure of the oil tank and the low pressure of the refrigeration cycle is reduced by an increase in the internal pressure of the oil tank, a decrease in the pressure on the low pressure side of the refrigeration cycle, and the like. An object of the present invention is to prevent the refrigerating machine oil in the oil tank from being excessively supplied to the compressor even if it becomes larger, and to stably return the refrigerating machine oil from the oil tank to an appropriate amount. Even if the refrigerant cycle is stopped for a long period of time, the refrigerant oil in the oil tank is excessively supplied to the compressor even if the refrigerant suddenly evaporates at the time of start-up due to stagnation of the refrigerant into the refrigerant oil and oil forming occurs. It is an object of the present invention to prevent the refrigerating machine oil in the oil tank from being returned to the compressor in an appropriate amount stably. It is another object of the present invention to stably return a proper amount of refrigerating machine oil to a compressor even when a hydrofluorcarbon which easily generates sludge is used as a refrigerant.

【0011】[0011]

【課題を解決するための手段】この発明の第1の発明
は、凝縮器、絞り装置、蒸発器を順次配管接続し、凝縮
器と蒸発器間に、吐出側にそれぞれ油分離器を有する複
数の圧縮機を並列に配管接続した冷凍サイクルと、圧縮
機の低圧部にそれぞれ取付けられた圧縮機の油面制御器
と、油分離器及び圧縮機の油面制御器とそれぞれ配管接
続するとともに、逆止弁を介して冷凍サイクルの低圧側
と配管接続したオイルタンクとを備えたものである。
According to a first aspect of the present invention, a condenser, a throttle device, and an evaporator are sequentially connected to a pipe, and a plurality of oil separators are provided between the condenser and the evaporator on the discharge side. A refrigeration cycle in which the compressors are connected in parallel with pipes, an oil level controller of the compressor attached to the low-pressure section of the compressor, and an oil level controller of the oil separator and the compressor, respectively, and It has an oil tank connected to the low pressure side of the refrigeration cycle via a check valve.

【0012】また、第2の発明は、凝縮器、絞り装置、
蒸発器を順次配管接続し、凝縮器と蒸発器間に吐出側に
それぞれ油分離器を有する複数の圧縮機を並列に配管接
続した冷凍サイクルと、圧縮機の低圧部にそれぞれ取付
けられた圧縮機の油面制御器と、油分離器及び圧縮機の
油面制御器とそれぞれ配管接続するとともに、圧力調整
弁を介して冷凍サイクルの低圧側と配管接続したオイル
タンクと、オイルタンクと圧縮機の油面制御器の間の配
管に給油弁を取付け、冷凍装置の起動時に給油弁の動作
を遅延させ、冷凍装置の起動から所定時間経過後に給油
弁を開とする第1のタイマ手段を備えたものである。
Further, a second invention provides a condenser, a throttle device,
A refrigeration cycle in which a plurality of compressors each having an oil separator on the discharge side are connected in parallel between the condenser and the evaporator by connecting pipes to the evaporator in sequence, and compressors attached to low-pressure parts of the compressors, respectively. The oil tank connected to the oil level controller of the oil separator and the compressor, and the oil tank connected to the low pressure side of the refrigeration cycle via a pressure regulating valve. A first timer means for attaching an oil supply valve to the pipe between the oil level controllers, delaying the operation of the oil supply valve when the refrigeration apparatus starts, and opening the oil supply valve after a predetermined time has elapsed from the start of the refrigeration apparatus; Things.

【0013】また、第3の発明は、凝縮器、絞り装置、
蒸発器を順次配管接続し、凝縮器と蒸発器間に吐出側に
それぞれ油分離器を有する複数の圧縮機を並列に配管接
続した冷凍サイクルと、圧縮機の低圧部にそれぞれ取付
けられた圧縮機の油面制御器と、油分離器及び圧縮機の
油面制御器とそれぞれ配管接続するとともに、圧力調整
弁を介して冷凍サイクルの低圧側と配管接続したオイル
タンクと、オイルタンクと圧縮機の油面制御器の間に取
付けられた給油弁と、オイルタンク内圧を検知する第1
の圧力センサーと、冷凍サイクルの低圧側圧力を検知す
る第2の圧力センサーと、両圧力センサーの検出値を受
け、その差圧を演算し、差圧が所定値を越えたら給油弁
を閉とし、差圧が所定値以下になったら給油弁を開とす
る第1の給油弁制御装置とを備えたものである。
Further, a third invention provides a condenser, a throttle device,
A refrigeration cycle in which a plurality of compressors each having an oil separator on the discharge side are connected in parallel between the condenser and the evaporator by connecting pipes to the evaporator in sequence, and compressors attached to low-pressure parts of the compressors, respectively. The oil tank connected to the oil level controller of the oil separator and the compressor, and the oil tank connected to the low pressure side of the refrigeration cycle via a pressure regulating valve. A refueling valve installed between the oil level controllers and a first for detecting the oil tank internal pressure
And a second pressure sensor that detects the low pressure side pressure of the refrigeration cycle, and receives the detection values of both pressure sensors, calculates the differential pressure, and closes the refueling valve when the differential pressure exceeds a predetermined value. A first refueling valve control device that opens the refueling valve when the differential pressure becomes equal to or less than a predetermined value.

【0014】また、第4の発明は、凝縮器、絞り装置、
蒸発器を順次配管接続し、凝縮器と蒸発器間に吐出側に
それぞれ油分離器を有する複数の圧縮機を並列に配管接
続した冷凍サイクルと、圧縮機の低圧部にそれぞれ取付
けられた圧縮機の油面制御器と、油分離器及び圧縮機の
油面制御器とそれぞれ配管接続するとともに、圧力調整
弁を介して冷凍サイクルの低圧側と配管接続したオイル
タンクと、オイルタンクと圧縮機の油面制御器の間に取
付けられた給油弁と、オイルタンク内の冷媒ガス温度を
検知する第1の温度センサーと、圧縮機内部の冷媒ガス
温度または圧縮機への吸入冷媒ガス温度を検知する第2
の温度センサーと、両温度センサーの検出値を受け、圧
力に換算し差圧を演算し、差圧が所定値を越えたら給油
弁を閉とし、差圧が所定値以下になったら給油弁を開と
する第2の給油弁制御装置とを備えたものである。
A fourth invention provides a condenser, a throttle device,
A refrigeration cycle in which a plurality of compressors each having an oil separator on the discharge side are connected in parallel between the condenser and the evaporator by connecting pipes to the evaporator in sequence, and compressors attached to low-pressure parts of the compressors, respectively. The oil tank connected to the oil level controller of the oil separator and the compressor, and the oil tank connected to the low pressure side of the refrigeration cycle via a pressure regulating valve. A refueling valve mounted between the oil level controllers, a first temperature sensor for detecting the temperature of the refrigerant gas in the oil tank, and a temperature of the refrigerant gas inside the compressor or a temperature of the refrigerant gas sucked into the compressor. Second
The temperature sensor and both temperature sensors receive the detected values, convert them to pressure, calculate the differential pressure, close the refueling valve when the differential pressure exceeds a predetermined value, and close the refueling valve when the differential pressure falls below the predetermined value. And a second oil supply valve control device to be opened.

【0015】また、第5の発明は、第2乃至第4の発明
において、給油弁を閉としてからの経過時間を計測する
第2のタイマー手段を備え、第2のタイマー手段の計測
値が所定値に達したら、給油弁を開とするものである。
According to a fifth aspect of the present invention, in the second to fourth aspects, a second timer means for measuring an elapsed time since the refueling valve is closed is provided, and the measured value of the second timer means is a predetermined value. When the value is reached, the fuel supply valve is opened.

【0016】また、第6の発明は、第1の発明乃至第5
の発明において、冷媒にハイドロフルオルカーボンを用
いるとともに、オイルタンクと油面制御器間の配管にス
ラッジ捕捉装置を備えたものである。
The sixth invention is the first to fifth inventions.
In the present invention, a hydrofluorocarbon is used as a refrigerant, and a sludge catching device is provided in a pipe between an oil tank and an oil level controller.

【0017】[0017]

【発明の実施の形態】実施の形態1.以下、この発明の
実施の形態を図にて説明する。図1は実施の形態1に係
る冷凍装置の構成図を示すものである。図1は例として
2台の圧縮機を搭載する冷凍サイクルを示しており、1
は第1の低圧シェル式圧縮機、2は第2の低圧シェル式
圧縮機、3は第1の低圧シェル式圧縮機1用の第1の油
分離器、4は第2の低圧シェル式圧縮機2用の第2の油
分離器、5はオイルタンク、6は第1の低圧シェル式圧
縮機1用で、圧縮機の油面制御器である第1の機械式オ
イルレギュレータ、7は第2の低圧シェル式圧縮機2用
で、圧縮機の油面制御器である第2の機械式オイルレギ
ュレータ、8は凝縮器、9は絞り装置、10は蒸発器、
12は逆止弁であり、凝縮器8、絞り装置9、蒸発器1
0を順次配管接続し、凝縮器8と蒸発器10間に吐出側
に第1の油分離器3、第2の油分離器4をそれぞれ有す
る第1の低圧シェル式圧縮機1、第2の低圧シェル式圧
縮機2を並列に配管接続して冷凍サイクルを構成してい
る。前記第1の油分離器3及び第2の油分離器4はそれ
ぞれオイルタンク5に接続され、また、第1の機械式オ
イルレギュレータ6及び第2の機械式オイルレギュレー
タ7はそれぞれ第1の低圧シェル式圧縮機1及び第2の
低圧シェル式圧縮機2の低圧部に接続されるとともに、
オイルタンク5に接続されている。さらにオイルタンク
5は逆止弁12を介して冷凍サイクル低圧側に配管接続
されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a configuration diagram of a refrigeration apparatus according to Embodiment 1. FIG. 1 shows a refrigeration cycle equipped with two compressors as an example.
Is a first low-pressure shell compressor, 2 is a second low-pressure shell compressor, 3 is a first oil separator for the first low-pressure shell compressor 1, and 4 is a second low-pressure shell compressor The second oil separator for the compressor 2, 5 is an oil tank, 6 is for the first low-pressure shell-type compressor 1, a first mechanical oil regulator which is an oil level controller of the compressor, and 7 is a second oil separator. 2 is a second mechanical oil regulator for the low-pressure shell-type compressor 2 which is an oil level controller of the compressor, 8 is a condenser, 9 is a throttle device, 10 is an evaporator,
Reference numeral 12 denotes a check valve, which includes a condenser 8, a throttle device 9, and an evaporator 1.
0 are connected in series with a pipe, and a first low-pressure shell-type compressor 1 and a second low-pressure compressor each having a first oil separator 3 and a second oil separator 4 on the discharge side between the condenser 8 and the evaporator 10. The refrigeration cycle is configured by connecting low-pressure shell-type compressors 2 in parallel with piping. The first oil separator 3 and the second oil separator 4 are respectively connected to an oil tank 5, and the first mechanical oil regulator 6 and the second mechanical oil regulator 7 are respectively connected to a first low pressure While being connected to the low-pressure part of the shell-type compressor 1 and the second low-pressure shell-type compressor 2,
It is connected to the oil tank 5. Further, the oil tank 5 is connected to the refrigeration cycle on a low pressure side via a check valve 12.

【0018】この装置の動作は第1の低圧シェル式圧縮
機1、第2の低圧シェル式圧縮機2より、冷媒ガスと共
に吐出された冷凍機油を第1の油分離器3、第2の油分
離器4にて冷媒ガスと分離し、低圧側への圧力逃がし回
路であるオイルタンク5と冷凍サイクル低圧側を接続し
た配管に設置した逆止弁12にて低圧と一定の差圧を持
った中間圧に保たれたオイルタンク5に一時溜める。第
1の低圧シェル式圧縮機1、第2の低圧シェル式圧縮機
2にそれぞれ取付けられた第1の機械式オイルレギュレ
ータ6、第2の機械式オイルレギュレータ7において冷
凍機油中のフロ−トで油面を検知し、前記圧縮機1、2
の油面高さを一定範囲に保つようにしている。即ち、冷
凍機油の減少による油面の所定の高さ迄の下降にともな
いフロ−トが所定の高さ迄下降し、ニ−ドル弁が開とな
り、前記差圧によりオイルタンク5より冷凍機油が供給
され、冷凍機油の供給によりフロ−トが所定の高さまで
上昇し、ニ−ドル弁が閉となり冷凍機油の供給が停止さ
れ、前記圧縮機1、2の油面高さを一定範囲に保つよう
にしている。
The operation of this device is as follows. Refrigeration oil discharged together with the refrigerant gas from the first low-pressure shell compressor 1 and the second low-pressure shell compressor 2 is supplied to the first oil separator 3 and the second oil. The gas was separated from the refrigerant gas by the separator 4, and a low pressure and a constant differential pressure were obtained by a check valve 12 installed in a pipe connecting the oil tank 5 as a pressure relief circuit to the low pressure side and the refrigeration cycle low pressure side. The oil is temporarily stored in the oil tank 5 maintained at the intermediate pressure. The first mechanical oil regulator 6 and the second mechanical oil regulator 7 attached to the first low-pressure shell type compressor 1 and the second low-pressure shell type compressor 2 respectively use the float in the refrigerating machine oil. The oil level is detected and the compressors 1, 2
Is kept within a certain range. That is, as the oil level falls to a predetermined height due to the decrease of the refrigerating machine oil, the float lowers to a predetermined height, the needle valve opens, and the refrigerating machine oil is discharged from the oil tank 5 by the differential pressure. Supplied, the float rises to a predetermined height by the supply of the refrigerating machine oil, the needle valve closes, the supply of the refrigerating machine oil is stopped, and the oil level of the compressors 1 and 2 is kept within a certain range. Like that.

【0019】本実施の形態では、オイルタンク5と冷凍
サイクル低圧側の配管接続を、従来技術では一般的な圧
力調整弁11を介して接続するのに対して本実施の形態
ではオイルタンク5側より低圧側に連通する逆止弁12
を介して接続している。逆止弁12は、一般の圧力調整
弁11より圧力変動に対して追従性が良く、急激な圧力
変動に伴う差圧の上昇を防ぎ、常に機械式オイルレギュ
レータ6,7の作動差圧範囲内に差圧を保つことで安定
した油面制御を行うことを可能とする。
In the present embodiment, the oil tank 5 and the piping connection on the low pressure side of the refrigeration cycle are connected via a general pressure regulating valve 11 in the prior art, whereas in the present embodiment, the oil tank 5 side is connected. Check valve 12 communicating with lower pressure side
Connected through. The non-return valve 12 has better followability to pressure fluctuations than the general pressure regulating valve 11, prevents the differential pressure from rising due to sudden pressure fluctuations, and always operates within the operating differential pressure range of the mechanical oil regulators 6,7. By maintaining the differential pressure, stable oil level control can be performed.

【0020】実施の形態2.図2は実施の形態2に係る
冷凍装置の構成図を示すものである。図2は例として2
台の圧縮機を搭載する冷凍サイクルを示しており、実施
の形態1の図1に相当する構成は同一の番号を付けその
説明を省略する。図2において、11は圧力調整弁、1
7は、オイルタンク5と圧縮機の油面制御器である機械
式オイルレギュレ−タ6、7の間の配管に設けた給油弁
17であり、18は、冷凍装置の起動時に給油弁17の
開弁動作を遅延させ、冷凍装置の起動から所定時間経過
後に給油弁17を開弁する第1のタイマ−手段であるタ
イマ−である。
Embodiment 2 FIG. 2 shows a configuration diagram of a refrigeration apparatus according to Embodiment 2. FIG. 2 shows 2 as an example.
1 shows a refrigeration cycle in which two compressors are mounted, and the components corresponding to those in FIG. 1 of the first embodiment are denoted by the same reference numerals and description thereof is omitted. In FIG. 2, 11 is a pressure regulating valve, 1
Reference numeral 7 denotes an oil supply valve 17 provided in a pipe between the oil tank 5 and mechanical oil regulators 6 and 7, which are oil level controllers of the compressor. Reference numeral 18 denotes an oil supply valve 17 when the refrigeration apparatus is started. This is a timer which is a first timer means for delaying the valve opening operation and opening the fuel supply valve 17 after a predetermined time has elapsed from the start of the refrigerating apparatus.

【0021】本実施の形態の冷凍サイクル及び機械式オ
イルレギュレ−タ6、7の動作は、実施の形態1に記載
と同様であるが、給油弁17及びタイマ−18を設置
し、冷凍装置の起動時には起動からの経過時間をタイマ
−18で計測し、起動から所定時間経過してから給油弁
17を閉から開とするようにしたので、長期間の冷凍装
置停止後の起動に際して、多量の冷媒が圧縮機に寝込ん
だ状態であって冷凍装置の起動時に激しくフォーミング
が生じ、機械式オイルレギュレータ6、7が誤動作する
ような場合であっても、フォーミングが小さくなり誤動
作がなくなるような所定時間、給油弁17を閉にしてい
ることで、冷凍装置起動時におけるオイルレギュレータ
6,7の誤動作による油面の不安定な制御を防ぐことが
できる。また、圧力調整弁11として実施の形態1と同
じく逆止弁12を使うことにより、起動時以外も機械式
オイルレギュレ−タ6、7の作動差圧範囲を越えるよう
な急激な圧力変化が生じ、圧力調整弁11の圧力逃がし
調整が追い付かないような場合にも過剰の冷凍機油の圧
縮機への流入が防止でき、オイルタンク5から圧縮機へ
の適正量の給油が可能となる。
The operation of the refrigeration cycle and the mechanical oil regulators 6 and 7 in this embodiment is the same as that described in the first embodiment, except that an oil supply valve 17 and a timer 18 are installed, and At start-up, the elapsed time from start-up is measured by a timer -18, and after a predetermined time has elapsed from start-up, the refueling valve 17 is changed from closed to open. Even when the refrigerant is laid down in the compressor and vigorous forming occurs when the refrigerating apparatus is started, and the mechanical oil regulators 6 and 7 malfunction, a predetermined period of time during which the forming is reduced and the malfunction does not occur. Since the oil supply valve 17 is closed, unstable control of the oil level due to malfunction of the oil regulators 6 and 7 at the time of starting the refrigeration system can be prevented. Also, by using the check valve 12 as the pressure regulating valve 11 as in the first embodiment, a sudden pressure change exceeding the operating differential pressure range of the mechanical oil regulators 6 and 7 occurs even at the time other than the start. Even in the case where the pressure relief adjustment of the pressure adjustment valve 11 cannot keep up, it is possible to prevent excess refrigerating machine oil from flowing into the compressor, and to supply an appropriate amount of oil from the oil tank 5 to the compressor.

【0022】実施の形態3.図3、図4は実施の形態3
に係る冷凍装置の構成図を示すものである。図3、図4
は例として2台の圧縮機を搭載する冷凍サイクルを示し
ており、実施の形態1の図1及び実施の形態2の図2に
相当する構成は同一の番号を付けその説明を省略する。
図3において、13はオイルタンク5の内圧を測定する
第1の圧力センサ、14、15はそれぞれ圧縮機1、2
に取付けられ、冷凍サイクルの低圧側圧力を測定する第
2の圧力センサ、16は、前記それぞれの圧力センサー
の検出値が入力され、第1の圧力センサ13と第2の圧
力センサ14、15との差圧を算出し、その差圧が所定
値を越えたら給油弁17を閉弁し、前記差圧が所定値以
下となったら給油弁17を開弁する第1の給油弁制御装
置である。そこで、圧縮機の油面制御器である機械式オ
イルレギュレ−タ6、7の作動差圧範囲を超えるような
急激な圧力変化が生じ、圧力調整弁11の圧力逃し調整
が追いつかないような差圧が大になるような状態が生じ
ても、給油弁17を閉の状態にすることにより過剰の冷
凍機油が圧縮機に流れ込むことが防止できるとともに適
正量の冷凍機油の供給により、圧縮機内の油面を一定範
囲に保つよう安定した油面制御が可能となる。
Embodiment 3 FIG. 3 and 4 show a third embodiment.
FIG. 1 is a diagram showing a configuration of a refrigeration apparatus according to the first embodiment. 3 and 4
Shows a refrigeration cycle equipped with two compressors as an example. Components corresponding to FIG. 1 of the first embodiment and FIG. 2 of the second embodiment are given the same reference numerals and description thereof is omitted.
3, reference numeral 13 denotes a first pressure sensor for measuring the internal pressure of the oil tank 5, and reference numerals 14 and 15 denote compressors 1 and 2, respectively.
The second pressure sensor, which is attached to the refrigeration cycle and measures the low pressure side pressure of the refrigeration cycle, receives the detection values of the respective pressure sensors, and receives the first pressure sensor 13, the second pressure sensors 14, 15, Is a first refueling valve control device that calculates the differential pressure of the fuel oil, closes the refueling valve 17 when the differential pressure exceeds a predetermined value, and opens the fueling valve 17 when the differential pressure becomes equal to or less than the predetermined value. . Then, a sudden pressure change occurs which exceeds the operating differential pressure range of the mechanical oil regulators 6 and 7 which are the oil level controllers of the compressor, and a pressure difference of the pressure regulating valve 11 that cannot keep up. Even if a state in which the pressure becomes large, by closing the oil supply valve 17, it is possible to prevent excess refrigerating machine oil from flowing into the compressor and to supply an appropriate amount of refrigerating machine oil. Stable oil level control is possible to keep the oil level within a certain range.

【0023】本実施の形態の変形例を図4により説明す
る。図4おいて、25は給油弁17を閉弁してからの経
過時間を計測する第2のタイマ−手段であるタイマ−で
ある。第1の圧力センサ−13と第2の圧力センサ−1
4、15との検出圧力の差圧を第1の給油弁制御装置1
6で算出し、その差圧が所定値を越えたら給油弁17を
閉弁し、給油弁を閉弁してからの経過時間をタイマ−2
5で計測し、差圧が所定値以下になると見込まれる所定
時間経過したら給油弁17を開弁するようにしたもので
ある。本変形例では、第1の給油弁制御装置16で差圧
により給油弁17を開閉するのに比べて同様の効果が得
られるが、給油弁17を開弁するのはタイマ−25の計
測時間に基づいて行うので、第1の給油弁制御装置16
が簡易化できる。また、圧力調整弁11として逆止弁1
2を使用することにより圧縮機の油面制御の信頼性がよ
り向上する。
A modification of this embodiment will be described with reference to FIG. In FIG. 4, reference numeral 25 denotes a timer which is a second timer means for measuring an elapsed time after the refueling valve 17 is closed. First pressure sensor-13 and second pressure sensor-1
The difference between the detected pressures of the first and second oil supply valves 1 and 4
6. When the differential pressure exceeds a predetermined value, the fuel supply valve 17 is closed, and the elapsed time since the fuel supply valve is closed is counted by timer-2.
5, the refueling valve 17 is opened after a lapse of a predetermined time in which the differential pressure is expected to be equal to or less than a predetermined value. In the present modified example, the same effect can be obtained as compared with the case where the first refueling valve control device 16 opens and closes the refueling valve 17 by a differential pressure. Therefore, the first refueling valve control device 16
Can be simplified. Further, the check valve 1 is used as the pressure regulating valve 11.
By using 2, the reliability of oil level control of the compressor is further improved.

【0024】実施の形態4.図5、図6は実施の形態4
に係る冷凍装置の構成図を示すものである。図5、図6
は例として2台の圧縮機を搭載する冷凍サイクルを示し
ており、前記の実施の形態1乃至3の図に相当する構成
は同一の番号を付けその説明を省略する。図5におい
て、19はオイルタンク5内の冷媒ガス温度を検知する
ための第1の温度センサ−、20、21は圧縮機1、2
内部の低圧のガス冷媒の温度または圧縮機1、2への吸
入冷媒ガス温度を検知するため圧縮機1、2に取付けら
れた第2の温度センサ−、22は、前記それぞれの温度
センサ−の検出値が入力され、物性の近似式から圧力に
換算し、差圧計算を行い、その差圧が所定値を越えたら
給油弁17を閉弁し、前記差圧が所定値以下となったら
給油弁17を開弁する第2の給油弁制御装置である。そ
こで、圧縮機の油面制御器である機械式オイルレギュレ
−タ6、7の作動差圧範囲を越えるような急激な圧力変
化が生じ、圧力調整弁逆止弁11の圧力逃しが調整が追
いつかないような差圧が大になるような状態が生じて
も、給油弁17を閉の状態にすることにより過剰の冷凍
機油が圧縮機に流れ込むことが防止できるとともに適正
量の冷凍機油の供給により、圧縮機内の油面を一定範囲
に保つよう安定した油面制御が可能となる点は先の実施
の形態3記載と同じである。
Embodiment 4 5 and 6 show a fourth embodiment.
FIG. 1 is a diagram showing a configuration of a refrigeration apparatus according to the first embodiment. 5 and 6
Shows a refrigeration cycle in which two compressors are mounted as an example. Components corresponding to the drawings in the first to third embodiments are given the same reference numerals, and description thereof is omitted. 5, reference numeral 19 denotes a first temperature sensor for detecting the temperature of the refrigerant gas in the oil tank 5, and reference numerals 20 and 21 denote compressors 1 and 2.
The second temperature sensors 22 attached to the compressors 1 and 2 for detecting the temperature of the internal low-pressure gas refrigerant or the temperature of the refrigerant gas sucked into the compressors 1 and 2 are the same as those of the respective temperature sensors. The detected value is input, converted into a pressure from an approximate expression of physical properties, and a differential pressure is calculated. When the differential pressure exceeds a predetermined value, the fuel supply valve 17 is closed. This is a second refueling valve control device that opens the valve 17. Then, a sudden pressure change occurs which exceeds the operating differential pressure range of the mechanical oil regulators 6 and 7 which are oil level controllers of the compressor, and the pressure relief of the pressure control valve check valve 11 catches up with the adjustment. Even if there is such a situation that the pressure difference becomes large, it is possible to prevent the excess refrigerating machine oil from flowing into the compressor by closing the refueling valve 17 and to supply an appropriate amount of the refrigerating machine oil. The point that the oil level can be stably controlled so as to keep the oil level in the compressor within a certain range is the same as that described in the third embodiment.

【0025】本実施の形態の変形例を図6にしめすよう
に、先の実施の形態3の変形例と同じく、第1の温度セ
ンサ−19と第2の温度センサ−20、21との検出値
に基づき、圧力換算により算出した差圧が所定値を越え
たら給油弁17を閉弁し、給油弁を閉弁してからの経過
時間を第2のタイマ−手段であるタイマ−25で計測
し、差圧が所定値以下になると見込まれる所定時間経過
したら給油弁17を開弁するようにしてもよい。本変形
例では、第1の給油弁制御装置16で差圧により給油弁
17を開閉するのと同様な効果が得られるが、給油弁1
7を開弁するのはタイマ−25の計測時間に基づいて行
うので、第1の給油弁制御装置16が簡易化できる。ま
た、圧力調整弁11として逆止弁12を使用することに
より圧縮機の油面制御の信頼性がより向上するのも同様
である。
As shown in FIG. 6 as a modification of the present embodiment, the detection of the first temperature sensor 19 and the second temperature sensors 20 and 21 is the same as in the modification of the third embodiment. Based on the value, when the differential pressure calculated by the pressure conversion exceeds a predetermined value, the fuel supply valve 17 is closed, and the elapsed time since the fuel supply valve is closed is measured by the timer 25 as the second timer means. Alternatively, the refueling valve 17 may be opened after a lapse of a predetermined time in which the differential pressure is expected to be equal to or less than the predetermined value. In the present modified example, the same effect as opening and closing the oil supply valve 17 by the differential pressure in the first oil supply valve control device 16 is obtained.
Since the valve 7 is opened based on the time measured by the timer 25, the first refueling valve control device 16 can be simplified. Similarly, the reliability of the oil level control of the compressor is further improved by using the check valve 12 as the pressure regulating valve 11.

【0026】実施の形態5.図7は実施の形態5に係る
冷凍装置の要部構成図を示すものである。図において、
6、7は2台の圧縮機にそれぞれ対応した圧縮機の油面
制御器である第1の機械式オイルレギュレ−タ、第2の
機械式オイルレギュレ−タであり、23はオイルタンク
5と第1の機械式オイルレギュレ−タ6とを接続する配
管及びオイルタンク5と第2のオイルレギュレ−タ7と
を接続する配管に設けたストレ−ナ、フィルタ−等のス
ラッジ捕捉装置である。その他の構成は前記の実施の形
態1乃至実施の形態4に記載のものと同じである。本実
施の形態によると、オイルタンク5から各オイルレギュ
レ−タ6、7に冷凍機油が供給される時、スラッジ捕捉
装置23で混入スラッジが捕捉され、各オイルレギュレ
−タ6、7のオリフィス詰まりを防止でき圧縮機の安定
した油面制御が可能となる。本実施の形態は、すべての
冷媒に有効であるが、特にスラッジの発生し易いHFC
系冷媒(R404A、R407C、R410A、R50
7A等)には有効である。スラッジ捕捉装置23の設置
位置は、図7の如くオイルタンク5と各オイルレギュレ
−タ6、7との接続配管で、各オイルレギュレ−タの分
岐管にそれぞれ設けることによりスラッジ捕捉装置23
がスラッジで目詰まりしても2個とも同時に不具合とな
るのを防止できる。また、オイルタンク5と各オイルレ
ギュレ−タ6、7との接続配管の共通接続管部に設けて
も各オイルレギュレ−タ6、7のオリフィス詰まりを防
止でき圧縮機の安定した油面制御が可能となるのは当然
である。
Embodiment 5 FIG. 7 shows a configuration diagram of a main part of a refrigeration apparatus according to Embodiment 5. In the figure,
Reference numerals 6 and 7 denote a first mechanical oil regulator and a second mechanical oil regulator which are oil level controllers of the compressors respectively corresponding to the two compressors. A sludge trapping device such as a strainer and a filter is provided in a pipe connecting the first mechanical oil regulator 6 and a pipe connecting the oil tank 5 and the second oil regulator 7. Other configurations are the same as those described in the first to fourth embodiments. According to the present embodiment, when the refrigerating machine oil is supplied from the oil tank 5 to each of the oil regulators 6 and 7, the mixed sludge is captured by the sludge capturing device 23 and the orifices of the oil regulators 6 and 7 are clogged. And the oil level of the compressor can be controlled stably. The present embodiment is effective for all refrigerants, but is particularly suitable for HFCs where sludge is easily generated.
System refrigerant (R404A, R407C, R410A, R50
7A). The installation position of the sludge catching device 23 is as shown in FIG. 7 by connecting pipes between the oil tank 5 and each of the oil regulators 6 and 7 and providing the sludge catching device 23 in a branch pipe of each oil regulator.
Can be prevented from becoming defective at the same time even if clogged with sludge. Also, even if the oil regulator 5 and the oil regulators 6 and 7 are provided in a common connecting pipe, the clogging of the orifices of the oil regulators 6 and 7 can be prevented, and stable oil level control of the compressor can be achieved. Of course, it is possible.

【0027】なお、前記の各実施の形態においては、圧
縮機は2台の例を示したが、2台に限らず、3台以上で
もよく、さらに1台でもよい。また、圧縮機としては、
低圧シェルタイプのものであれば種類は問わない。ま
た、油面制御器としては、機械式オイルレギュレ−タの
他、フロ−トスイッチと電磁弁の組合せ等、圧縮機の液
面検知手段と液面検知手段の結果に基づき差圧による冷
凍機油の供給、供給遮断手段を備えたものであればよ
い。さらに、前記の各実施の形態では、給油弁17をオ
イルタンク5と各油面制御器6、7を接続した配管のオ
イルタンク5側の共通配管部に1個設置した例を示した
が、各油面制御器6、7の分岐配管部にそれぞれ設置し
て、オイルタンク5と各圧縮機との差圧に基づき圧縮機
毎に給油弁17を個別制御してもよい。このようにする
ことにより、圧縮機毎に異常に高い差圧が生じても各圧
縮機が過剰給油や給油不足が生じず、複数の圧縮機の安
定した油面制御が可能となる。
In each of the above-described embodiments, two compressors have been described. However, the number of compressors is not limited to two, and may be three or more, or one. Also, as a compressor,
Any type can be used as long as it is a low-pressure shell type. As the oil level controller, in addition to a mechanical oil regulator, a refrigerating machine oil based on a differential pressure based on a result of a liquid level detecting means and a liquid level detecting means of a compressor, such as a combination of a float switch and a solenoid valve. What is necessary is just to be provided with the supply and supply cutoff means. Further, in each of the above-described embodiments, an example is shown in which one oil supply valve 17 is installed in a common pipe portion on the oil tank 5 side of the pipe connecting the oil tank 5 and each of the oil level controllers 6 and 7. The oil supply valves 17 may be individually controlled for each compressor based on the pressure difference between the oil tank 5 and each compressor by installing the oil level controllers 6 and 7 in the branch pipes. By doing so, even if an abnormally high differential pressure is generated for each compressor, each compressor does not suffer from excessive refueling or insufficient refueling, and stable oil level control of a plurality of compressors becomes possible.

【0028】[0028]

【発明の効果】以上説明したとおり第1の発明に係わる
冷凍装置は、凝縮器、絞り装置、蒸発器を順次配管接続
し、凝縮器と蒸発器間に、吐出側にそれぞれ油分離器を
有する複数の圧縮機を並列に配管接続した冷凍サイクル
と、圧縮機の低圧部にそれぞれ取付けられた圧縮機の油
面制御器と、油分離器及び圧縮機の油面制御器とそれぞ
れ配管接続するとともに、逆止弁を介して冷凍サイクル
の低圧側と配管接続したオイルタンクとを備えたので、
外気の上昇等の高圧上昇に伴うオイルタンク内圧の上昇
等による急激な圧力変動に伴う差圧の上昇に際し、逆止
弁が圧力変動に対して追従性がよく、差圧を圧縮機の油
面制御器の作動差圧範囲内とすることができ、オイルタ
ンクの冷凍機油が圧縮機に過剰に供給されることが防止
でき、オイルタンクより冷凍機油が安定して適正量戻す
ことが可能となり、安定した油面制御を行うことができ
る。
As described above, the refrigerating apparatus according to the first aspect of the present invention has a condenser, a throttling device, and an evaporator connected in series to a pipe, and has an oil separator on the discharge side between the condenser and the evaporator. A refrigeration cycle in which a plurality of compressors are connected in parallel with pipes, a compressor oil level controller attached to each of the low-pressure sections of the compressor, and an oil separator and compressor oil level controllers. Since it has an oil tank connected to the low pressure side of the refrigeration cycle via a check valve and piping,
When the differential pressure rises due to sudden pressure fluctuations caused by a rise in the internal pressure of the oil tank due to a high pressure rise due to the rise of outside air, etc., the check valve has good followability to the pressure fluctuations. It can be within the operating differential pressure range of the controller, it is possible to prevent the refrigerating machine oil in the oil tank from being excessively supplied to the compressor, and it is possible to stably return the refrigerating machine oil from the oil tank to an appropriate amount, Stable oil level control can be performed.

【0029】また、第2の発明に係わる冷凍装置は、凝
縮器、絞り装置、蒸発器を順次配管接続し、凝縮器と蒸
発器間に吐出側にそれぞれ油分離器を有する複数の圧縮
機を並列に配管接続した冷凍サイクルと、圧縮機の低圧
部にそれぞれ取付けられた圧縮機の油面制御器と、油分
離器及び圧縮機の油面制御器とそれぞれ配管接続すると
ともに、圧力調整弁を介して冷凍サイクルの低圧側と配
管接続したオイルタンクと、オイルタンクと圧縮機の油
面制御器の間の配管に給油弁を取付け、冷凍装置の起動
時に給油弁の動作を遅延させ、冷凍装置の起動から所定
時間経過後に給油弁を開とする第1のタイマ手段を備え
たので、長期間の冷凍装置停止後の起動に際して、多量
の冷媒が圧縮機に寝込んだ状態であって冷凍装置の起動
時に激しくフォーミングが生じ、圧縮機の油面制御器が
誤動作するような場合であっても、フォーミングが小さ
くなり誤動作がなくなるような所定時間、給油弁を閉に
していることで、冷凍装置起動時における圧縮機の油面
制御器の誤動作による油面の不安定な制御を防ぐことが
できる。
The refrigeration apparatus according to the second invention comprises a plurality of compressors having a condenser, a throttle device, and an evaporator connected in series with a pipe, and having an oil separator on the discharge side between the condenser and the evaporator. A refrigeration cycle connected in parallel with a pipe, an oil level controller of the compressor attached to each of the low-pressure sections of the compressor, and an oil separator and an oil level controller of the compressor. An oil tank connected to the low-pressure side of the refrigeration cycle via a pipe, and a pipe between the oil tank and the oil level controller of the compressor. Since the first timer means for opening the refueling valve after a lapse of a predetermined time from the start of the refrigerating apparatus is provided, when the refrigerating apparatus is started for a long time after the refrigerating apparatus is stopped, a large amount of refrigerant is laid in the compressor, and Violently at startup Even if the oil level controller of the compressor malfunctions due to the occurrence of foaming, the oil supply valve is closed for a predetermined period of time so that the forming becomes small and the malfunction does not occur. It is possible to prevent unstable control of the oil level due to malfunction of the oil level controller of the machine.

【0030】また、第3の発明に係わる冷凍装置は、凝
縮器、絞り装置、蒸発器を順次配管接続し、凝縮器と蒸
発器間に吐出側にそれぞれ油分離器を有する複数の圧縮
機を並列に配管接続した冷凍サイクルと、圧縮機の低圧
部にそれぞれ取付けられた圧縮機の油面制御器と、油分
離器及び圧縮機の油面制御器とそれぞれ配管接続すると
ともに、圧力調整弁を介して冷凍サイクルの低圧側と配
管接続したオイルタンクと、オイルタンクと圧縮機の油
面制御器の間に取付けられた給油弁と、オイルタンク内
圧を検知する第1の圧力センサーと、冷凍サイクルの低
圧側圧力を検知する第2の圧力センサーと、両圧力セン
サーの検出値を受け、その差圧を演算し、差圧が所定値
を越えたら給油弁を閉とし、差圧が所定値以下になった
ら給油弁を開とする第1の給油弁制御装置とを備えたの
で、冷凍装置の起動時にフォ−ミングが生じ、フォ−ミ
ングが小さくなり誤動作が小さくなるまでの時間内に油
面が低下するようなことがあっても差圧が所定値に回復
次第、給油弁を開にするので追従性良く圧縮機に冷凍機
油を供給することができる。またその他に差圧が上昇
し、オイルレギュレ−タの作動差圧以上になっても給油
制御装置から給油弁に閉の信号が送られ給油弁を閉にす
ることで圧縮機への冷凍機油の過剰の流れ込を防止する
ことができる。圧力センサ−で直接圧力を検知して制御
するため、制御方法が容易となる。
The refrigeration apparatus according to the third aspect of the present invention comprises a plurality of compressors having a condenser, a throttle device, and an evaporator sequentially connected to a pipe and having an oil separator on the discharge side between the condenser and the evaporator. A refrigeration cycle connected in parallel with a pipe, an oil level controller of the compressor attached to each of the low-pressure sections of the compressor, and an oil separator and an oil level controller of the compressor. An oil tank connected to the low pressure side of the refrigeration cycle via a pipe, an oil supply valve mounted between the oil tank and an oil level controller of the compressor, a first pressure sensor for detecting an oil tank internal pressure, and a refrigeration cycle A second pressure sensor for detecting the low pressure side pressure and the detection values of the two pressure sensors, calculate the differential pressure, close the refueling valve when the differential pressure exceeds a predetermined value, the differential pressure is equal to or less than the predetermined value Open the refueling valve when Since the first refueling valve control device is provided, forming occurs when the refrigerating device is started, and the oil level may decrease within the time until the forming becomes small and the malfunction becomes small. Also, as soon as the differential pressure recovers to the predetermined value, the oil supply valve is opened, so that the refrigerating machine oil can be supplied to the compressor with good followability. In addition, even if the differential pressure rises and exceeds the operating differential pressure of the oil regulator, a signal to close the refueling valve is sent from the refueling control device and the refueling valve is closed, so that the refrigerating machine oil is supplied to the compressor. Excessive inflow can be prevented. Since the pressure is directly detected and controlled by the pressure sensor, the control method is simplified.

【0031】また、第4の発明に係わる冷凍装置は、凝
縮器、絞り装置、蒸発器を順次配管接続し、凝縮器と蒸
発器間に吐出側にそれぞれ油分離器を有する複数の圧縮
機を並列に配管接続した冷凍サイクルと、圧縮機の低圧
部にそれぞれ取付けられた圧縮機の油面制御器と、油分
離器及び圧縮機の油面制御器とそれぞれ配管接続すると
ともに、圧力調整弁を介して冷凍サイクルの低圧側と配
管接続したオイルタンクと、オイルタンクと圧縮機の油
面制御器の間に取付けられた給油弁と、オイルタンク内
の冷媒ガス温度を検知する第1の温度センサーと、圧縮
機内部の冷媒ガス温度または圧縮機への吸入冷媒ガス温
度を検知する第2の温度センサーと、両温度センサーの
検出値を受け、圧力に換算し差圧を演算し、差圧が所定
値を越えたら給油弁を閉とし、差圧が所定値以下になっ
たら給油弁を開とする第2の給油弁制御装置とを備えた
ので、冷凍装置の起動時にフォ−ミングが生じ、フォ−
ミングが小さくなり誤動作が小さくなるまでの時間内に
油面が低下するようなことがあっても差圧が所定値に回
復次第、給油弁を開にするので追従性良く圧縮機に冷凍
機油を供給することができる。またその他に差圧が上昇
し、オイルレギュレ−タの作動差圧以上になっても給油
制御装置から給油弁に閉の信号が送られ給油弁を閉にす
ることで圧縮機への冷凍機油の過剰の流れ込を防止する
ことができる。安価な温度センサ−を使えるため、コス
ト低下ができる。
A refrigerating apparatus according to a fourth aspect of the present invention includes a plurality of compressors having a condenser, a throttle device, and an evaporator connected in series with a pipe, and having an oil separator on the discharge side between the condenser and the evaporator. A refrigeration cycle connected in parallel with a pipe, an oil level controller of the compressor attached to each of the low-pressure sections of the compressor, and an oil separator and an oil level controller of the compressor. Oil tank connected to the low pressure side of the refrigeration cycle via a pipe, an oil supply valve mounted between the oil tank and an oil level controller of the compressor, and a first temperature sensor for detecting a refrigerant gas temperature in the oil tank And a second temperature sensor for detecting the temperature of the refrigerant gas inside the compressor or the temperature of the refrigerant gas sucked into the compressor, receiving the detection values of both temperature sensors, converting the pressure into pressure, calculating the differential pressure, and calculating the differential pressure. Refuel when the specified value is exceeded Was closed, because the pressure difference has a second oil supply valve controller to open the refueling valve When equal to or less than a predetermined value, follower at startup of the refrigeration apparatus - is timing occurs, follower -
Even if the oil level drops within the time until the ming becomes smaller and the malfunction becomes smaller, the oil supply valve is opened as soon as the differential pressure recovers to the predetermined value. Can be supplied. In addition, even if the differential pressure rises and exceeds the operating differential pressure of the oil regulator, a signal to close the refueling valve is sent from the refueling control device and the refueling valve is closed, so that the refrigerating machine oil is supplied to the compressor. Excessive inflow can be prevented. Since an inexpensive temperature sensor can be used, the cost can be reduced.

【0032】また、第5の発明に係わる冷凍装置は、第
2乃至第4の発明において、給油弁を閉としてからの経
過時間を計測する第2のタイマー手段を備え、第2のタ
イマー手段の計測値が所定値に達したら、給油弁を開と
するので、給油弁を閉としてから開とする制御が容易と
なる。
Further, the refrigeration apparatus according to the fifth aspect of the present invention is the refrigeration apparatus according to the second to fourth aspects, further comprising a second timer means for measuring an elapsed time since the fuel supply valve was closed. When the measured value reaches a predetermined value, the refueling valve is opened, so that control for closing the refueling valve and then opening the refueling valve becomes easy.

【0033】また、第6の発明に係わる冷凍装置は、第
1の発明乃至第5の発明において、冷媒にハイドロフル
オルカーボンを用いるとともに、オイルタンクと油面制
御器間の配管にスラッジ捕捉装置を備えたので、スラッ
ジの発生し易いHFC系冷媒を使用しても圧縮機の油面
制御器のスラッジ詰まりが防止でき、圧縮機の安定した
油面制御が可能となる。
A refrigeration apparatus according to a sixth aspect of the present invention is the refrigeration apparatus according to the first to fifth aspects, wherein a hydrofluorocarbon is used as a refrigerant and a sludge trapping device is provided in a pipe between an oil tank and an oil level controller. Therefore, even if an HFC-based refrigerant that easily generates sludge is used, sludge clogging of the oil level controller of the compressor can be prevented, and stable oil level control of the compressor can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1に係る冷凍装置の構
成図である。
FIG. 1 is a configuration diagram of a refrigeration apparatus according to Embodiment 1 of the present invention.

【図2】 この発明の実施の形態2に係る冷凍装置の構
成図である。
FIG. 2 is a configuration diagram of a refrigeration apparatus according to Embodiment 2 of the present invention.

【図3】 この発明の実施の形態3に係る冷凍装置の構
成図である。
FIG. 3 is a configuration diagram of a refrigeration apparatus according to Embodiment 3 of the present invention.

【図4】 この発明の実施の形態3に係る冷凍装置の変
形例の構成図である。
FIG. 4 is a configuration diagram of a modification of the refrigeration apparatus according to Embodiment 3 of the present invention.

【図5】 この発明の実施の形態4に係る冷凍装置の構
成図である。
FIG. 5 is a configuration diagram of a refrigeration apparatus according to Embodiment 4 of the present invention.

【図6】 この発明の実施の形態4に係る冷凍装置の変
形例の構成図である。
FIG. 6 is a configuration diagram of a modification of the refrigeration apparatus according to Embodiment 4 of the present invention.

【図7】 この発明の実施の形態5に係る冷凍装置の要
部構成図である。
FIG. 7 is a main part configuration diagram of a refrigeration apparatus according to Embodiment 5 of the present invention.

【図8】 従来の冷凍装置の構成図である。FIG. 8 is a configuration diagram of a conventional refrigeration apparatus.

【符号の説明】[Explanation of symbols]

1、2 圧縮機、3、4 油分離器、5 オイルタン
ク、6、7 油面制御器、8 凝縮器、9 絞り装置、
10 蒸発器、11 圧力調整弁、12 逆止弁、13
第1の圧力センサ−、14、15 第2の圧力センサ
−、16 第1の給油弁制御装置、17給油弁、18
第1のタイマ−手段、19 第1の温度センサ−、2
0、21 第2の温度センサ−、22 第2の給油弁制
御装置、23 スラッジ捕捉装置、25 第2のタイマ
−手段。
1,2 compressor, 3,4 oil separator, 5 oil tank, 6,7 oil level controller, 8 condenser, 9 throttle device,
DESCRIPTION OF SYMBOLS 10 Evaporator, 11 Pressure control valve, 12 Check valve, 13
First pressure sensor, 14, 15 Second pressure sensor, 16 First refueling valve control device, 17 Refueling valve, 18
First timer means, 19 first temperature sensor, 2
0, 21 second temperature sensor, 22 second refueling valve control device, 23 sludge trapping device, 25 second timer means.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 凝縮器、絞り装置、蒸発器を順次配管接
続し、前記凝縮器と前記蒸発器間に、吐出側にそれぞれ
油分離器を有する複数の圧縮機を並列に配管接続した冷
凍サイクルと、前記圧縮機の低圧部にそれぞれ取付けら
れた圧縮機の油面制御器と、前記油分離器及び前記圧縮
機の油面制御器とそれぞれ配管接続するとともに、逆止
弁を介して前記冷凍サイクルの低圧側と配管接続したオ
イルタンクとを備えた冷凍装置。
1. A refrigeration cycle in which a condenser, a throttle device, and an evaporator are sequentially connected to a pipe, and a plurality of compressors each having an oil separator on a discharge side are connected in parallel between the condenser and the evaporator. And an oil level controller of the compressor attached to the low pressure section of the compressor, and a pipe connection to the oil separator and the oil level controller of the compressor, respectively, and the refrigeration through a check valve. A refrigeration system including a low-pressure side of the cycle and an oil tank connected to a pipe.
【請求項2】 凝縮器、絞り装置、蒸発器を順次配管接
続し、前記凝縮器と前記蒸発器間に吐出側にそれぞれ油
分離器を有する複数の圧縮機を並列に配管接続した冷凍
サイクルと、前記圧縮機の低圧部にそれぞれ取付けられ
た圧縮機の油面制御器と、前記油分離器及び前記圧縮機
の油面制御器とそれぞれ配管接続するとともに、圧力調
整弁を介して前記冷凍サイクルの低圧側と配管接続した
オイルタンクと、前記オイルタンクと前記圧縮機の油面
制御器の間の配管に給油弁を取付け、冷凍装置の起動時
に前記給油弁の動作を遅延させ、冷凍装置の起動から所
定時間経過後に前記給油弁を開とする第1のタイマ手段
を備えたことを特徴とする冷凍装置。
2. A refrigeration cycle in which a condenser, a throttle device, and an evaporator are sequentially connected to a pipe, and a plurality of compressors each having an oil separator on a discharge side are connected in parallel between the condenser and the evaporator. Connecting the oil level controller of the compressor mounted on the low-pressure section of the compressor, the oil separator and the oil level controller of the compressor, and connecting the oil level controller of the compressor to the refrigeration cycle via a pressure regulating valve. An oil tank connected to the low-pressure side of the oil tank, and an oil supply valve is attached to a pipe between the oil tank and the oil level controller of the compressor, delaying the operation of the oil supply valve when the refrigeration apparatus is started, A refrigeration apparatus comprising: first timer means for opening the fuel supply valve after a predetermined time has elapsed from the start.
【請求項3】 凝縮器、絞り装置、蒸発器を順次配管接
続し、前記凝縮器と前記蒸発器間に吐出側にそれぞれ油
分離器を有する複数の圧縮機を並列に配管接続した冷凍
サイクルと、前記圧縮機の低圧部にそれぞれ取付けられ
た圧縮機の油面制御器と、前記油分離器及び前記圧縮機
の油面制御器とそれぞれ配管接続するとともに、圧力調
整弁を介して前記冷凍サイクルの低圧側と配管接続した
オイルタンクと、前記オイルタンクと前記圧縮機の油面
制御器の間に取付けられた給油弁と、前記オイルタンク
内圧を検知する第1の圧力センサーと、冷凍サイクルの
低圧側圧力を検知する第2の圧力センサーと、前記両圧
力センサーの検出値を受け、その差圧を演算し、前記差
圧が所定値を越えたら前記給油弁を閉とし、前記差圧が
所定値以下になったら前記給油弁を開とする第1の給油
弁制御装置とを備えたことを特徴とする冷凍装置。
3. A refrigeration cycle in which a condenser, a throttle device, and an evaporator are sequentially connected to a pipe, and a plurality of compressors each having an oil separator on a discharge side are connected in parallel between the condenser and the evaporator. Connecting the oil level controller of the compressor mounted on the low-pressure section of the compressor, the oil separator and the oil level controller of the compressor, and connecting the oil level controller of the compressor to the refrigeration cycle via a pressure regulating valve. An oil tank connected to the low pressure side of the compressor, an oil supply valve mounted between the oil tank and an oil level controller of the compressor, a first pressure sensor for detecting the oil tank internal pressure, and a refrigeration cycle. A second pressure sensor for detecting the low pressure side pressure, and the detection values of the two pressure sensors are received, the differential pressure is calculated, and when the differential pressure exceeds a predetermined value, the refueling valve is closed, and the differential pressure is reduced. It has fallen below the specified value A first refueling valve control device for opening the refueling valve.
【請求項4】 凝縮器、絞り装置、蒸発器を順次配管接
続し、前記凝縮器と前記蒸発器間に吐出側にそれぞれ油
分離器を有する複数の圧縮機を並列に配管接続した冷凍
サイクルと、前記圧縮機の低圧部にそれぞれ取付けられ
た圧縮機の油面制御器と、前記油分離器及び前記圧縮機
の油面制御器とそれぞれ配管接続するとともに、圧力調
整弁を介して前記冷凍サイクルの低圧側と配管接続した
オイルタンクと、前記オイルタンクと前記圧縮機の油面
制御器の間に取付けられた給油弁と、前記オイルタンク
内の冷媒ガス温度を検知する第1の温度センサーと、前
記圧縮機内部の冷媒ガス温度または前記圧縮機への吸入
冷媒ガス温度を検知する第2の温度センサーと、前記両
温度センサーの検出値を受け、圧力に換算し差圧を演算
し、前記差圧が所定値を越えたら前記給油弁を閉とし、
前記差圧が所定値以下になったら前記給油弁を開とする
第2の給油弁制御装置とを備えたことを特徴とする冷凍
装置。
4. A refrigeration cycle in which a condenser, a throttle device, and an evaporator are sequentially connected to a pipe, and a plurality of compressors each having an oil separator on a discharge side are connected in parallel between the condenser and the evaporator. Connecting the oil level controller of the compressor mounted on the low-pressure section of the compressor, the oil separator and the oil level controller of the compressor, and connecting the oil level controller of the compressor to the refrigeration cycle via a pressure regulating valve. An oil tank connected to the low pressure side of the oil tank, an oil supply valve mounted between the oil tank and an oil level controller of the compressor, and a first temperature sensor for detecting a refrigerant gas temperature in the oil tank. A second temperature sensor that detects a refrigerant gas temperature inside the compressor or a refrigerant gas temperature sucked into the compressor, receives detection values of the two temperature sensors, converts the pressure into pressure, calculates a differential pressure, Prescribed differential pressure When the value exceeds, close the refueling valve,
A refueling valve control device for opening the refueling valve when the differential pressure becomes equal to or less than a predetermined value.
【請求項5】 前記給油弁を閉としてからの経過時間を
計測する第2のタイマー手段を備え、前記第2のタイマ
ー手段の計測値が所定値に達したら、前記給油弁を開と
することを特徴とする請求項3または請求項4記載の冷
凍装置。
5. A fuel supply system comprising: a second timer for measuring an elapsed time since the fueling valve is closed; and when the measured value of the second timer reaches a predetermined value, the fueling valve is opened. The refrigeration apparatus according to claim 3 or 4, wherein:
【請求項6】 冷媒にハイドロフルオルカーボンを用い
るとともに、前記オイルタンクと前記油面制御器間の配
管にスラッジ捕捉装置を備えたことを特徴とする請求項
1乃至請求項5記載の冷凍装置。
6. The refrigerating apparatus according to claim 1, wherein a hydrofluorocarbon is used as a refrigerant, and a sludge catching device is provided in a pipe between the oil tank and the oil level controller. .
JP14704698A 1998-05-28 1998-05-28 Chiller Pending JPH11337194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14704698A JPH11337194A (en) 1998-05-28 1998-05-28 Chiller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14704698A JPH11337194A (en) 1998-05-28 1998-05-28 Chiller

Publications (1)

Publication Number Publication Date
JPH11337194A true JPH11337194A (en) 1999-12-10

Family

ID=15421291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14704698A Pending JPH11337194A (en) 1998-05-28 1998-05-28 Chiller

Country Status (1)

Country Link
JP (1) JPH11337194A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100505229B1 (en) * 2002-12-02 2005-08-03 엘지전자 주식회사 The apparatus of oil balance control for 2 compressor type heat pump
WO2008069092A1 (en) * 2006-12-05 2008-06-12 Daikin Industries, Ltd. Refrigeration device
JP2010071568A (en) * 2008-09-19 2010-04-02 Mitsubishi Electric Corp Refrigeration system
JP2010230233A (en) * 2009-03-26 2010-10-14 Mitsubishi Heavy Ind Ltd Air conditioner
KR101114326B1 (en) 2004-05-17 2012-02-14 엘지전자 주식회사 Cooling cycling apparatus and the control method of the same
WO2018116407A1 (en) * 2016-12-21 2018-06-28 三菱電機株式会社 Refrigeration cycle device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100505229B1 (en) * 2002-12-02 2005-08-03 엘지전자 주식회사 The apparatus of oil balance control for 2 compressor type heat pump
KR101114326B1 (en) 2004-05-17 2012-02-14 엘지전자 주식회사 Cooling cycling apparatus and the control method of the same
WO2008069092A1 (en) * 2006-12-05 2008-06-12 Daikin Industries, Ltd. Refrigeration device
JP2010071568A (en) * 2008-09-19 2010-04-02 Mitsubishi Electric Corp Refrigeration system
JP2010230233A (en) * 2009-03-26 2010-10-14 Mitsubishi Heavy Ind Ltd Air conditioner
WO2018116407A1 (en) * 2016-12-21 2018-06-28 三菱電機株式会社 Refrigeration cycle device
CN110088540A (en) * 2016-12-21 2019-08-02 三菱电机株式会社 Refrigerating circulatory device
JPWO2018116407A1 (en) * 2016-12-21 2019-10-24 三菱電機株式会社 Refrigeration cycle equipment
CN110088540B (en) * 2016-12-21 2021-08-17 三菱电机株式会社 Refrigeration cycle device

Similar Documents

Publication Publication Date Title
KR101015752B1 (en) Air conditioner
JP2011117626A (en) Air conditioner
JP5783783B2 (en) Heat source side unit and refrigeration cycle apparatus
JP2013024538A (en) Refrigeration unit
JPH11337194A (en) Chiller
US1106287A (en) Refrigerating apparatus.
JP4082435B2 (en) Refrigeration equipment
JP3228892B2 (en) Refrigeration equipment
JP3125824B2 (en) Scroll compressor with overheat prevention device
CN108180679B (en) Refrigeration system, air conditioner and control method of air conditioner
US11506427B2 (en) Air conditioning apparatus
JPH0526526A (en) Two-stage compression type freezing device
JPH07120086A (en) Heat pump
JP2002364937A (en) Refrigerator
JPH06129721A (en) Air-conditioning device
US11391496B2 (en) Refrigerating cycle apparatus
US11435122B2 (en) Refrigeration apparatus
JP2001289519A (en) Refrigerating apparatus
JP2008032391A (en) Refrigerating unit
JP2508842B2 (en) Air conditioner
JPH109690A (en) Refrigerator
JP3505209B2 (en) Refrigeration equipment
JPH06129717A (en) Air-conditioner
JP2009186035A (en) Refrigerating device
CN113720058B (en) Oil return control device and method of air conditioning system and air conditioning system

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040621

A621 Written request for application examination

Effective date: 20050120

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A02 Decision of refusal

Effective date: 20071211

Free format text: JAPANESE INTERMEDIATE CODE: A02