JPS5852958A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS5852958A
JPS5852958A JP56152723A JP15272381A JPS5852958A JP S5852958 A JPS5852958 A JP S5852958A JP 56152723 A JP56152723 A JP 56152723A JP 15272381 A JP15272381 A JP 15272381A JP S5852958 A JPS5852958 A JP S5852958A
Authority
JP
Japan
Prior art keywords
pressure
low
valve
pressure side
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56152723A
Other languages
Japanese (ja)
Other versions
JPS6353463B2 (en
Inventor
充 森田
秀樹 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP56152723A priority Critical patent/JPS5852958A/en
Publication of JPS5852958A publication Critical patent/JPS5852958A/en
Publication of JPS6353463B2 publication Critical patent/JPS6353463B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は高圧容器型の密閉型圧縮機を用いる冷凍装置の
改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a refrigeration system using a high-pressure container-type hermetic compressor.

一般的なロータリーコンプレッサの如く高圧容器型の密
閉圧縮機(以下ロータリーコンプレッサと呼ぶ)を採用
する小形冷凍装置においては、密閉容器内が高圧側にな
るために一般のレシプロコンプレッサの如く低圧容器型
の密閉圧縮機(以下レシプロコンプレッサと呼ぶ)に比
べて冷凍装置に封入する冷媒量が大巾に増加する。その
−例として、普及型冷凍冷蔵庫ではレシプロ型の冷媒封
入量1502程度に対して、ロータリー型では約250
9程度となりso%以上の大巾な増加となる。この冷媒
の増加分10o1のうち一部は高温高圧のスーパーヒー
トガスとして、一部は冷凍機油中に溶解して密閉容器中
に滞留しているのである。これらの高温高圧の冷媒は冷
凍装置の温度調節器の働きにより冷凍装置の停止時には
スーパ−ヒートガスはガス状態で、冷凍機油中に溶解し
ているものは気化して密閉容器内の高温部分で加熱され
、高温高圧のスーパーヒートガスとなり工・くポレータ
に流入する。その第1流路として密閉容器−コンデンサ
ーキャピラリーチー−ツーエバポレータへと流入し、コ
ンデンサで放熱されるので常温のスーパーヒートガスと
して流入するが、エバポレータとの温度差は非常に大き
く、従ってエバポレータを加熱し大きな熱負荷となる欠
点があった。また、第2流路として密閉容器−圧縮要素
のシリンダ室−サクションラインーエバポレータへと高
温高圧のスーパーヒートガスのまま流入しエバポレータ
を加熱し、これまた大きな熱負荷となる欠点があった。
In small refrigeration equipment that uses a high-pressure container-type hermetic compressor (hereinafter referred to as a rotary compressor) like a general rotary compressor, the inside of the closed container is on the high-pressure side, so a low-pressure container-type hermetic compressor like a general reciprocating compressor is used. Compared to a hermetic compressor (hereinafter referred to as a reciprocating compressor), the amount of refrigerant sealed in the refrigeration system is significantly increased. As an example, in a popular refrigerator-freezer, the amount of refrigerant filled is about 1,502 liters for a reciprocating type, while for a rotary type, it is about 250 liters of refrigerant.
It becomes about 9, which is a large increase of more than so%. A portion of this 10o1 increase in refrigerant is converted into high-temperature, high-pressure superheat gas, and a portion is dissolved in the refrigerating machine oil and remains in the closed container. These high-temperature, high-pressure refrigerants are in a gas state when the refrigeration equipment is stopped due to the action of the temperature controller of the refrigeration equipment, and those dissolved in the refrigeration oil are vaporized and heated in the high-temperature part of the sealed container. The gas becomes a high-temperature, high-pressure superheat gas and flows into the pumporator. As the first flow path, it flows into the sealed container - condenser capillary - two evaporator, and as the heat is dissipated by the condenser, it flows as superheated gas at room temperature, but the temperature difference with the evaporator is very large, so the evaporator is heated. However, it had the disadvantage of causing a large heat load. In addition, as the second flow path, the high-temperature, high-pressure superheat gas flows into the closed container, the cylinder chamber of the compression element, the suction line, and the evaporator as it is, heating the evaporator, which also has the drawback of causing a large heat load.

なおこの、密閉容器内の高温高圧ガスがシリンダ室に流
入するのは、現存するロータリーコンプレッサが金属面
接触によるメカニカルシールにてシリンダ室を構成して
いるためである。すなわち、このロータリーコンプレッ
サを用いた冷凍装置は以上の如く高温高圧のスーパーヒ
ートガスが多量にエバポレークに流入して大きな熱負荷
となるものであった。そのため従来のレシブロコンゾレ
ッサに比べて約20%程度効率の高いロータリーコンプ
レッサを実際に冷凍冷蔵庫に取りつけてJIS  C9
607電気冷蔵庫及び電気冷凍庫の消費電力試験にて測
定した場合にも効果は大巾に減少し、約6%程度の節電
量でしかないものであった。この消費電力量の低減量ヲ
ロータリーコンプレソサの効率向上相当分に引き上げる
ためには、前記第1.第2流路よりエバポレークに流入
する多量のスーパーヒートガスを阻止することである。
The high-temperature, high-pressure gas in the closed container flows into the cylinder chamber because the cylinder chamber of existing rotary compressors is configured with a mechanical seal made of metal surface contact. That is, in the refrigeration system using this rotary compressor, a large amount of high-temperature, high-pressure superheat gas flows into the evaporation lake, resulting in a large heat load. Therefore, we actually installed a rotary compressor, which is about 20% more efficient than a conventional reciprocating compressor, in a refrigerator-freezer and achieved JIS C9.
When measured in power consumption tests of 607 electric refrigerators and electric freezers, the effect was significantly reduced, and the power saving amount was only about 6%. In order to increase the amount of reduction in power consumption equivalent to the efficiency improvement of the rotary compressor, it is necessary to The purpose is to prevent a large amount of superheat gas from flowing into the evaporation lake from the second flow path.

現在一部に用いられている方法は前記第2流路を改善す
る方法で、冷凍装置のサクションラインに4チエツクパ
ルプを設ける方法であるが、前記第1流路は未改良であ
るためその効果は小さく、消費電力量の低減は5%程度
向上するのみで合計10%程度の効果である。また前記
第1流路を改善する方法として考えられる方法は、電磁
弁をコンデンサ出口に設は冷凍装置の運転に連動して開
閉する手法があるが、電磁弁は高価であり、動作時に騒
音が号生じ、またこの電磁弁の制御回路が必要で電気回
路が複雑となり、それ自身が電力を消費するなどの欠点
を有しているものであった。
The method currently used in some cases is to improve the second flow path, which is to install 4-check pulp in the suction line of the refrigeration equipment, but since the first flow path has not been improved, its effectiveness is is small, and the reduction in power consumption is only about 5%, which is a total effect of about 10%. In addition, a possible method for improving the first flow path is to install a solenoid valve at the condenser outlet and open and close it in conjunction with the operation of the refrigeration equipment, but solenoid valves are expensive and generate noise during operation. Furthermore, a control circuit for the solenoid valve is required, which complicates the electric circuit, and the valve itself consumes electric power.

本発明は以上の欠点に鑑みて、安価で、電気的な制御を
必要とせず、静粛で、かつロータリーコンプレッサ単体
の効率向上と同等以上の高効率化を冷凍装置として図ら
んとする省エネルギー形の冷凍装置を提供せんとするも
のである。
In view of the above drawbacks, the present invention is an energy-saving refrigeration system that is inexpensive, does not require electrical control, is quiet, and has an efficiency equal to or higher than that of a rotary compressor alone. The aim is to provide refrigeration equipment.

以下に本発明の一実施例について説明する。1はロータ
リーコンプレッサで、密閉容器2と圧縮要素3と図示し
ない電動要素で構成されている。
An embodiment of the present invention will be described below. A rotary compressor 1 is composed of a closed container 2, a compression element 3, and an electric element (not shown).

マタ、このロータリーコンプレッサ1は内部に逆止弁を
備えていないものである。そして、冷凍装置ハ、ロータ
リーコンプレッサ1、コンデンサ4゜本発明の主要部を
なす流体制御弁5の高圧回路5a、 キャピラリーチュ
ーブ6、エバポレータ7゜前記流体制御弁6の低圧回路
sb、サクションライン8.ロータリーコンプレッサ1
を順次環状に連結して成る。前記流体制御弁5は高圧回
路6aが上部、低圧回路6bが下部になるよう略垂直に
配設している。前記流体制御弁6は略中空円筒状の高圧
側ケーシング9と、これまた略中空円筒状の低圧側ケー
シング10とで外殻11を形成し気密を保持している。
Actually, this rotary compressor 1 is not equipped with a check valve inside. A refrigeration system c, a rotary compressor 1, a condenser 4, a high pressure circuit 5a of a fluid control valve 5 which is the main part of the present invention, a capillary tube 6, an evaporator 7, a low pressure circuit sb of the fluid control valve 6, a suction line 8. rotary compressor 1
are sequentially connected in a ring. The fluid control valve 5 is arranged substantially vertically so that the high pressure circuit 6a is at the top and the low pressure circuit 6b is at the bottom. The fluid control valve 6 has an outer shell 11 formed by a substantially hollow cylindrical high-pressure side casing 9 and a substantially hollow cylindrical low-pressure side casing 10 to maintain airtightness.

前記外殻11内には高圧回路6aと低圧回路5bとに仕
切り、前記2回路の圧力に応動して伸縮するベローズ1
2を配設している。前記ベローズ12の下端中央部には
ベローズ12を図中上方に向って付勢するコイルバネ1
3を設け、その下方には前記コイルバネ13を保持し、
ベローズ12の過度の動きを規制するとともに破損を防
止するリティナ−14を有している。
The outer shell 11 is partitioned into a high voltage circuit 6a and a low voltage circuit 5b, and has a bellows 1 that expands and contracts in response to the pressure of the two circuits.
2 are installed. At the center of the lower end of the bellows 12 is a coil spring 1 that urges the bellows 12 upward in the figure.
3, holding the coil spring 13 below it,
It has a retainer 14 that restricts excessive movement of the bellows 12 and prevents damage.

前記リテイア−14にはベローズ12が低圧回路6bの
圧力を正しく感知するための複数個の小孔14 a +
 14 a m−a−amが設けである。このリティナ
−14は両り−シンク9,10間にておさえられている
ものである。一方、高圧側ケーシング9は入口管9aと
出口管9bと弁座9ci有し、略中央には円柱状のプラ
ンジャ16が上下に摺動自在に収納されている。前記プ
ランジャ16の上端中央部にはボール弁よりなる高圧弁
16がカシメにより固定され高圧側弁装置17を形成し
ている。
The retainer 14 has a plurality of small holes 14a+ for the bellows 12 to correctly sense the pressure of the low pressure circuit 6b.
14 am-a-am is set. This retainer 14 is held between the sinks 9 and 10. On the other hand, the high-pressure side casing 9 has an inlet pipe 9a, an outlet pipe 9b, and a valve seat 9ci, and a cylindrical plunger 16 is housed substantially in the center so as to be slidable up and down. A high pressure valve 16 made of a ball valve is fixed to the center of the upper end of the plunger 16 by caulking to form a high pressure side valve device 17.

プランジャ15の下端にはプランジャ16とベローズ1
2とを一体的に取りつけるための凹部16aヲ設ケ、ベ
ローズ12をカシメにて一体的に挟着支持している。ま
た低圧側ケーシング10にも入口管10 a 、出口管
1ob、弁座10cを有し。
A plunger 16 and a bellows 1 are attached to the lower end of the plunger 15.
A recess 16a is provided for integrally attaching the bellows 12 and the bellows 12 is integrally clamped and supported by caulking. The low pressure side casing 10 also has an inlet pipe 10a, an outlet pipe 1ob, and a valve seat 10c.

略中夫には外縁部にガス通路を形成する切り欠き18a
を設けたリーフ弁よりなる低圧弁18を移動自在に収納
している。前記低圧弁18の上方には低圧弁18の過度
の動きを規制するストソノく19を低圧側ケーシング1
0に圧入固定して低圧側弁装置2oを形成している。
A notch 18a forming a gas passage is provided at the outer edge of the shaft.
A low-pressure valve 18 consisting of a leaf valve provided with is movably housed. Above the low-pressure valve 18, a strut 19 is installed in the low-pressure side casing 1 to restrict excessive movement of the low-pressure valve 18.
0 to form a low pressure side valve device 2o.

次に作用について述べる。第1図は冷凍装置が運転中の
状態図を表わしたもので、冷凍装置の高圧側は通常の高
圧力であり、低圧側も通常の低圧力であるため流体制御
弁6のベローズ12は高圧回路6aと低圧回路6bとの
圧力差によってコイルバネ13を押し下げ、リテイナ−
14に当るまで伸張しセている。従って高圧弁16はベ
ローズ12に一体的に取りつけられたプランジャ15に
より、弁座9Cに高圧回路6aとエバポレータ7内の圧
力差とコイルバネ13の付勢力の和によって吸着されて
いたのが引き離されて高圧側弁装置17は開路状態にな
っている。一方低圧側弁装置20の低圧弁18はエバポ
レータ7より流入するガス流により吹き上げられて弁座
10cと離れ。
Next, we will discuss the effect. Figure 1 shows a state diagram when the refrigeration system is in operation.The high pressure side of the refrigeration system is at normal high pressure, and the low pressure side is also at normal low pressure, so the bellows 12 of the fluid control valve 6 is under high pressure. The pressure difference between the circuit 6a and the low pressure circuit 6b pushes down the coil spring 13, and the retainer
It extends until it hits 14. Therefore, the high-pressure valve 16 is pulled away from the valve seat 9C by the sum of the pressure difference between the high-pressure circuit 6a and the evaporator 7 and the biasing force of the coil spring 13 by the plunger 15 that is integrally attached to the bellows 12. The high pressure side valve device 17 is in an open state. On the other hand, the low pressure valve 18 of the low pressure side valve device 20 is blown up by the gas flow flowing in from the evaporator 7 and separated from the valve seat 10c.

ストッパ19に当接する。ガスは低圧弁18の外縁部の
切り欠き18aとストッパ19の隙間より図中矢印aで
示す如く支障なく流れ低圧側弁装置2oは開路状態とな
っている。従って、ロータリーコンプレッサ1より吐出
された冷媒ガスはコンデンサ4.流体制御弁5の高圧回
路5a、キャビラ’) −チーープ8、エバボレ〜り7
.流体制御弁6の低圧回路6b、ザク1ジヨンライン8
.ロータリーコンプレツサ1へと支障なく流れて冷凍作
用を行う。
It comes into contact with the stopper 19. Gas flows through the gap between the notch 18a on the outer edge of the low pressure valve 18 and the stopper 19 without any problem as shown by the arrow a in the figure, and the low pressure side valve device 2o is in an open state. Therefore, the refrigerant gas discharged from the rotary compressor 1 is transferred to the condenser 4. High pressure circuit 5a of fluid control valve 5, cabil') - cheap 8, evaporation 7
.. Low pressure circuit 6b of fluid control valve 6, Zaku 1 joint line 8
.. It flows without any hindrance to the rotary compressor 1 and performs the refrigeration action.

次に冷凍装置の停止中の状態について第2図。Next, FIG. 2 shows a state in which the refrigeration equipment is stopped.

第3図を用いて説明する。ロータリーコンプレッサ1の
停止によりエバポレータ7よりのガス流が停止するので
、流体制御弁6の低圧回路6b内の低圧弁18は自重で
落下し弁座10C[当接して低圧側弁装置20を閉路状
態にする。その結果、ロータリーコンプレッサ1よりの
スーツく−ヒートガスがエバポレータ7へと逆流、流入
するのを防止する。更に時間が経過すると密閉容器2内
のスーパーヒートガスは圧縮要素3の図示しないシリン
ダ室に流入し、さらにサクションライン8へと流入し、
流体制御弁6の低圧回路6bに流入する(図中矢印すで
示す)ので低圧回路6b内の圧力は急激に上昇し、高圧
回路6aの圧力と近似となる。前記両回路6a、5bの
圧力が近似になるとベローズ12の下方に設けたコイル
レノくネ13の付勢力が両回路5a、5bの圧力、差に
よりベローズ12に発生する力に打ち勝ってプランジャ
16が押し」二げられ高圧側弁装置17は閉路状態とな
り。
This will be explained using FIG. When the rotary compressor 1 stops, the gas flow from the evaporator 7 stops, so the low pressure valve 18 in the low pressure circuit 6b of the fluid control valve 6 falls under its own weight and contacts the valve seat 10C, closing the low pressure side valve device 20. Make it. As a result, the soot heat gas from the rotary compressor 1 is prevented from flowing back into the evaporator 7. As time further passes, the superheated gas in the closed container 2 flows into the cylinder chamber (not shown) of the compression element 3, and further flows into the suction line 8.
Since it flows into the low pressure circuit 6b of the fluid control valve 6 (as indicated by the arrow in the figure), the pressure in the low pressure circuit 6b rapidly increases and becomes approximately the pressure in the high pressure circuit 6a. When the pressures in both circuits 6a and 5b become approximate, the biasing force of the coil nose 13 provided below the bellows 12 overcomes the force generated in the bellows 12 due to the pressure difference between the two circuits 5a and 5b, and the plunger 16 is pushed. ''The high pressure side valve device 17 becomes closed.

コンデンサ4よりのスーツく一ヒ〜トガスのエノ(ボレ
ータフへの流入を防止する。
Prevents suit gas from flowing into the volley tank from the condenser 4.

更にベローズ12を上方に付勢するコイルバネ13の作
用について第3図の冷凍装置の圧力変化図を用いて説明
する。図において、ロータリーコンプレッサ1が停止す
ると同時に低圧側弁装置20は閉路状態となりロータリ
ーコンプレッサ1より逆流するスーパーヒートガスによ
り低圧回路6bの圧力は急激に上昇する。この時、高圧
側弁装置17はまだ開路状態でありコンデンサ4と高圧
回路5dの圧力は等しく徐々に降下する。この停止後の
微小時間tが経過するとベローズ12に作用する高圧回
路6aと低圧回路5bとの差圧ΔPとベローズ12の有
効面積Sによって発生する力 FP(FP−ΔPxS)
に対してコイルバネ13の付勢力FCが大きくなりプラ
ンジャ15が押し上げられ高圧側弁装置17は閉路状態
となる。
Furthermore, the action of the coil spring 13 that urges the bellows 12 upward will be explained using the pressure change diagram of the refrigeration system shown in FIG. In the figure, at the same time as the rotary compressor 1 stops, the low-pressure side valve device 20 becomes closed, and the pressure in the low-pressure circuit 6b rapidly increases due to the superheat gas flowing back from the rotary compressor 1. At this time, the high-pressure side valve device 17 is still in an open state, and the pressures in the capacitor 4 and the high-pressure circuit 5d gradually drop to the same extent. When a minute time t has elapsed after this stop, a force FP (FP-ΔPxS) is generated due to the differential pressure ΔP between the high-pressure circuit 6a and the low-pressure circuit 5b acting on the bellows 12 and the effective area S of the bellows 12.
In contrast, the biasing force FC of the coil spring 13 increases, the plunger 15 is pushed up, and the high pressure side valve device 17 is brought into a closed circuit state.

この時点より高圧回路6aに流入する冷媒が停止するの
で高圧回路6aの出口管9aの圧力は急激に低下する。
From this point on, the refrigerant flowing into the high-pressure circuit 6a stops, so the pressure in the outlet pipe 9a of the high-pressure circuit 6a drops rapidly.

この圧力低下によりボール弁16は更に弁座9Cに吸着
され、洩れは低減する。なおロータリーコンプレッサ1
が停止後は高圧側弁装置17が閉路する迄の微小時間t
は約30秒以下である必要がある。この30秒以下とい
うのは冷凍装置の大きさや、ロータリーコンプレッサ1
の大きさにもよるが冷凍装置が停止後より約45秒〜1
分程度はコンデンサ4で凝縮された液冷媒がキャピラリ
ーチューブ6へ流入し正常な冷凍作用を行うので、それ
以前に高圧側弁装置17を閉弁すれば良いためである。
This pressure drop causes the ball valve 16 to be further attracted to the valve seat 9C, reducing leakage. Furthermore, rotary compressor 1
After stopping, there is a short time t until the high pressure side valve device 17 closes.
must be approximately 30 seconds or less. This 30 seconds or less depends on the size of the refrigeration equipment and the rotary compressor 1.
Approximately 45 seconds to 1 hour after the freezing equipment stops, depending on the size of the
This is because the liquid refrigerant condensed in the condenser 4 flows into the capillary tube 6 and performs a normal refrigeration action for about a minute, so it is sufficient to close the high-pressure side valve device 17 before that time.

そのためには、前記微小時間tをできるだけ小さくする
ことが必要であり。
For this purpose, it is necessary to make the minute time t as small as possible.

こめためには前記差圧ΔPが大きな時に高圧側弁装置1
7を閉弁させることである。ぺCff−、(12自身の
付勢力はその構造上たいして大きくはないのでそれを増
大させるためにコイルバネ13を設けて付勢力を大きく
シ、前記差圧ΔPが大きくても閉弁し、微小時間tを3
0秒以内として、あらゆる冷凍装置に対応できるように
しているのである。冷凍装置の起動時には低圧回路6b
の圧力は瞬時に低圧となりベローズ12は下方に引き下
げられ、プランジャ15を介してベローズ12に一体と
なったボール弁16は下降し、高圧側弁装置17が開弁
し正常な冷凍作用を行う。
In order to reduce the pressure, when the differential pressure ΔP is large, the high pressure side valve device 1
7 to close the valve. PeCff-, (Since the biasing force of 12 itself is not very large due to its structure, in order to increase it, a coil spring 13 is provided to increase the biasing force, so that even if the differential pressure ΔP is large, the valve closes and the minute time t to 3
It is designed to be compatible with all types of refrigeration equipment as it takes less than 0 seconds. When starting up the refrigeration system, the low pressure circuit 6b
The pressure becomes low instantaneously, the bellows 12 is pulled downward, the ball valve 16 integrated with the bellows 12 via the plunger 15 is lowered, and the high pressure side valve device 17 opens to perform normal refrigeration.

以上の様に本発明の冷凍装置は流体制御弁を備え、前記
流体制御弁の高圧側弁装置はコンデンサとキャピラリー
チー−ブ等の減圧器の間に接続し、チェックパルプ機能
を有する低圧側弁装置はエバポレータとロータリーコン
プレッサの間のサクションラインに接続し、高圧側弁装
置は低圧回路の圧力が低い時に開弁し、高い時は閉弁す
るようにその圧力に応動するようにしているので冷凍装
置が運転中は通常の冷媒循環を行い、冷凍装置が停止中
にはチェックバルブ機能を有する低圧側弁装置がただち
に閉弁すると同時に低圧回路の圧力が急上昇し高圧側弁
装置を液冷媒が減圧装置へ流出している微小時間中に閉
弁するので、密閉容器内−およびコンデンサ内のスーパ
ーヒートガスがサクションラインおよび減圧装置を介し
てエバポレータに流入するのを防止する。従って流体制
御弁の無いものに比べて節電効果を大とすると共に、前
記両弁装置を熱交換的に一体に形成しているのでエバポ
レータを流出した排除熱である温度の低いスーパーヒー
トガスによりコンデンサより流出する液冷媒の過冷却を
行い冷凍効果の増大が図れ、更に若干の省電力化となる
。また電磁弁で制御するものに比べて安価であり、さら
に、制御する電力も必要とせず、制御回路も不要で余分
な電気配線も必要とせず、又なめらかな動作を行うので
騒音が発生しないなどの特徴を有するものである。
As described above, the refrigeration system of the present invention includes a fluid control valve, and the high pressure side valve device of the fluid control valve is connected between a condenser and a pressure reducer such as a capillary cheese, and the low pressure side valve device has a check pulp function. The device is connected to the suction line between the evaporator and the rotary compressor, and the high-pressure side valve device responds to the pressure by opening when the pressure in the low-pressure circuit is low and closing when it is high. When the equipment is in operation, normal refrigerant circulation occurs, and when the refrigeration equipment is stopped, the low-pressure side valve device, which has a check valve function, immediately closes, and at the same time the pressure in the low-pressure circuit suddenly increases, and the liquid refrigerant depressurizes the high-pressure side valve device. Since the valve is closed during a short period of time when the gas is flowing out into the device, superheated gas in the closed container and the condenser is prevented from flowing into the evaporator via the suction line and the pressure reducing device. Therefore, the power saving effect is greater than that of a device without a fluid control valve, and since both of the valve devices are integrally formed for heat exchange, the low temperature superheat gas, which is the rejected heat flowing out of the evaporator, is used to condense the capacitor. By supercooling the liquid refrigerant flowing out, the refrigeration effect can be increased, and power consumption can be further reduced. In addition, it is less expensive than those controlled by solenoid valves, does not require electric power, does not require a control circuit, does not require extra electrical wiring, and operates smoothly, so it does not generate noise. It has the following characteristics.

また冷凍装置が停止時の高圧側弁装置の閉弁については
ベローズの下方にベローズを付勢するコイルバネを設け
ているので高低圧回路の差圧の大きい停止時に近い液冷
媒が通過中に閉弁できるので、へC1−、t: 自身の
付勢力にたよっている時のようにスーパーヒートガスが
エバポレータに混入流出するような恐れは全くないなど
の利点を有するものである。
In addition, when the refrigeration equipment is stopped, the high-pressure side valve device is closed by installing a coil spring below the bellows that biases the bellows, so the valve closes while the liquid refrigerant is passing through when the high-low pressure circuit is stopped with a large differential pressure. Therefore, C1-, t: This has the advantage that there is no fear that the superheat gas will mix into the evaporator and flow out unlike when it relies on its own biasing force.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す冷凍装置の運転中の要
部断面図、第2図は第1図相当の停止中の流体制御弁の
要部断面図、第3図は第1図の冷凍装置の圧力変化図で
ある。 1 、、、、、、ロータリーコンプレッサ(密閉型圧縮
機) 4 、、、、、、コンデンサ、6 、、、、、、
減圧器、7゜6.060.エバポレータ、5 、、、、
、、流体制御弁、5a00099.高圧回路、s b 
、、、00.低圧回路、12 、、。 aaa++*aベローズ、13 、、、、、、、コイル
バネ、16゜00000.高圧弁、17 、、、、、、
高圧側゛弁装置、18゜・・・・・・低圧弁、20・・
・・・・低圧側弁装置。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 1 第2図
FIG. 1 is a cross-sectional view of the main part of a refrigeration system showing an embodiment of the present invention when it is in operation, FIG. FIG. 3 is a pressure change diagram of the refrigeration device shown in FIG. 1. Rotary compressor (hermetic compressor) 4. Capacitor 6.
Pressure reducer, 7°6.060. Evaporator, 5,...
,, fluid control valve, 5a00099. high voltage circuit, s b
,,,00. Low voltage circuit, 12,. aaa++*a bellows, 13,,,,,,, coil spring, 16°00000. High pressure valve, 17,,,,,,
High pressure side valve device, 18°...Low pressure valve, 20...
...Low pressure side valve device. Name of agent: Patent attorney Toshio Nakao and 1 other person 1st
Figure 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)高圧容器型の密閉型圧縮機、コンデンサ、減圧器
、エバポレータ、サクションライン、流体制御弁等より
なり、前記流体制御弁は高圧弁並びに高圧回路を含む高
圧側弁装置と、低圧弁並びに低圧回路を含む低圧側弁装
置を含み、前記高圧側弁装置は前記減圧器の上流側に、
前記低圧側弁装置は前記エバポレータの下流側に各々介
在接続され、前記高圧弁は前記高圧回路と低圧回路の圧
力差にて作動し、かつ圧力接近時に閉鎖状態を保つとと
もに、前記低圧弁は逆止弁動作とし、かつ前記高圧弁の
可動側弁体は連結手段により前記高圧回路と前記低圧回
路との圧力差による圧力応動体に一体的に連結され、前
記圧力応動体はバネにて高圧側を閉じる方向に付勢した
冷凍装置。
(1) Consists of a high-pressure vessel-type hermetic compressor, a condenser, a pressure reducer, an evaporator, a suction line, a fluid control valve, etc., and the fluid control valve includes a high-pressure side valve device including a high-pressure valve and a high-pressure circuit, a low-pressure valve, and a fluid control valve. a low pressure side valve device including a low pressure circuit, the high pressure side valve device being upstream of the pressure reducer;
The low-pressure side valve devices are each connected to the downstream side of the evaporator, and the high-pressure valve operates based on the pressure difference between the high-pressure circuit and the low-pressure circuit and remains closed when the pressure approaches, and the low-pressure valve is reversely connected. The movable valve body of the high-pressure valve is integrally connected to a pressure-responsive body based on the pressure difference between the high-pressure circuit and the low-pressure circuit by a connecting means, and the pressure-responsive body is connected to the high-pressure side by a spring. A refrigeration device biased in the direction of closing.
(2)前記高圧側弁装置と前記低圧側弁装置は、熱交換
関係に配置されている特許請求の範囲第1項記載の冷凍
装置。
(2) The refrigeration system according to claim 1, wherein the high-pressure side valve device and the low-pressure side valve device are arranged in a heat exchange relationship.
(3)前記流体制御弁は上方に位置する前記高圧側弁装
置と、下方に位置する前記低圧側弁装置を一体的に構成
した特許請求の範囲第1項記載の冷凍装置。
(3) The refrigeration system according to claim 1, wherein the fluid control valve integrally comprises the high-pressure side valve device located above and the low-pressure side valve device located below.
JP56152723A 1981-09-25 1981-09-25 Refrigerator Granted JPS5852958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56152723A JPS5852958A (en) 1981-09-25 1981-09-25 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56152723A JPS5852958A (en) 1981-09-25 1981-09-25 Refrigerator

Publications (2)

Publication Number Publication Date
JPS5852958A true JPS5852958A (en) 1983-03-29
JPS6353463B2 JPS6353463B2 (en) 1988-10-24

Family

ID=15546738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56152723A Granted JPS5852958A (en) 1981-09-25 1981-09-25 Refrigerator

Country Status (1)

Country Link
JP (1) JPS5852958A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5997463A (en) * 1982-11-29 1984-06-05 株式会社東芝 Valve gear for refrigeration cycle
JPS60226495A (en) * 1984-04-20 1985-11-11 Hitachi Ltd Method of allowing lanthanum hexaboride single crystal to grow
JPH04198093A (en) * 1990-11-29 1992-07-17 Natl Inst For Res In Inorg Mater Method for growing lanthanum boride single crystal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102239088B1 (en) 2013-04-03 2021-04-09 미쓰이 가가쿠 가부시키가이샤 Plant cultivation system, cultivation method utilizing same and manufacturing method therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR811326A (en) * 1936-01-21 1937-04-12 Sulzer Ag Compression refrigeration machine
US2326093A (en) * 1940-05-29 1943-08-03 Detroit Lubricator Co Refrigerating system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR811326A (en) * 1936-01-21 1937-04-12 Sulzer Ag Compression refrigeration machine
US2326093A (en) * 1940-05-29 1943-08-03 Detroit Lubricator Co Refrigerating system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5997463A (en) * 1982-11-29 1984-06-05 株式会社東芝 Valve gear for refrigeration cycle
JPS60226495A (en) * 1984-04-20 1985-11-11 Hitachi Ltd Method of allowing lanthanum hexaboride single crystal to grow
JPH0429638B2 (en) * 1984-04-20 1992-05-19
JPH04198093A (en) * 1990-11-29 1992-07-17 Natl Inst For Res In Inorg Mater Method for growing lanthanum boride single crystal

Also Published As

Publication number Publication date
JPS6353463B2 (en) 1988-10-24

Similar Documents

Publication Publication Date Title
JP3413385B2 (en) Switching valve for refrigerant flow path
JPS5852958A (en) Refrigerator
US4646533A (en) Refrigerant circuit with improved means to prevent refrigerant flow into evaporator when rotary compressor stops
JPS5899671A (en) Fluid control valve for refrigerator
JPS5888577A (en) Fluid control valve for refrigerator
JPS5899650A (en) Refrigerator
JPS5899649A (en) Refrigerator
JP2508811B2 (en) Air conditioner
JPS5896954A (en) Refrigerator
JPS5895172A (en) Fluid control valve for refrigerator
JPS6016268A (en) Cooling device
JPH0217198Y2 (en)
JPS59115940A (en) Refrigerator
JPS61191844A (en) Accumulator
JPS5862463A (en) Refrigerator
JPS5896969A (en) Refrigerator
JPS5852955A (en) Refrigerator
JPS5899652A (en) Refrigerator
JPS5899674A (en) Refrigerator
JPS5862471A (en) Refrigerator
JPS60142164A (en) Refrigerator with rotary compressor having fluid control function
JPH0335590B2 (en)
JPS6016269A (en) Cooling device
JPS5899651A (en) Refrigerator
JPS5899656A (en) Refrigerator