JPH02166355A - Low temperature freezer and operation therefor - Google Patents

Low temperature freezer and operation therefor

Info

Publication number
JPH02166355A
JPH02166355A JP31621088A JP31621088A JPH02166355A JP H02166355 A JPH02166355 A JP H02166355A JP 31621088 A JP31621088 A JP 31621088A JP 31621088 A JP31621088 A JP 31621088A JP H02166355 A JPH02166355 A JP H02166355A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
condensed
evaporator
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31621088A
Other languages
Japanese (ja)
Inventor
Fumio Kuriyama
文夫 栗山
Junichi Hayakawa
淳一 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP31621088A priority Critical patent/JPH02166355A/en
Publication of JPH02166355A publication Critical patent/JPH02166355A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To perform a stable and superior energization of a compressor without having any overload operation by a method wherein a refrigerant feeding pipe at a discharging side of the compressor and a refrigerant returning pipe at a suction side of the compressor are communicated to each other by a bypassing pipe. CONSTITUTION:Mixed refrigerant is adiabatically compressed by a compressor 1, the thermal insulated refrigerant is cooled with cooling water at a condensor 2 and partially condensed. The gas-liquid mixed refrigerant heat exchanged with the returned refrigerant from a low temperature part at an auxiliary heat exchanger 3 and further partially condensed, thereafter it is separated into a condensed refrigerant and a non-condensed refrigerant by a first separator 4. The separated and condensed refrigerants are adiabatically expanded by a first expansion valve 5 to generate a low temperature and merged into the returned refrigerant from the low temperature part. The refrigerants are made to flow to the first heat exchanger 6 to cool the non-condensed refrigerant separated by the first separator and partially condense them. A sequential repetition of this operation causes a refrigerant of low boiling point to he condensed and further to be adiabatically expanded, thereby a refrigerant gas of lower temperature is produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は圧縮機を用いた冷凍器、特に複数種の非共沸混
合冷媒を用いて、低温を得るための冷凍機およびその運
転方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a refrigerator using a compressor, and particularly to a refrigerator for obtaining a low temperature using a plurality of non-azeotropic mixed refrigerants, and a method for operating the same. .

〔従来の技術〕[Conventional technology]

公知の単段の冷凍システふにおいては、冷媒蒸気が圧縮
され、この冷媒蒸気は周囲の空気又は水と熱交換される
ことにより凝縮し、この凝縮液は膨張弁により低圧調整
されて断熱膨張し、冷凍効果を発生し、最終的に圧縮機
に帰還する。
In a known single-stage refrigeration system, refrigerant vapor is compressed, this refrigerant vapor condenses by exchanging heat with surrounding air or water, and this condensate is adjusted to a low pressure by an expansion valve and expands adiabatically. , generates a refrigeration effect, and finally returns to the compressor.

この様なシステムでは、−60℃の低温を得るのが限度
である。
Such systems are limited to obtaining temperatures as low as -60°C.

また、低温冷凍システムとして公知の多元カスケードサ
イケ〃では、単一成分の冷媒を用い、冷凍サイケμを多
段に組み合わすことにより目的の低温を得ることができ
る。これに対して、混合冷媒冷凍サイケμでは、混合冷
媒を段階的に高沸点順に液化分離させ、順次低沸点冷媒
を凝縮させ、断熱膨張させることにより低温を得ること
ができる。
In addition, in the multi-component cascade psych, which is known as a low-temperature refrigeration system, a desired low temperature can be obtained by using a single component refrigerant and combining refrigeration psychs μ in multiple stages. On the other hand, in the mixed refrigerant refrigeration system μ, a low temperature can be obtained by liquefying and separating the mixed refrigerant stepwise in the order of high boiling points, sequentially condensing the low boiling point refrigerant, and adiabatically expanding the refrigerant.

上記の混合冷媒冷凍サイクルを第3図を用いて説明する
。第3図においては混合冷媒を圧縮機■により断熱圧縮
し、この断熱冷媒を凝縮器■にて冷却水等により冷却し
、部分的に凝縮させ、この気液混合冷媒を補助熱交換器
■にて低温部からのもどり冷媒と熱交換させ、更に部分
凝縮させた後、第1分離器■にて凝縮冷媒と未凝縮冷媒
とに分離させる。分離された凝縮冷媒は第1膨張弁■に
て断熱膨張させることにより低温を発生させ、低温部か
らのもどり冷媒と合流させ、第1熱交換器■に流通させ
、第1分離器にて分離した未凝縮冷媒を更に冷却し、部
分的に凝縮させる。これを順次くシ返すことによυ、順
次低い沸点の冷媒を凝縮させ、これを断熱膨張させるこ
とにより、よシ低温の冷凍ガスを発生させることができ
る。
The above mixed refrigerant refrigeration cycle will be explained using FIG. 3. In Figure 3, the mixed refrigerant is adiabatically compressed by the compressor (■), this adiabatic refrigerant is cooled with cooling water etc. in the condenser (■), and partially condensed, and this gas-liquid mixed refrigerant is transferred to the auxiliary heat exchanger (■). After exchanging heat with the refrigerant returned from the low-temperature section and further partially condensing it, the refrigerant is separated into condensed refrigerant and uncondensed refrigerant in the first separator (2). The separated condensed refrigerant is adiabatically expanded in the first expansion valve (■) to generate a low temperature, merged with the refrigerant returned from the low-temperature section, passed through the first heat exchanger (■), and separated in the first separator. The uncondensed refrigerant is further cooled and partially condensed. By successively turning this over, the refrigerants with lower boiling points are condensed, and by adiabatically expanding this, it is possible to generate refrigerated gas at a much lower temperature.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述のよう々混合冷媒冷凍システムにおいては、冷凍機
の起動時の機内各部の圧力と、定常状態の機内各部の圧
力とに大きな差が生じる。
As described above, in the mixed refrigerant refrigeration system, there is a large difference between the pressure in each part of the refrigerator when the refrigerator is started and the pressure in each part of the refrigerator in a steady state.

定常状態においては、各低温部が所定の低温状態に保た
れ、冷媒の部分的凝縮も行なわれているため、機内の圧
力は低く保たれている。一方、起動時は冷媒温度が常温
に近く、凝縮量も少ないため、特に圧縮機吐出圧力は非
常に高圧となる。このため、圧縮機に大きな負担がかが
シ、圧縮機の運転を停止せざるを得なくなる場合がある
。また逆に、起動時の圧縮機吐出圧力を小さくおさえて
おくと、冷凍サイクル形成の進行により機内の圧力が低
下し、所定の冷媒の凝縮を行なうことができなくなる。
In the steady state, each low temperature section is maintained at a predetermined low temperature state, and the refrigerant is partially condensed, so the pressure inside the machine is kept low. On the other hand, at startup, the refrigerant temperature is close to room temperature and the amount of condensation is small, so the compressor discharge pressure in particular becomes extremely high. Therefore, a heavy load is placed on the compressor, and the operation of the compressor may have to be stopped. Conversely, if the compressor discharge pressure at startup is kept low, the internal pressure will drop as the refrigeration cycle progresses, making it impossible to condense the desired refrigerant.

よシ低温の冷媒を得るためには、起動時の圧縮機吐出圧
を低くおさえ、かつ、定常時には所定の吐出圧力を保つ
必要がある。
In order to obtain refrigerant at a very low temperature, it is necessary to keep the compressor discharge pressure low at startup, and to maintain a predetermined discharge pressure during normal operation.

冷凍機起動時の圧縮機吐出圧力を下げるためには、冷凍
機停止時の機内平均圧力を下げると効果がある。冷凍機
停止時の機内平均圧力を下げるためには、圧縮機吸込側
(運転時低圧側)容積を大きくする方法がアシ、冷媒も
どシ配管および熱交換器のもどシ側流路面積を大きくす
るか、冷媒貯蔵用クツションタンクを設け、細管で圧縮
機吸込側の冷媒もどシ配管に接続する。
In order to lower the compressor discharge pressure when the refrigerator is started, it is effective to lower the average internal pressure when the refrigerator is stopped. In order to lower the average internal pressure when the refrigerator is stopped, the method of increasing the volume of the compressor suction side (low pressure side during operation) is to increase the reed, refrigerant return piping, and flow area on the return side of the heat exchanger. Alternatively, a cushion tank for refrigerant storage is provided and connected to the refrigerant return piping on the compressor suction side with a thin tube.

冷媒もどシ配管訃よび熱交換器の冷媒もευ側の流路面
積が大きくなると、冷媒ガス流速を変化させるので設計
上限界がある。クツションタンクは、英倹により必要容
積を求めることになるが、非常に大きな容積を要すると
いう欠点があった。
When the flow path area on the ευ side of the refrigerant return piping and refrigerant of the heat exchanger increases, the refrigerant gas flow rate changes, so there is a design limit. Although the required volume of the cushion tank is determined by consideration, it has the disadvantage of requiring a very large volume.

そこで、本発明は、上記のような欠点のない、簡単な手
段により機内平均圧力を低下することのできる冷凍機と
それの運転方法を提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a refrigerator and a method for operating the same, which are free from the above-mentioned drawbacks and can reduce the average internal pressure by simple means.

〔課題を解決するだめの手段〕[Failure to solve the problem]

本発明者らは、鋭意研究の結果、圧縮機吐出側の冷媒送
り配管と、圧縮機吸込側の冷媒もど夛配管とを連通させ
るバイパス配管を設けることにより、上記目的は達成さ
れることを見い出し、本発明を完成した。
As a result of intensive research, the present inventors have discovered that the above object can be achieved by providing a bypass pipe that communicates the refrigerant feed pipe on the compressor discharge side with the refrigerant collection pipe on the compressor suction side. , completed the invention.

すなわち、本発明は、圧縮機、凝縮器、蒸発器、該圧縮
機吐出側の送り冷媒と該蒸発器からのもどり冷媒とが流
通する複数の中間熱交換器、複数の分離器と減圧器を具
備しており、冷媒には複数の非共沸混合冷媒を用い、該
分離器を経た冷媒の凝縮冷媒を該減圧器を介して該中間
熱交換器に蒸発器からのもどり冷媒と合流せしめ、該冷
媒中の未凝縮冷媒を冷却し、順次沸点の低い冷媒を凝縮
せしめる手段、最終段もしくは中間の減圧器を介して冷
媒を該蒸発器に流通する手段により低温を得る冷凍機に
おいて、前記圧縮機吐出側の冷媒吐出配管から前記圧縮
機吸込側の冷媒吸込配管に連通ずるバイパス配管を設け
たことを特徴とする冷凍機にある。
That is, the present invention includes a compressor, a condenser, an evaporator, a plurality of intermediate heat exchangers through which refrigerant sent from the compressor discharge side and refrigerant returned from the evaporator flow, a plurality of separators, and a pressure reducer. A plurality of non-azeotropic mixed refrigerants are used as the refrigerant, and the refrigerant condensed from the refrigerant that has passed through the separator is combined with the refrigerant returned from the evaporator into the intermediate heat exchanger via the pressure reducer, In the refrigerating machine that obtains a low temperature by means of cooling uncondensed refrigerant in the refrigerant and sequentially condensing the refrigerant with a lower boiling point, and means of circulating the refrigerant to the evaporator via a final stage or intermediate pressure reducer, the compressor The refrigerator is characterized in that a bypass pipe is provided that communicates from a refrigerant discharge pipe on the machine discharge side to a refrigerant suction pipe on the compressor suction side.

また、本発明は、圧縮機、凝縮器、蒸発器、該圧縮機吐
出側の送り冷媒と該蒸発器からのもど9冷媒とが流通す
る複数の中間熱交換器、複数の分離器と減圧器を具備し
てお)、冷媒には複数の非共沸混合冷媒を用い、該分離
器を経た冷媒の凝縮冷媒を該減圧器を介して該中間熱交
換器に蒸発器からのもどり冷媒と合流せしめて、該冷媒
中の未凝縮冷媒を冷却し、順次沸点の低い冷媒を凝縮せ
しめて、最終段もしくは中間の減圧器を介して冷媒を該
蒸発器に流通することにより低温をつくり、該圧縮機吐
出側の冷媒吐出配管から該圧縮機吸込側の冷媒吸込配管
に連通ずるバイパス配管を設け、該バイパス配管に開閉
弁を設けた冷凍機の運転方法において、前記圧縮機の吐
出圧力もしくは吸込圧力、又は前記圧縮機の吐出側冷媒
温度を検知するか、又は検知器類を用いず、タイマーに
より前記開閉弁を開閉させることを特徴とする冷凍機の
運転方法にもある。
Further, the present invention provides a compressor, a condenser, an evaporator, a plurality of intermediate heat exchangers through which refrigerant sent from the compressor discharge side and a refrigerant from the evaporator flow, a plurality of separators, and a pressure reducer. ), a plurality of non-azeotropic mixed refrigerants are used as the refrigerant, and the refrigerant condensed from the refrigerant that has passed through the separator is combined with the refrigerant returned from the evaporator into the intermediate heat exchanger via the pressure reducer. At least, the uncondensed refrigerant in the refrigerant is cooled, the refrigerant with a lower boiling point is sequentially condensed, and the refrigerant is passed through the final stage or intermediate pressure reducer to the evaporator to create a low temperature, and the compression In a method of operating a refrigerator in which a bypass pipe is provided that communicates from a refrigerant discharge pipe on the machine discharge side to a refrigerant suction pipe on the compressor suction side, and an on-off valve is provided in the bypass pipe, the discharge pressure or suction pressure of the compressor is Alternatively, there is also a method for operating a refrigerator, characterized in that the refrigerant temperature on the discharge side of the compressor is detected, or the on-off valve is opened and closed by a timer without using any detectors.

本発明のバイパス配管において、圧縮機吐出側冷媒取出
口を凝縮器通過後に設けると、冷媒の冷却効果もあり、
圧縮機吐出側冷媒温度の上昇をおさえる効果があシ、好
ましい。
In the bypass piping of the present invention, if the refrigerant outlet on the compressor discharge side is provided after passing through the condenser, the refrigerant will have a cooling effect,
This is preferable since it has the effect of suppressing the rise in refrigerant temperature on the discharge side of the compressor.

また、本発明における冷凍機の運転方法において、上記
のバイパス配管に開閉バルブを設け、圧縮機の作動仕様
により開閉バルブを開閉し、圧縮機の吐出圧力を制御す
ることができる。圧縮機の作動仕様の検知項目としての
吐出圧力又は吸込圧力、吐出側冷媒温度を検知し、開閉
バルブの開閉を行ない冷凍機の運転を行なうことができ
る。更に、圧縮機の起動時の作動仕様を測定しておけば
、タイマーにて開閉バルブの開閉を行ない、冷凍機の運
転を行なうことができる。
Furthermore, in the method for operating a refrigerator according to the present invention, an on-off valve is provided in the bypass pipe, and the on-off valve is opened and closed according to the operating specifications of the compressor, thereby controlling the discharge pressure of the compressor. The discharge pressure or suction pressure and the discharge side refrigerant temperature are detected as detection items of the operating specifications of the compressor, and the opening/closing valve is opened and closed to operate the refrigerator. Furthermore, if the operating specifications of the compressor at startup are measured, the refrigerating machine can be operated by opening and closing the on-off valve using a timer.

〔作用〕[Effect]

前記バイパス配管を設けた場合、冷媒の循環量はバイパ
ス配管通過量だけ減少する。そして、起動時においては
圧縮機の吐出圧と吸込圧との差は非常に大きく、冷媒の
バイパス配管通過量は大きいが、定常状態に近づくにし
たがい圧縮機の吐出圧は低くなシ、冷媒のバイパス配管
通過量も小さくなる。そζで、冷凍サイクルに必要な冷
媒循環量を確保するようにバイパス配管通過量を見込ん
だ圧縮機を選定することにより、起動時には多量の冷媒
のバイパス配管通過が行なえるから、圧縮機吐出圧の大
きい低減効果を奏する。そして、運転の進行に伴ない、
機内の熱交換器等の冷媒凝縮が進み、機内圧力が徐々に
低下し、冷媒のバイパス配管通過による循環量の損失も
少なくなる。以上のようにバイパス配管を設けることに
より、安全で過負荷運転をすることのない、良好な圧縮
機の起動を行なうことができ、定常状態においても冷媒
循環を確保する冷凍機の運転を行なうことができる。
When the bypass pipe is provided, the amount of refrigerant circulated is reduced by the amount passing through the bypass pipe. At startup, the difference between the discharge pressure and suction pressure of the compressor is very large, and the amount of refrigerant passing through the bypass pipe is large, but as the steady state approaches, the compressor discharge pressure decreases and the refrigerant The amount of passage through the bypass pipe also becomes smaller. Therefore, by selecting a compressor that takes into account the amount of refrigerant that passes through the bypass pipe in order to ensure the amount of refrigerant circulating necessary for the refrigeration cycle, a large amount of refrigerant can pass through the bypass pipe at startup, and the compressor discharge pressure will decrease. It has a large reduction effect. And as driving progresses,
Refrigerant condensation in the heat exchanger inside the machine progresses, the pressure inside the machine gradually decreases, and the loss of circulation amount due to refrigerant passing through bypass piping also decreases. By providing the bypass piping as described above, the compressor can be started safely and without overload, and the refrigerator can be operated to ensure refrigerant circulation even in a steady state. Can be done.

次に、前記バイパス配管に開閉弁を設けることにより、
圧縮機の吐出圧を検知する圧力スイッチにてバイパス配
管の前記開閉弁を開閉動作させることができる。起動時
で圧縮機の吐出圧力が高いときにバイパス配管の開閉弁
を開け、吐出圧力の上昇をおさえる。冷凍機の運転進行
に伴ない各熱交換器での冷媒凝縮量が増えることにより
、機内の圧力が低下してくる。圧縮機の吐出圧が所定圧
力よシ低くなると、バイパス配管の開閉弁を閉じる。こ
のようにして圧縮機吐出圧力を検知することにより、圧
縮機の安全な起動を行なうことができる。また、圧縮機
の吐出圧力だけでなく、圧縮機の吐出側冷媒温度を検知
するととによっても、開閉弁の開閉動作の制御を行なう
ことができる。
Next, by providing an on-off valve in the bypass pipe,
The on-off valve of the bypass pipe can be opened and closed by a pressure switch that detects the discharge pressure of the compressor. When the compressor discharge pressure is high at startup, the on-off valve of the bypass piping is opened to suppress the increase in discharge pressure. As the operation of the refrigerator progresses, the amount of refrigerant condensed in each heat exchanger increases, causing the pressure inside the refrigerator to decrease. When the discharge pressure of the compressor becomes lower than a predetermined pressure, the on-off valve of the bypass pipe is closed. By detecting the compressor discharge pressure in this manner, the compressor can be started safely. Furthermore, the opening and closing operations of the on-off valve can be controlled by detecting not only the discharge pressure of the compressor but also the temperature of the refrigerant on the discharge side of the compressor.

数種類の非共沸混合冷媒を用いて、−100℃以下の低
温冷媒をつくるためには、起動時の圧縮機の吐出圧力は
定常運転時の吐出圧力の2倍程度となることがあシ、バ
イパス配管を用いる意義は大きい。
In order to create a low-temperature refrigerant below -100°C using several types of non-azeotropic mixed refrigerants, the discharge pressure of the compressor at startup may be approximately twice the discharge pressure during steady operation. The significance of using bypass piping is significant.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を用いて説明するが、本発
明はこれらの実施例に限定されるものではない。
Examples of the present invention will be described below with reference to the drawings, but the present invention is not limited to these examples.

実施例1 第1図は本発明の一実施例を示す経路図である。Example 1 FIG. 1 is a route diagram showing one embodiment of the present invention.

第1図においては、混合冷媒を圧縮機■により断熱圧縮
し、この断熱冷媒を凝縮器■にて冷却水等により冷却し
、部分的に凝縮させ、この気液混合冷媒を補助熱交換器
■にて低温部からのもどり冷媒と熱交換させ、更に部分
凝縮させた後、第1分離器■にて凝縮冷媒と未凝縮冷媒
とに分離させる。分離された凝縮冷媒は第1膨張弁■に
て断熱膨張させることにより低温を発生させ、低温部か
らのもどり冷媒と合流させ、第1熱交換器■に流通させ
、第1分離器にて分離した未凝縮冷媒を更に冷却し、部
分的に凝縮させる。これを順次くシ返すことにより、順
次低い沸点の冷媒を凝縮させ、これを断熱膨張させるこ
とにより、よシ低温の冷媒ガスを発生させることができ
る。
In Fig. 1, a mixed refrigerant is adiabatically compressed by a compressor (2), this adiabatic refrigerant is cooled by cooling water etc. in a condenser (2), and partially condensed, and this gas-liquid mixed refrigerant is transferred to an auxiliary heat exchanger (2). After exchanging heat with the refrigerant returned from the low-temperature section and further partially condensing it, the refrigerant is separated into condensed refrigerant and uncondensed refrigerant in the first separator (2). The separated condensed refrigerant is adiabatically expanded in the first expansion valve (■) to generate a low temperature, merged with the refrigerant returned from the low-temperature section, passed through the first heat exchanger (■), and separated in the first separator. The uncondensed refrigerant is further cooled and partially condensed. By sequentially turning this over, refrigerants with lower boiling points are condensed, and by adiabatically expanding the refrigerants, refrigerant gas at a much lower temperature can be generated.

数種類の非共沸混合冷媒を用いて、−100°C以下の
低温冷媒をつくるため、定常時の圧縮機の吐出圧力を1
5匈・S / eym” Gと設定圧力とする場合、起
動時の圧縮機吐出圧力は26〜30時・5/α20とな
る。経済性のある通常のVシプロ型圧縮機を用いるため
に圧縮機吐出圧力を20kg/amza以下におさえる
必要がある。そのためにバイパス配管[相]を設けであ
る。適切な冷媒バイパス流量を設定するために、バイパ
ス配管[相]はオリフィスを組込んだ連通管とするがキ
ャピラリーチューブとするのが望ましい。
In order to create a low-temperature refrigerant below -100°C using several types of non-azeotropic mixed refrigerants, the discharge pressure of the compressor during steady state is reduced to 1.
If the set pressure is 5 匈・S/eym"G, the compressor discharge pressure at startup will be 26 to 30 hours・5/α20. Compression is It is necessary to suppress the machine discharge pressure to 20 kg/amza or less.For this purpose, a bypass piping [phase] is provided.In order to set an appropriate refrigerant bypass flow rate, the bypass piping [phase] is a communicating pipe with an orifice installed. However, it is preferable to use a capillary tube.

実施例2 第2図は本発明のもう一つの実施例を示す経絡図である
。第2図は、バイパス配管に開閉弁を設けた例である。
Embodiment 2 FIG. 2 is a meridian diagram showing another embodiment of the present invention. FIG. 2 is an example in which an on-off valve is provided in the bypass pipe.

第2図においては、第1夾施例に示したバイパス配管に
電磁弁0を取シ付けたバイパス配管@を設けている。圧
縮機吐出圧力を検出する圧力スイッチ[相]の信号によ
り、電磁弁◎を開閉させ、圧縮機吐出圧力を仕様値内に
おさまるように冷凍機を起動又は通常運転の負荷変動に
対応する運転が可能になる。
In FIG. 2, a bypass pipe @ is provided in which a solenoid valve 0 is attached to the bypass pipe shown in the first embodiment. The solenoid valve ◎ is opened and closed by the signal from the pressure switch [phase] that detects the compressor discharge pressure, and the refrigerator is started so that the compressor discharge pressure is within the specification value, or the operation corresponding to load fluctuations during normal operation is started. It becomes possible.

更に、圧縮機吐出冷媒温度を検知する温度スイッチを設
け、設定温度を越えるとき、この電磁弁◎を開けること
により冷媒の過熱をおさえることにも有効である。
Furthermore, a temperature switch is provided to detect the temperature of the refrigerant discharged from the compressor, and when the temperature exceeds the set temperature, this solenoid valve ◎ is opened, which is effective in suppressing overheating of the refrigerant.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、パイバフ、!il!管を設けることに
より、安定で過負荷運転のない、良好な圧縮機の起動を
行なうことができ、定常状態においても冷媒循環を確保
する冷凍機の運転を行なうことができる。
According to the invention, pie buff,! Il! By providing the pipe, the compressor can be started in a stable manner without overload, and the refrigerator can be operated to ensure refrigerant circulation even in a steady state.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は、本発明の一実施例を示す経絡図であ
シ、第3図は、従来からの冷凍機の経路図である。 1・・・圧縮機、2・・・凝縮器、3・・・補助熱交換
器、4・・・第1分離器、5・・・第1膨張弁、6・・
・第1熱交換器、7・・・第2分離器、8・・・第2膨
張弁、9・・・第2熱交換器、10・・・第3分離器、
11・・・第3膨張弁、12−・・第3熱交換器、13
・・・最終段膨張弁、14・・・蒸発器、 16・・・送ル冷媒、17・・・もどシ冷媒、18・・
・バイパス配管、19・・・電磁弁、20・・・圧力ス
イッチ 特許出願人 株式会社荏原製作所
1 and 2 are meridian diagrams showing an embodiment of the present invention, and FIG. 3 is a route diagram of a conventional refrigerator. DESCRIPTION OF SYMBOLS 1... Compressor, 2... Condenser, 3... Auxiliary heat exchanger, 4... First separator, 5... First expansion valve, 6...
- First heat exchanger, 7... Second separator, 8... Second expansion valve, 9... Second heat exchanger, 10... Third separator,
11...Third expansion valve, 12-...Third heat exchanger, 13
...Final stage expansion valve, 14... Evaporator, 16... Feed refrigerant, 17... Return refrigerant, 18...
・Bypass piping, 19... Solenoid valve, 20... Pressure switch Patent applicant Ebara Corporation

Claims (1)

【特許請求の範囲】 1、圧縮機、凝縮器、蒸発器、該圧縮機吐出側の送り冷
媒と該蒸発器からのもどり冷媒とが流通する複数の中間
熱交換器、複数の分離器と減圧器を具備しており、冷媒
には複数の非共沸混合冷媒を用い、該分離器を経た冷媒
の凝縮冷媒を該減圧器を介して該中間熱交換器に蒸発器
からのもどり冷媒と合流せしめ、該冷媒中の未凝縮冷媒
を冷却し、順次沸点の低い冷媒を凝縮せしめる手段、最
終段もしくは中間の減圧器を介して冷媒を該蒸発器に流
通する手段により低温を得る冷凍機において、前記圧縮
機吐出側の冷媒吐出配管から前記圧縮機吸込側の冷媒吸
込配管に連通するバイパス配管を設けたことを特徴とす
る冷凍機。 2、請求項1記載の冷凍機において、バイパス配管に開
閉弁が設けられていることを特徴とする冷凍機。 3、圧縮機、凝縮器、蒸発器、該圧縮機吐出側の送り冷
媒と該蒸発器からのもどり冷媒とが流通する複数の中間
熱交換器、複数の分離器と減圧器を具備しており、冷媒
には複数の非共沸混合冷媒を用い、該分離器を経た冷媒
の凝縮冷媒を該減圧器を介して該中間熱交換器に蒸発器
からのもどり冷媒と合流せしめて、該冷媒中の未凝縮冷
媒を冷却し、順次沸点の低い冷媒を凝縮せしめて、最終
段もしくは中間の減圧器を介して冷媒を該蒸発器に流通
することにより低温をつくり、該圧縮機吐出側の冷媒吐
出配管から該圧縮機吸込側の冷媒吸込配管に連通するバ
イパス配管を設け、該バイパス配管に開閉弁を設けた冷
凍機の運転方法において、前記圧縮機の吐出圧力もしく
は吸込圧力又は前記圧縮機の吐出側冷媒温度を検知する
か、又は検知器類を用いず、タイマーにより前記開閉弁
を開閉させることを特徴とする冷凍機の運転方法。
[Claims] 1. A compressor, a condenser, an evaporator, a plurality of intermediate heat exchangers through which the refrigerant sent from the compressor discharge side and the refrigerant returned from the evaporator flow, a plurality of separators, and a depressurizer. The refrigerant is a mixture of multiple non-azeotropic refrigerants, and the condensed refrigerant that has passed through the separator is combined with the refrigerant returned from the evaporator into the intermediate heat exchanger via the pressure reducer. In a refrigerator that obtains a low temperature by means of cooling the uncondensed refrigerant in the refrigerant and sequentially condensing the refrigerant with a lower boiling point, and means of circulating the refrigerant to the evaporator via a final stage or intermediate pressure reducer, A refrigerator comprising a bypass pipe that communicates from a refrigerant discharge pipe on the compressor discharge side to a refrigerant suction pipe on the compressor suction side. 2. The refrigerator according to claim 1, wherein the bypass pipe is provided with an on-off valve. 3. Equipped with a compressor, a condenser, an evaporator, a plurality of intermediate heat exchangers through which refrigerant sent from the compressor discharge side and refrigerant returned from the evaporator flow, a plurality of separators and a pressure reducer. , a plurality of non-azeotropic mixed refrigerants are used as the refrigerant, and the refrigerant condensed from the refrigerant that has passed through the separator is combined with the refrigerant returned from the evaporator through the pressure reducer to combine with the refrigerant returned from the evaporator. The uncondensed refrigerant is cooled, and the refrigerant with a lower boiling point is sequentially condensed, and the refrigerant is passed through the evaporator through the final stage or an intermediate pressure reducer to create a low temperature, and the refrigerant is discharged from the compressor discharge side. In a method of operating a refrigerator, in which a bypass pipe is provided that communicates from the pipe to a refrigerant suction pipe on the suction side of the compressor, and an on-off valve is provided in the bypass pipe, the discharge pressure or suction pressure of the compressor, or the discharge pressure of the compressor. A method for operating a refrigerator, characterized in that the on-off valve is opened and closed by detecting the side refrigerant temperature or by using a timer without using any detectors.
JP31621088A 1988-12-16 1988-12-16 Low temperature freezer and operation therefor Pending JPH02166355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31621088A JPH02166355A (en) 1988-12-16 1988-12-16 Low temperature freezer and operation therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31621088A JPH02166355A (en) 1988-12-16 1988-12-16 Low temperature freezer and operation therefor

Publications (1)

Publication Number Publication Date
JPH02166355A true JPH02166355A (en) 1990-06-27

Family

ID=18074527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31621088A Pending JPH02166355A (en) 1988-12-16 1988-12-16 Low temperature freezer and operation therefor

Country Status (1)

Country Link
JP (1) JPH02166355A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145349A (en) * 1974-10-16 1976-04-17 Hitachi Ltd REITOSAIKURUNIOKERUREITOSOCHI
JPS59115940A (en) * 1982-12-20 1984-07-04 松下冷機株式会社 Refrigerator
JPS6044773A (en) * 1983-08-23 1985-03-09 三洋電機株式会社 Starter for refrigerator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145349A (en) * 1974-10-16 1976-04-17 Hitachi Ltd REITOSAIKURUNIOKERUREITOSOCHI
JPS59115940A (en) * 1982-12-20 1984-07-04 松下冷機株式会社 Refrigerator
JPS6044773A (en) * 1983-08-23 1985-03-09 三洋電機株式会社 Starter for refrigerator

Similar Documents

Publication Publication Date Title
CA2836458C (en) Cascade cooling system with intercycle cooling
US4910972A (en) Refrigerator system with dual evaporators for household refrigerators
US5996356A (en) Parallel type refrigerator
EP2223021B1 (en) Refrigerating system and method for refrigerating
US6622518B2 (en) Cryogenic refrigerating system
JP2001116376A (en) Supercritical vapor compression type refrigerating cycle
CN113124581B (en) Turbo refrigerator
JP2006138525A (en) Freezing device, and air conditioner
JPH11344265A (en) Turbo freezer of multistage compression system
JPH06272998A (en) Refrigerator
JP2711879B2 (en) Low temperature refrigerator
JPH07103588A (en) Freezer-refrigerator
JPH02166355A (en) Low temperature freezer and operation therefor
JP2766356B2 (en) Refrigeration system with double evaporator for home refrigerator
JPH04263746A (en) Refrigerator
JPH0642829A (en) Freezer for low temperature freezing
JP4798884B2 (en) Refrigeration system
JP2002039637A (en) Freezer and freezing method
JP4372247B2 (en) Air conditioner
JPH049553A (en) Cryogenic freezer and its operating method
JPH07234041A (en) Cascade refrigerating equipment
JPH0534026A (en) Freezing cycle device
JP2008071021A (en) Automatic vending machine
JPH04268165A (en) Double-stage compression and freezing cycle device
JPH08210716A (en) Refrigerator