JPS5997463A - Valve gear for refrigeration cycle - Google Patents

Valve gear for refrigeration cycle

Info

Publication number
JPS5997463A
JPS5997463A JP57209545A JP20954582A JPS5997463A JP S5997463 A JPS5997463 A JP S5997463A JP 57209545 A JP57209545 A JP 57209545A JP 20954582 A JP20954582 A JP 20954582A JP S5997463 A JPS5997463 A JP S5997463A
Authority
JP
Japan
Prior art keywords
valve
check valve
pressure
differential pressure
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57209545A
Other languages
Japanese (ja)
Inventor
泰清 村田
川崎 一也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57209545A priority Critical patent/JPS5997463A/en
Publication of JPS5997463A publication Critical patent/JPS5997463A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lift Valve (AREA)
  • Gears, Cams (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 未発明は冷蔵庫等のようにコンプレッサ金駆動〔発明の
技術的背景とその問題点〕 この種の冷凍サイク/L/l:cコンプレッサに対し、
コンデンサ、キャピラリチューブ及びエノ(ポレータ會
順に接続して構成されているが、このものでは庫内が所
定温度まで冷却されてコンプレツサの運転が停□止する
と、その後、コンデンサ側のホットカスカ徐々にエバポ
レータ内に流入するようになって比較的短時間のうちに
コンプレツサの運転が再開されてしまい、消費電力量が
多くなるという問題があった。これを防止するために、
ロータリコンプレッサを用いたものでは、第1図に示す
ようにコンデンサAとキャピラリチューブBとの間VC
電磁弁Oi設け、ロータリコンプレッサDの停止に伴っ
て該電磁弁Cが通電されて閉動作するように構成すると
共に、ロータリコンプレッサDとエバポレータEとの間
に逆止弁F2設け、以て運転停止時にコンデンサ部側の
ホットガスがエバポレータ部内に流入することの無いよ
うにしたものがあるが、これでは運転停止中電磁弁Cは
通電され放しであり、電力の無駄使いとなる。
[Detailed Description of the Invention] [Technical Field of the Invention] What has not yet been invented is a metal-driven compressor such as a refrigerator. [Technical background of the invention and its problems] For this type of refrigeration cycle/L/l:c compressor,
It consists of a condenser, a capillary tube, and an eno (porator) connected in order. In this case, when the inside of the refrigerator is cooled to a predetermined temperature and the compressor stops operating, the hot casing on the condenser side gradually flows into the evaporator. There was a problem in that the compressor restarted operation within a relatively short time after the inflow into the air, resulting in increased power consumption.In order to prevent this,
In the rotary compressor, as shown in Figure 1, there is a VC between the capacitor A and the capillary tube B.
A solenoid valve Oi is provided, and when the rotary compressor D is stopped, the solenoid valve C is energized and closed, and a check valve F2 is provided between the rotary compressor D and the evaporator E, and the operation is stopped. Sometimes, there is a system that prevents hot gas from the capacitor section from flowing into the evaporator section, but in this case, the solenoid valve C is not energized while the operation is stopped, resulting in wasted power.

そこで近時、第2図に示す工うに、従来の電磁弁Cに代
えて圧力応動形の弁装置Gi設けると共に、この弁装置
Gi逆止弁FとロータリコンプレッサDとを連結する管
路■に連通管J2介して連通せしめ、以てロータリコン
プレッサDの運転停止に伴う前記管路Hの内圧上昇によ
り弁装置Gを閉塞作動させて、エバポレータE 内へ(
7)ホットカスの流入を防止することが考えられている
。しかしながらこの第2図の構成では、逆止弁Fと弁装
置Gと音別々に設けねばならない上に、ロータリコンプ
レッサDと逆止弁Fと弁装置Gとを接続するためICT
字管継手K(H必要とし、部品点数が多くなるという問
題がある。ま友、逆止弁F及び弁装@Gの付設に関連し
たろう付けVCよる管路接続個所もへ個所(第2図に4
イ乃至チで示す)となり、第1図の従来構成のものに比
べ四個所多く、管路接続作業に多くの手間を要するとい
う問題がある。
Therefore, in recent years, a pressure-responsive valve device Gi has been installed in place of the conventional solenoid valve C, as shown in FIG. The valve device G is operated to close due to the increase in the internal pressure of the pipe H due to the stoppage of operation of the rotary compressor D, and the air flows into the evaporator E (
7) It is considered to prevent the inflow of hot residue. However, in the configuration shown in FIG. 2, the check valve F and the valve device G must be provided separately, and ICT is required to connect the rotary compressor D, the check valve F, and the valve device G.
There is a problem that the number of parts increases due to the need for a joint K (H).Also, the pipe connection point (second Figure 4
There are four more locations than the conventional configuration shown in FIG. 1, as shown in A to H, and there is a problem in that the pipe connection work requires a lot of effort.

〔発明の目的〕[Purpose of the invention]

本発明は上記の事情rc鑑みてなされたもので、その目
的は、ロータリコンプレッサを備えた冷凍サイクルにお
いて、電磁弁を用いることなく、シかも部品点数及びろ
う付けKよる管路接続個所の減少上図りつつ、エバポレ
ータへのホットガスの流入を防止できる冷凍サイクルの
弁装置を提供するrcある。
The present invention has been made in view of the above-mentioned circumstances.The purpose of the present invention is to reduce the number of parts and pipe connection points by brazing K in a refrigeration cycle equipped with a rotary compressor without using a solenoid valve. RC provides a valve device for a refrigeration cycle that can prevent hot gas from flowing into an evaporator.

〔発明の概要〕[Summary of the invention]

本発明は、弁ケースの一方側及び他方側を夫々差圧弁部
及び逆止弁部とし、差圧弁部にコンデンサの出口側rC
連結される第1の流入口とエバポレータの入口側に連結
される第1の流出口とを設けると共に、差圧弁部側を前
記逆止弁部側と隔絶するようにして圧力応動体を設けて
該圧力応動体に差圧作動用弁体全連結し、前記逆止弁部
内に逆止用弁体を配置し且つ逆止弁部に逆止用弁体に関
し前記差圧弁部とは反対側に位置して前記エバポレータ
の出口側に連結される第2の流入口全形成すると共に前
記圧力応動体と逆止用弁体との間に位置してロータリコ
ンプレッサの吸入口側に連結される第2の流出口全形成
し、前記圧力応動体が前記差圧弁部と逆止弁部との内圧
差により変位して前記差圧作動用弁体にて前記第1の流
入口及び第1の流出日間全開閉すると共に、前記逆止用
弁体が前記第2の流出口から第2の流入口への冷媒逆流
により両者間を閉塞するようにし、以て二種類の弁全一
体に構成でき且つ1字管継手も不要にできて、部品点数
及びろう付けVC、Cる管路の接続個所の双方の減少全
−挙1c達成し得るようにするものである。
The present invention has a differential pressure valve section and a check valve section on one side and the other side of the valve case, respectively, and the outlet side rC of the condenser in the differential pressure valve section.
A first inlet connected to the inlet and a first outlet connected to the inlet side of the evaporator are provided, and a pressure responsive body is provided so as to isolate the differential pressure valve side from the check valve side. A valve body for differential pressure operation is fully connected to the pressure responsive body, a check valve body is disposed within the check valve portion, and a check valve body is provided with a valve body on the opposite side of the differential pressure valve portion in the check valve portion. a second inlet located and connected to the outlet side of the evaporator, and a second inlet located between the pressure responsive body and the check valve body and connected to the inlet side of the rotary compressor; The entire outflow port is formed, and the pressure-responsive body is displaced by the internal pressure difference between the differential pressure valve part and the check valve part, and the pressure-responsive body is displaced by the differential pressure operating valve body to open the first inflow port and the first outflow port. When the valve is fully opened and closed, the check valve body closes the space between the second outlet and the second inlet by a reverse flow of refrigerant from the second outlet to the second inlet. It is also possible to eliminate the need for joints, thereby achieving a total reduction in both the number of parts and the connection points for brazed VC and C pipes.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を第6図乃至第5図に基づいて説
明する。まず第3図において、1はロータリコンプレッ
サであり、このコンプレッサ1に対し、途中に弁装置2
を介して、コンデンサ3゜ドライヤ4.キャピラリチュ
ーブ5.冷蔵室用エバポレータ6及び冷凍室用エバポレ
ータ7を同順に接続している。8は流路切換用の電磁弁
で、冷蔵室の温度に応じて冷媒を前記キャピラリチュー
ブ5t−介して冷蔵室及び冷凍室の両エバポレータ6及
び7に流す場合と、別のキャビクリチューブ9を介して
冷凍室用エバポレータ7のみVC流す場合とrc切換え
る作用をなす。次に前記弁装置112の具体的構成を示
す第4図rcおいて、10は両端を閉塞した円筒状の弁
ケースで、一方何たる図示左方側全差圧弁部11とし、
他方何次る図示右方側を逆止弁部12としている。上記
差圧弁部11の周壁及び端壁rcは、夫々短尺な接続管
13及び14を嵌着し7’(第1の流入口15及び第1
の流出口16が形成されている。そして、第1の流入口
15の接続管13には、前記ドライヤ4の出口に接続し
た連結管17がろう付けにより接続され、ま7′?、第
1の流出口16の接続管14には、前記キャビフリチュ
ーブ5の入口及び電磁弁8の入口rc接続した連結管1
8が同じくろう付けrcより接続されている。19は弁
ケース1oの中央部内”側に嵌合固定された環状の取付
座、20は左端部がキャップ21に工p密閉された圧力
応動体たるベローズで、このベローズ2oは弁ケース1
oの差圧弁部11内に収納配置され、右端部が取付座1
9rc固層されている。そして、弁ケース10内は上記
ベローズ20rCエク、差圧弁部11側の第1の弁室2
2と逆止弁部12側の第2の弁室23とに液密且つ気密
に隔絶されており、ベローズ2017’3は第2の弁室
23内に連通されている。24はベローx2omキャッ
プ21に取付けられfc球状の差圧作動用弁体で、これ
はベローズ2oの伸縮に伴って前記第1の流出口16を
閉塞及び開放するもので、ベローズ2oは第1及び第2
の弁室22及び23の内圧が略等しいときvcは自身の
弾性力で伸長して差圧作動用弁体24によV第1の流出
口16を閉塞するように構成されている。一方、25は
前記逆止弁部12の右端部内側に嵌合固定された弁座で
、中心部tct:c弁口26が左右方向に貫通して形成
され、ま危左端面は円錐状に窪む座面25&として形成
されている。27は逆止弁部12内に左右方向に移動可
、能に収納配置した逆止用弁体で、右端面は円錐状の突
′面27&として形成され、また左端面rCは溝27b
が形成されている。
An embodiment of the present invention will be described below with reference to FIGS. 6 to 5. First, in FIG. 3, 1 is a rotary compressor, and a valve device 2 is connected to the compressor 1.
Through the capacitor 3° dryer 4. Capillary tube5. The evaporator 6 for the refrigerator compartment and the evaporator 7 for the freezer compartment are connected in the same order. Reference numeral 8 denotes a flow path switching solenoid valve, which is used to flow the refrigerant to both the evaporators 6 and 7 of the refrigerator and freezer compartments through the capillary tube 5t depending on the temperature of the refrigerator compartment, and to flow the refrigerant to the evaporators 6 and 7 of the refrigerator compartment and the freezer compartment depending on the temperature of the refrigerator compartment. The function is to switch between flowing VC and RC only in the evaporator 7 for the freezer compartment. Next, in FIG. 4 rc showing the specific structure of the valve device 112, 10 is a cylindrical valve case with both ends closed, and on the other hand, what is the total differential pressure valve part 11 on the left side in the figure?
On the other hand, the right side in the drawing is the check valve section 12. The circumferential wall and end wall rc of the differential pressure valve section 11 are fitted with short connecting pipes 13 and 14, respectively.
An outflow port 16 is formed. A connecting pipe 17 connected to the outlet of the dryer 4 is connected to the connecting pipe 13 of the first inlet 15 by brazing. , to the connecting pipe 14 of the first outlet 16 is a connecting pipe 1 connected to the inlet of the cavity free tube 5 and the inlet of the solenoid valve 8.
8 are also connected by brazing rc. Reference numeral 19 denotes an annular mounting seat fitted and fixed inside the central part of the valve case 1o, and 20 a bellows, which is a pressure-responsive body whose left end is sealed with a cap 21;
o is housed in the differential pressure valve part 11, and the right end is the mounting seat 1.
9rc solid layered. The inside of the valve case 10 includes the bellows 20rC, the first valve chamber 2 on the side of the differential pressure valve section 11,
2 and the second valve chamber 23 on the side of the check valve section 12 in a liquid-tight and air-tight manner, and the bellows 2017'3 is communicated with the inside of the second valve chamber 23. 24 is an fc spherical differential pressure operating valve body attached to the bellows x2om cap 21, which closes and opens the first outlet 16 as the bellows 2o expands and contracts; Second
When the internal pressures of the valve chambers 22 and 23 are substantially equal, VC expands by its own elastic force and closes the V-first outlet 16 by the differential pressure operating valve body 24. On the other hand, 25 is a valve seat fitted and fixed inside the right end portion of the check valve portion 12, and a central portion tct:c valve port 26 is formed to pass through in the left-right direction, and the left end surface is conical. It is formed as a recessed seat surface 25&. Reference numeral 27 denotes a check valve body which is movable and housed in the check valve section 12 in the left and right direction.The right end surface is formed as a conical protruding surface 27&, and the left end surface rC is formed as a groove 27b.
is formed.

尚、28は逆止弁部12内に嵌合固定された環状のスト
ッパで、逆止用弁体27の左方への移動限界位tii’
に規制する友めのものである。29は第2の流入口で、
これは逆止弁部12のうち逆止用弁体27に関し前記差
圧弁部11とは反対側の部位即ち逆止弁部12の端壁に
弁座25の弁ロ261C連通するようにして形成されて
いる。斯る@2の′流入口29には短尺な接続管30が
嵌着されてお′り、この接続管30には前記冷凍室用エ
バポレータ7の出口VC接続した吸入管31がろう付け
Vcより接続されている。62は第2の流出口で、これ
は逆上弁部12のうち前記ベローズ2′oと逆止用弁体
27との間の周壁に形成されている。そして、この第2
の流出口32には短尺な接続管33が嵌着されていて、
この接続管53に前記ロータリコンプレッサ1の吸入口
に接続した連結管34がろう付けに工り接続されている
In addition, 28 is an annular stopper fitted and fixed in the check valve part 12, and is located at the leftward movement limit position tii' of the check valve body 27.
This is for a friend who has regulations. 29 is the second inlet;
This is formed so that the valve hole 261C of the valve seat 25 communicates with a portion of the check valve portion 12 opposite to the differential pressure valve portion 11, that is, an end wall of the check valve portion 12. has been done. A short connecting pipe 30 is fitted into the inlet 29 of @2, and a suction pipe 31 connected to the outlet VC of the freezer compartment evaporator 7 is connected to the brazing Vc. It is connected. Reference numeral 62 denotes a second outflow port, which is formed in the peripheral wall of the reverse valve portion 12 between the bellows 2'o and the check valve body 27. And this second
A short connecting pipe 33 is fitted into the outlet 32 of the
A connecting pipe 34 connected to the intake port of the rotary compressor 1 is connected to this connecting pipe 53 by brazing.

以上のように構成した弁装置21Cおいて、ロータリコ
ンプレッサ1の運転開始前−にあっては、差圧作動用弁
体24が第1の流出0.16″に:閉塞し、また逆止用
弁体27が第2の流入口29を閉塞している。さて、庫
内が所定の温度以上に上昇し・ロータリコンプレッサ1
の運転が開始されると、連結管34内の圧力は低下し、
コンデンサ2側の圧力は上昇し、これに伴い第1の弁室
22内の圧力は低下すると共に第2の弁室23内の圧力
は上昇する。この結果、逆止用弁体27ぞ高圧側の両エ
バポレータ6.7側の冷媒にエフ左方に押しやられるよ
うに移動して弁座25の弁口26ひいては第2の流入口
29を開放し、ま′fc第1及び第2の弁室22及び2
3内の圧力差が所定値以上になるとベローズ20rc自
身の弾性力ニジも大きな圧縮力を受けるようになって収
縮し、差圧作動用弁体24を第1の流出口16から離反
させてこれを開放する(第5図参照)。而してロータリ
コンプレッサ1により圧縮されコンデンサ3で液化し九
冷[はドライヤ4.第1の弁室22.キャビツリチュー
ブ゛5/′t−順に介して冷蔵室及び冷凍室の両エバポ
レータ6及び7内に流入し、ここで蒸発して第2の弁室
23t−介して再びロータリフンブレフサ1rC吸入さ
れる。そ。して、冷蔵室内が所定温度以下に冷却され、
電磁弁8の切換作用にガス冷媒が冷凍案用エバポレータ
7のみに流されて冷凍室も所定温度以下に冷却されると
、ロータリコンプレッサ1が停止する。すると、コンデ
ンサ3側の高圧のガス冷媒がロータリコンプレッサ1円
及び連結管34’に通って第2の弁室23内に逆流する
。このため、第2の弁室23内においても冷媒が第2の
流出口3.2側から第2の流入口29に向つ”て逆流す
るため、逆止・用弁停27が右方rC移動して弁座25
の弁口26従って第2の流入口29を閉塞する。この第
2の流入口29の閉塞に呵り、第2の弁室23内の圧力
が急激に上昇し、コンデンサ3内の圧力と略同等になる
。一方、第1の弁室22は第1の流入口15を介してコ
ンデンサ6と連通しているため、第1及び第2の弁室2
2及び23の内圧差が小さくなり、この結果、ベローズ
20が自己の弾性力で伸長−し差圧作動用弁体24 V
Cで第1の流出口16を閉塞する(第4図参照)。
In the valve device 21C configured as described above, before the rotary compressor 1 starts operating, the differential pressure operating valve body 24 is closed to the first outflow 0.16'', and the non-return The valve body 27 closes the second inlet port 29. Now, when the temperature inside the refrigerator rises above a predetermined temperature, the rotary compressor 1
When the operation starts, the pressure inside the connecting pipe 34 decreases,
The pressure on the condenser 2 side increases, and accordingly, the pressure in the first valve chamber 22 decreases and the pressure in the second valve chamber 23 increases. As a result, the check valve body 27 moves to the left of F by the refrigerant on the high-pressure side of both evaporators 6 and 7, opening the valve port 26 of the valve seat 25 and the second inlet port 29. , ma'fc first and second valve chambers 22 and 2
When the pressure difference in the bellows 20rc exceeds a predetermined value, the elastic force of the bellows 20rc itself also receives a large compressive force and contracts, causing the differential pressure actuating valve element 24 to separate from the first outlet 16. (See Figure 5). Then, it is compressed by a rotary compressor 1, liquefied by a condenser 3, and then cooled down by a dryer 4. First valve chamber 22. It flows into both the evaporators 6 and 7 of the refrigerator and freezer compartments through the cavitary tubes 5 and 7, evaporates there, and is sucked into the rotary refrigerator 1rC again through the second valve chamber 23t. Ru. So. The inside of the refrigerator compartment is cooled to a predetermined temperature or below.
When the gas refrigerant is caused to flow only through the refrigeration evaporator 7 by the switching action of the electromagnetic valve 8 and the freezing chamber is also cooled to a predetermined temperature or lower, the rotary compressor 1 is stopped. Then, the high-pressure gas refrigerant on the condenser 3 side flows back into the second valve chamber 23 through the rotary compressor 1 and the connecting pipe 34'. Therefore, in the second valve chamber 23, the refrigerant flows backward from the second outlet 3.2 side toward the second inlet 29, so that the check/use valve stop 27 is moved toward the right rC. Move valve seat 25
The valve port 26 and therefore the second inlet port 29 are closed. Due to the blockage of the second inlet 29, the pressure within the second valve chamber 23 rises rapidly and becomes approximately equal to the pressure within the condenser 3. On the other hand, since the first valve chamber 22 communicates with the condenser 6 via the first inlet 15, the first and second valve chambers 2
2 and 23 becomes small, and as a result, the bellows 20 expands by its own elastic force, and the differential pressure actuating valve body 24 V
C to close the first outlet 16 (see FIG. 4).

このようにロータリコンプレッサ1の運転が停止すると
、差圧作動用弁体24が第1の流出口16を閉塞すると
共に逆止用弁体27が第2の流入口29を閉塞するので
、コンデンサ6内のホットガスが両エバポレータ6及び
Z内に流入することを防止でき、従って運転停止中にエ
バポレータ6及び7がホットガスによって熱せられるこ
とがなく、それだけ連軸停止時間が長くなって省電力化
を図ることができる。しかも弁装置2に一種の圧力応動
形で、従来の電磁弁を用いたものとに異な9、無駄な電
力消費が無く、一層の省電力化を図り得る。
When the operation of the rotary compressor 1 is stopped in this way, the differential pressure operating valve body 24 closes the first outlet 16 and the check valve body 27 closes the second inlet 29, so that the condenser 6 The hot gas inside the evaporators 6 and 7 can be prevented from flowing into both evaporators 6 and Z, so the evaporators 6 and 7 will not be heated by the hot gas while the operation is stopped, which will lengthen the time when the linked shafts are stopped, resulting in power savings. can be achieved. Moreover, since the valve device 2 is of a pressure-responsive type, there is no unnecessary power consumption, which is different from conventional electromagnetic valves, and further power savings can be achieved.

また弁装置2は、第2図の弁装置Gと逆止弁Fとを一体
化した形態で、且つロータリコンプレッサ1の吸入口に
連通される第2の流入口62をベローズ20と逆止用弁
体27との間に位置するようにして、運転停止時VC第
2の弁室23内に逆流してくる冷媒の圧力が同時にベロ
ーズ20内にも作用するようにしたので、第2図の1字
管継手にも不要となり、総じて部品点数が減少し、しか
も弁装置2に関連したろう付けによる管路接続個所も第
4図にWl乃至W4で示す四個所となり、第2図の構成
のものに比べ半減する。
Further, the valve device 2 has a form in which the valve device G and the check valve F shown in FIG. The pressure of the refrigerant flowing back into the VC second valve chamber 23 when the operation is stopped acts on the bellows 20 at the same time, so that the The single-shaped pipe joint is no longer required, and the number of parts is reduced in general. Moreover, the number of brazed pipe connection points related to the valve device 2 is reduced to four, as shown by Wl to W4 in FIG. It's half that compared to other things.

尚、上記実施例では、圧力応動体全ベローズ201cエ
ク構成したが、これにダイヤプラムであってもよい。そ
の池水発明に上記し且つ図面で示す実施例に限定される
ものではなく、例えばドライヤ4と弁装置2の第1の流
入口15との間に補助的にキャピラリチューブを付設す
るようにしてもよい等、その要旨全逸脱しない範囲で種
々変更して冥施することができる。
Incidentally, in the above embodiment, the entire pressure-responsive body 201c is configured as an extension, but a diaphragm may be used instead. The invention is not limited to the embodiments described above and shown in the drawings; for example, a capillary tube may be additionally provided between the dryer 4 and the first inlet 15 of the valve device 2. You can make various changes to it without departing from its gist.

〔発明の効果〕〔Effect of the invention〕

本発明は以上の説明から明らかなように、電力全消費す
ることなく、エバポレーダへのホットガスの流入全防止
できる土に、−個の弁ケースに差圧弁と逆上弁と全装設
する構成としたので、部品点数が減少し且つろう付けに
よる管路の接続個所も減少し、コストの低減化に寄与し
得る等の優れた効果を奏する。
As is clear from the above description, the present invention has a configuration in which differential pressure valves and backflow valves are fully installed in - valve cases in soil that can completely prevent hot gas from flowing into the evaporator without consuming all electricity. As a result, the number of parts is reduced and the number of locations where pipes are connected by brazing is also reduced, resulting in excellent effects such as contributing to cost reduction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図に従来の冷凍サイクル図、第2図は同従来の改良
構成を示す冷凍サイクIV図、第6図乃至@5図は本発
明の一夫施例會示すもので、第6図は冷凍サイクル図、
第4図及び第5図は夫々異なる状態で示す弁装置の拡大
断面図である。 m中、11’!ロータリコンプレツサ、2は弁装置、3
はコンデンサ、51S[、キャピラリチューブ、6゜7
は夫々冷蔵室、冷凍室の各エバポレータ、10は弁ケー
ス、11は差圧弁部、12は逆止弁部、15は第1の流
入口、16は第1の流出口、20はベローズ(圧力応動
体)、24は差圧作動用弁体、27は逆止用弁体、29
に第2の流入口、62は@2の流出口である。 第1 図 第2 図 Δ 13 図 第4廓 第5図 11           1t
Fig. 1 is a conventional refrigeration cycle diagram, Fig. 2 is a refrigeration cycle IV diagram showing an improved configuration of the conventional refrigeration cycle, Figs. figure,
4 and 5 are enlarged sectional views of the valve device shown in different states, respectively. 11' in m! Rotary compressor, 2 is a valve device, 3
is a capacitor, 51S[, capillary tube, 6゜7
10 is a valve case, 11 is a differential pressure valve part, 12 is a check valve part, 15 is a first inlet, 16 is a first outlet, 20 is a bellows (pressure 24 is a valve body for differential pressure operation, 27 is a check valve body, 29
62 is the second inlet, and 62 is the outlet of @2. Figure 1 Figure 2 Figure Δ 13 Figure 4 Figure 5 Figure 11 1t

Claims (1)

【特許請求の範囲】[Claims] 1、 ロータリコンプレッサを備え、このロータリコン
プレッサに対し、コンデンサ、キャピラリチューブ及び
エバポレータを順VC接続して構成する冷凍サイクルに
おいて、弁ケースの一方側及び他方側を夫々差圧弁部及
び逆止弁部とし、差圧弁部に前記コンデンサの出口側に
連結される第1の流入口と前記エバポレータの入口側に
連結される第1の流出口とを設けると共に、差圧弁部側
を前記逆止弁部側と隔絶する工うにして圧力応呻体を設
けて該圧力応動体に差圧作動用弁体を連結し一1前記逆
止弁部内に逆止用弁体を配置し且り逆止弁部に逆止用弁
体に関し前記差圧弁部とは反対側に位置して前記エバポ
レータの出口側に連結さ些る。第2の流入口を形成する
と共に前記圧力応動体と逆止用弁体との間に位置して前
記ロータリコンプレッサの吸入口側に連結される第2の
流出口を形成し、前記圧力応動体が前記差圧弁部と逆止
弁部との内圧差にエフ変位して前記差圧作動用弁体にて
前記第1の流入口及び第1の流出口間を開閉すると共に
□、前記逆止用弁体が前記第2の流出口から第2の□流
入口への冷媒逆流に工9両者間を閉塞する工うにして成
る冷凍す、イクルの弁装置。
1. In a refrigeration cycle equipped with a rotary compressor and configured by sequential VC connection of a condenser, a capillary tube, and an evaporator to the rotary compressor, one side and the other side of the valve case are used as a differential pressure valve part and a check valve part, respectively. , the differential pressure valve section is provided with a first inlet connected to the outlet side of the condenser and a first outlet connected to the inlet side of the evaporator, and the differential pressure valve section side is connected to the check valve section side. a pressure-responsive body is provided in a manner isolated from the pressure-responsive body, and a differential pressure operating valve body is connected to the pressure-responsive body; (11) the check valve body is disposed within the check valve portion; The check valve body is located on the opposite side of the differential pressure valve section and connected to the outlet side of the evaporator. A second inlet is formed, and a second outlet is formed between the pressure responsive body and the check valve body and connected to the suction port side of the rotary compressor, and the pressure responsive body is displaced by the internal pressure difference between the differential pressure valve section and the check valve section, and the differential pressure operating valve body opens and closes between the first inlet and the first outlet, and the check valve 9. A valve device for a refrigeration cycle, in which a valve body is configured to block a gap between the refrigerant from the second outlet to the second inlet to prevent the refrigerant from flowing backwards.
JP57209545A 1982-11-29 1982-11-29 Valve gear for refrigeration cycle Pending JPS5997463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57209545A JPS5997463A (en) 1982-11-29 1982-11-29 Valve gear for refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57209545A JPS5997463A (en) 1982-11-29 1982-11-29 Valve gear for refrigeration cycle

Publications (1)

Publication Number Publication Date
JPS5997463A true JPS5997463A (en) 1984-06-05

Family

ID=16574578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57209545A Pending JPS5997463A (en) 1982-11-29 1982-11-29 Valve gear for refrigeration cycle

Country Status (1)

Country Link
JP (1) JPS5997463A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2326093A (en) * 1940-05-29 1943-08-03 Detroit Lubricator Co Refrigerating system
JPS5852958A (en) * 1981-09-25 1983-03-29 松下冷機株式会社 Refrigerator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2326093A (en) * 1940-05-29 1943-08-03 Detroit Lubricator Co Refrigerating system
JPS5852958A (en) * 1981-09-25 1983-03-29 松下冷機株式会社 Refrigerator

Similar Documents

Publication Publication Date Title
US4788828A (en) Control device for use in a refrigeration circuit
US2976701A (en) Reversing valve for refrigerating systems
JP2004183957A (en) Refrigerating system and method of operating the same
US4840038A (en) Control device for use in a refrigeration circuit
US7036744B2 (en) Solenoid valve-equipped expansion valve
JPS5911231Y2 (en) Reversing valve for reversible refrigeration cycle
JPS5997463A (en) Valve gear for refrigeration cycle
JPH0212342B2 (en)
JP2006292185A (en) Expansion device and refrigerating cycle
JPS59104050A (en) Refrigerator
US3299661A (en) Check valve manifolds for heat pumps
JPS61112786A (en) Reversible system sealing type compressor unit
JP2000130889A (en) Valve fixing structure for refrigerating cycle with bypath
JPS6353463B2 (en)
JPH0144796Y2 (en)
JPS59215553A (en) Refrigerator
JPH0442682Y2 (en)
JPS5919256Y2 (en) refrigeration cycle
JPH0470968U (en)
JPS582572U (en) Automotive air conditioner control device
JPH0134062Y2 (en)
JPS61218883A (en) Four way type reversing valve for reversible refrigerating cycle
JPH034794B2 (en)
JPS644049Y2 (en)
JPS61236981A (en) Four-way reversing valve for reversible refrigerating cycle