JPS5995346A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS5995346A
JPS5995346A JP20518582A JP20518582A JPS5995346A JP S5995346 A JPS5995346 A JP S5995346A JP 20518582 A JP20518582 A JP 20518582A JP 20518582 A JP20518582 A JP 20518582A JP S5995346 A JPS5995346 A JP S5995346A
Authority
JP
Japan
Prior art keywords
pressure
valve
compressor
evaporator
refrigeration system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20518582A
Other languages
Japanese (ja)
Inventor
充 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP20518582A priority Critical patent/JPS5995346A/en
Publication of JPS5995346A publication Critical patent/JPS5995346A/en
Pending legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は空気調和機等の冷凍装置に関し、特にその起動
・停止時の冷媒制御装置に係わる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a refrigeration system such as an air conditioner, and more particularly to a refrigerant control system for starting and stopping the refrigeration system.

従来例の構成とその問題点 従来の冷凍装置の起動・停止時の冷媒制御装置は198
2 PURDUE COMPRESSORTECHNO
LOGY C0NFERENCE ノANANARYS
IS  OF  A  NEW  TYPE  REF
RIGERATIONに発表されており第1図に示す。
Configuration of conventional example and its problems The refrigerant control device for starting and stopping conventional refrigeration equipment is 198
2 PURDUE COMPRESSORTECHNO
LOGY CONFERENCE NOANANARYS
IS OF A NEW TYPE REF
It was published in RIGERATION and is shown in Figure 1.

第1図において1はコンプレッサでカレントカットオフ
素子2゜コンデンサ3.オンオフ素子4.キャピラリー
チューブ5.エバポレータ6、アキュムレータ7を環状
に接続して冷凍装置を構成している。尚カレントカット
オフ素子2とコンプレッサ1の吸入側はバイパス回路8
で連結されている。その動作は、冷却運転中はバイパス
回路8は閉塞され冷媒はコンプレッサ1.カレントカッ
トオフ素子2.コンデンサ3.オンオフ素子4.キャピ
ラリチューブ6、エバポレータ6、アキュムレータ7、
再びコンプレッサ1へと流れ正常な冷却作用を行う。一
方、停止時にはオンオフ素子4は閉塞し、カレントカッ
トオフ素子2はコンデンサ30回路を閉塞すると共にバ
イパス回路8を開路してコンプレッサ1の高圧側と低圧
側の圧力バランスを図り次の起動を容易にする。カレン
トカットオフ素子2とオンオフ素子4で遮断されたコン
デンサ3内の液冷媒は運転状態のま脣次の運転まで保持
されるので次の運転時の冷却の立上りが早くなり省エネ
ルギー化が図れる。いわゆる起動損失の低減である。
In Fig. 1, 1 is a compressor, current cut-off element 2. capacitor 3. On-off element 4. Capillary tube5. The evaporator 6 and the accumulator 7 are connected in a ring to form a refrigeration system. The current cutoff element 2 and the suction side of the compressor 1 are connected to a bypass circuit 8.
are connected. During the cooling operation, the bypass circuit 8 is closed and the refrigerant is transferred to the compressor 1. Current cutoff element 2. Capacitor 3. On-off element 4. capillary tube 6, evaporator 6, accumulator 7,
It flows again to the compressor 1 and performs normal cooling action. On the other hand, when stopped, the on-off element 4 is closed, and the current cut-off element 2 closes the capacitor 30 circuit and opens the bypass circuit 8 to balance the pressure between the high pressure side and the low pressure side of the compressor 1 and facilitate the next startup. do. The liquid refrigerant in the condenser 3 that has been cut off by the current cut-off element 2 and the on-off element 4 is maintained in the operating state until the next operation, so that cooling starts quickly during the next operation, resulting in energy savings. This is a reduction in so-called starting loss.

以上が従来例の構成と効果であるが次の欠点を有してい
る。即ち運転停止時にはコンプレッサ1の高圧側と低圧
側をバイパスさせて圧力の均等化を行うため、コンプレ
ッサ1の高圧側に滞留する高温高圧ガスが低温であるエ
バポレータ6に流入して凝縮、加熱し熱負荷となり省エ
ネルギーをさまたげる。近年のようにロータリーコンプ
レッサ(高圧容器型)の使用が進むにつれて前記高温高
圧ガスの量が多大となり、省エネルギーを更にさまたげ
るし、捷た密閉容器内を高圧にするため起動損失も増大
するという欠点を有している。寸たカレントカットオフ
素子2は停止時にコンデンサ3への主回路を閉塞すると
共にバイパス回路8を開路するため構成が複雑で高価で
ある。
Although the configuration and effects of the conventional example have been described above, it has the following drawbacks. That is, when the operation is stopped, the high-pressure side and low-pressure side of the compressor 1 are bypassed to equalize the pressure, so the high-temperature and high-pressure gas that remains on the high-pressure side of the compressor 1 flows into the low-temperature evaporator 6, condenses and heats it, and generates heat. It becomes a load and hinders energy saving. As the use of rotary compressors (high-pressure container type) increases in recent years, the amount of high-temperature, high-pressure gas increases, which further impedes energy conservation. have. The small current cutoff element 2 closes the main circuit to the capacitor 3 and opens the bypass circuit 8 when the motor is stopped, so the structure is complicated and expensive.

発明の目的 そこで本発明は冷凍装置の省エネルギーを更に図ると共
に構造が簡単にして、安価な冷凍装置を提供することを
目的とする。
OBJECTS OF THE INVENTION Therefore, it is an object of the present invention to provide a refrigeration system which is further energy efficient, has a simple structure, and is inexpensive.

発明の構成 この目的を達成するため本発明は冷凍サイクルのエバポ
レータの上流側に冷凍装置の運転中には開路し停止時に
閉塞する高圧弁を設け、エバポレータの下流側に運転中
は開路し停止時に閉塞する低圧弁を設けると共に、停止
時に圧縮機の高圧側と低圧側をバイパスさせるバイパス
弁を設けることによりコンプレッサの高圧側の高温高圧
ガスをエバポレータに流入しないようにして熱負荷の減
少を図り、再起動時にコンプレッサの高圧側を昇圧する
だめの起動損失の低減を図ると共に、圧縮機の高圧側と
低圧側の圧力を等しくすることにより起動を容易にする
ものである。
Structure of the Invention To achieve this object, the present invention provides a high-pressure valve on the upstream side of the evaporator of the refrigeration cycle that is open during operation of the refrigeration system and closed when the refrigeration system is stopped; In addition to providing a low-pressure valve that closes, a bypass valve that bypasses the high-pressure side and low-pressure side of the compressor when the compressor is stopped prevents high-temperature, high-pressure gas from the high-pressure side of the compressor from flowing into the evaporator, reducing the heat load. This aims to reduce startup loss due to increasing the pressure on the high pressure side of the compressor when restarting the compressor, and also makes startup easier by equalizing the pressures on the high pressure side and low pressure side of the compressor.

実施例の説明 以下本発明の一実施例を添伺図面に従い説明する。第2
図〜第4図において、21は高圧容器型ロータリーコン
プレッサ(以下ロータリーコンプレッサと呼ぶ)で、コ
ンデンサ22.高圧弁23(以下電磁弁23という)、
減圧器24(以下ギヤ。ピラリチューブ24という)、
エバポレータ26゜アキュムレータ26.低圧弁27(
以下チェックバルブ27といつ)、コンプレッサ21を
環状に接続して冷凍サイクルを構成している。コンプレ
ッサ21の構成はいわゆる高圧容器型のロータリーコン
プレッサで密封容器28内に電動要素29と圧縮要素3
0が直結されて配置、同定されている。圧縮要素3oの
吸入路31には密封容器28内の高圧空間32に連通す
る側路33を配設している。側路33の上部は弁座34
を有し、前記弁座34の上部には外周部を部分的に切り
欠いた略星状の弁35を載置し、弁36の過度の動きを
規制するリング状の弁ストッパ36を設けている。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings. Second
4, 21 is a high-pressure vessel type rotary compressor (hereinafter referred to as rotary compressor), and a capacitor 22. High pressure valve 23 (hereinafter referred to as solenoid valve 23),
Pressure reducer 24 (hereinafter referred to as gear. Pirari tube 24),
Evaporator 26° Accumulator 26. Low pressure valve 27 (
A refrigeration cycle is constructed by connecting a check valve 27 (hereinafter referred to as check valve 27) and a compressor 21 in an annular manner. The composition of the compressor 21 is a so-called high-pressure container type rotary compressor, in which an electric element 29 and a compression element 3 are placed in a sealed container 28.
0 is directly connected and arranged and identified. A side passage 33 communicating with a high pressure space 32 within the sealed container 28 is provided in the suction passage 31 of the compression element 3o. The upper part of the side passage 33 is the valve seat 34
A substantially star-shaped valve 35 with a partially cut out outer periphery is placed on the upper part of the valve seat 34, and a ring-shaped valve stopper 36 is provided to restrict excessive movement of the valve 36. There is.

寸だ弁36の外周側下部には弁35を上方(開路方向)
に付勢するバネ37を配列してバイパス弁38を構成し
ている。
The valve 35 is placed upward (opening direction) at the lower part of the outer circumferential side of the valve 36.
A bypass valve 38 is configured by arranging springs 37 that bias the bypass valve 38.

このバイパス弁38は圧縮要素3oの同期速度の26〜
50%程度の回転数の時に閉路しそれ以下の回転数では
開路するように側路33の寸法やバネ37の付勢力を設
定して構成している。
This bypass valve 38 has a synchronous speed of 26~
The dimensions of the side passage 33 and the biasing force of the spring 37 are set so that the circuit is closed at a rotation speed of about 50% and opened at a rotation speed below that.

即ち、弁35の吸入路31側にかかる力F2 と、弁3
5の密封容器28の高圧空間32側にががる力F1  
が、圧縮要素3oの起動に従って、その同期速度(例え
ば3400 r pm )の25〜60%に達し/こ際
に、Fl〉F2となって弁35を閉鎖するものである。
That is, the force F2 applied to the suction passage 31 side of the valve 35 and the force F2 applied to the suction passage 31 side of the valve 35
Force F1 that causes the sealed container 28 of No. 5 to break toward the high pressure space 32 side
However, as the compression element 3o is activated, it reaches 25 to 60% of its synchronous speed (for example, 3400 rpm), at which point Fl>F2 and the valve 35 is closed.

上記構成において冷凍装置の停止中にはバイパス弁38
はバネ37の作用により開路されている。
In the above configuration, when the refrigeration system is stopped, the bypass valve 38
is opened by the action of a spring 37.

また起動直後の電動要素29の起動トルク・やプルアン
プトルクと呼ばれる300rprn (同期速度340
0rpmの9%程度)以下の低トルク時にはバイパス弁
38はまだ開放状態であるので圧縮作用は行なわず電動
要素29のスピードは急激に上昇すると共にトルクも急
激に上昇する。電動要素29の回転数が所定の速度(同
期速度の25〜30%)に達するとバイパス弁38は閉
路し、圧縮作用を始めるが、電動要素29は十分なトル
クを有しておシ、起動不能などは起さず正常運転に移行
する。
In addition, the starting torque of the electric element 29 immediately after starting is 300 rprn (synchronous speed 340 rprn), which is called the pull amplifier torque.
When the torque is low (approximately 9% of 0 rpm) or less, the bypass valve 38 is still in an open state, so no compression action is performed, and the speed of the electric element 29 increases rapidly and the torque also increases rapidly. When the rotational speed of the electric element 29 reaches a predetermined speed (25 to 30% of the synchronous speed), the bypass valve 38 closes and starts compression, but the electric element 29 has sufficient torque to start up. The system will return to normal operation without causing any malfunction.

従って、コンプレッサ21より吐出された冷媒は、コン
デンサ22.電磁弁23.キャピラリチュ−ブ24.エ
バポレータ25.アキュムレータ26゜チェックパルプ
27へと流れ、再びコンプレッサ21へと循環して通常
の冷却作用を行う。
Therefore, the refrigerant discharged from the compressor 21 is transferred to the condenser 22. Solenoid valve 23. Capillary tube 24. Evaporator 25. It flows into the accumulator 26° check pulp 27, and is circulated again to the compressor 21 for normal cooling.

冷凍装置の停止時には電磁弁23が閉路しコンチンf 
22 (1411からエバポレータ26への冷媒の流れ
を停止する。同時に高圧空間32の冷媒ガスが圧縮要素
3oの微小隙間を介して吸入路31を介してチェックパ
ルプ27へと逆流するのでチェックパルプ27は閉路す
る。しかも冷媒ガスの吸入路31への流入が続き吸入路
31の圧力が上昇し高圧空間32の圧力と近似に達する
と弁板36はバネ37の付勢力により弁座34を離れて
バイパス弁38は開略して次の冷凍装置の起動に備える
When the refrigeration equipment is stopped, the solenoid valve 23 closes and the contin f
22 (The flow of refrigerant from 1411 to the evaporator 26 is stopped. At the same time, the refrigerant gas in the high pressure space 32 flows back to the check pulp 27 via the suction path 31 through the small gap of the compression element 3o, so the check pulp 27 The circuit is closed.Moreover, as the refrigerant gas continues to flow into the suction passage 31, the pressure in the suction passage 31 rises and reaches approximately the pressure in the high pressure space 32, and the valve plate 36 leaves the valve seat 34 due to the biasing force of the spring 37 and bypasses the valve seat 34. The valve 38 is opened to prepare for the next start-up of the refrigeration system.

従って冷凍装置の停止時には電磁弁23とチェックパル
プ27が閉路するのでコンプレッサ21の高圧側やコン
デンサ22は停止中の間も運転中と略同等の冷媒状態を
維持しているので次の運転時には起動直後よシ全力の冷
却を行うので起動損失は著しく小さくなる。まだエバポ
レータ26もチェックパルプ27と電磁弁23により遮
断されているのでコンプレッサ21内の高温高圧の冷媒
ガスの流入もないのでエバポレータへの熱負荷の増大も
なく停止時損失は著しく減少する。従って前記2つの効
果により従来例より大巾な省エネルギーが図れる。また
コンプレッサ21内に設けられたバイパス弁38の作用
により起動時には圧縮作用を行なわないので安価な低起
動トルク型モータで足りる、いわゆるPSCモータが使
用できる。
Therefore, when the refrigeration system is stopped, the solenoid valve 23 and the check pulp 27 are closed, so the high pressure side of the compressor 21 and the condenser 22 maintain almost the same refrigerant state even during the stoppage as during operation, so the next time the refrigeration system starts operating, it will be immediately after the start-up. Since the engine is fully cooled, the startup loss is significantly reduced. Since the evaporator 26 is still shut off by the check pulp 27 and the solenoid valve 23, there is no inflow of high temperature, high pressure refrigerant gas into the compressor 21, so there is no increase in heat load on the evaporator, and losses during stoppage are significantly reduced. Therefore, due to the above two effects, a greater energy saving can be achieved than in the conventional example. Further, since no compression is performed at startup due to the action of the bypass valve 38 provided in the compressor 21, a so-called PSC motor, which is an inexpensive low-startup torque type motor, can be used.

また省エネルギーのために冷凍装置に付加する部品は汎
用のチェックパルプ、汎用の電磁弁、構造が簡素なバイ
パス弁等であるので安価であるなどの効果も得られる。
In addition, the parts added to the refrigeration system to save energy are general-purpose check pulp, general-purpose solenoid valves, bypass valves with simple structures, etc., so that the system is inexpensive.

発明の効果 以上の説明からも明らかなように本発明はコンプレッサ
、コンデンサ、キャピラリチューブ、エバポレータを順
次環状に接続した冷凍装置のエバポレータの上流側に冷
凍装置が運転中に開路し停止中に閉路する高圧弁を設け
、エバポレータの下流側には冷凍装置が運転中に開略し
停止中に閉路する低圧弁を設け、そしてコンプレッサの
高圧側と低圧(illをバイパスするバイパス弁を備え
、バイパス弁はコンプレッサが所定の回転数以上で閉路
しそれ以下では開路する構成であるから、冷凍装置の停
止中においてもコンデンサ、エバポレータは運転中の圧
力を維持しているので次の起動直後より通常の冷却作用
を行うので起動損失の大巾な低減が図れるとともに、停
止中にコンプレッサ。
Effects of the Invention As is clear from the above explanation, the present invention has a refrigeration system in which a compressor, a condenser, a capillary tube, and an evaporator are sequentially connected in a ring, and the circuit is opened on the upstream side of the evaporator when the refrigeration system is in operation and closed when it is stopped. A high-pressure valve is provided, and a low-pressure valve is provided downstream of the evaporator that opens and closes when the refrigeration system is in operation and closes when the refrigeration system is stopped. The circuit is closed when the rotation speed is above a predetermined number of rotations, and opened when the rotation speed is lower than that, so even when the refrigeration equipment is stopped, the condenser and evaporator maintain the operating pressure, so the normal cooling action starts immediately after the next startup. By doing so, it is possible to significantly reduce startup loss, and the compressor is stopped when the compressor is stopped.

コンデンサ内の高温高圧の冷媒ガスがエバポレータに流
入して凝縮加熱することもないので停止損失の大[1]
な低減が図られ大きな省エネルギーを図ることができる
。またコンプレッサの起動時にはバイパス弁の働きによ
り無負荷状態での起動を行うので低起動トルク型モータ
であるいわゆるPSCモータ等の安価なモータが使用で
きる等の効果がイ!Iられるものである。
High temperature and high pressure refrigerant gas in the condenser does not flow into the evaporator and condense and heat, resulting in large stoppage losses [1]
This can result in significant energy savings. In addition, when starting the compressor, the bypass valve works to start the compressor in a no-load state, so you can use an inexpensive motor such as a so-called PSC motor, which is a low starting torque motor. It is something that can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の冷凍装置の冷凍サイクル図、第2図は本
発明の一実施例を示す冷凍装置の冷凍サイクル図、第3
図は第2図のコンプレッサの要部断面図、第4図は第3
図のA部拡大断面図である。 21・・・・・・高圧容器型ロータリーコンプレッサ、
22・・・・・・コンデンサ、23・・・・・・高圧弁
(電磁弁)、27・・・・・・低圧弁(チェックパルプ
)、38・旧・・バイパス弁、24・・・・・・減圧器
(キャピラリチューブ)、26・・・・・・エバポレー
タ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第4図
FIG. 1 is a refrigeration cycle diagram of a conventional refrigeration system, FIG. 2 is a refrigeration cycle diagram of a refrigeration system showing an embodiment of the present invention, and FIG.
The figure is a sectional view of the main parts of the compressor in Figure 2, and Figure 4 is a sectional view of the main part of the compressor in Figure 2.
It is an enlarged cross-sectional view of part A in the figure. 21...High pressure vessel type rotary compressor,
22... Capacitor, 23... High pressure valve (electromagnetic valve), 27... Low pressure valve (check pulp), 38... Old bypass valve, 24... ...Pressure reducer (capillary tube), 26... Evaporator. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 高圧容器型ロータリーコンプレッサと、コンデンサと、
減圧器と、エバポレータと、前記エバポレータの上流側
および下流側の各々に配設され、運転中は開路し停止中
は閉路する高圧弁および低圧弁とを備え、前記高圧容器
型ロータリーコンプレノザの内部まだは外部の高圧側と
、低圧側の間に、前記高圧容器型ロータリーコングレッ
サの所定回転数以上で閉路し、それ以下で開路するバイ
パス弁を配置した冷凍装置。
A high-pressure container rotary compressor, a capacitor,
A pressure reducer, an evaporator, and a high-pressure valve and a low-pressure valve that are disposed on the upstream and downstream sides of the evaporator and are open during operation and closed during stoppage, and the interior of the high-pressure container type rotary compressor A refrigeration system in which a bypass valve is disposed between an external high-pressure side and a low-pressure side, and the bypass valve is closed when the high-pressure container type rotary congressor has a predetermined rotational speed or higher, and opens when the rotational speed is lower than the predetermined rotational speed.
JP20518582A 1982-11-22 1982-11-22 Refrigerator Pending JPS5995346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20518582A JPS5995346A (en) 1982-11-22 1982-11-22 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20518582A JPS5995346A (en) 1982-11-22 1982-11-22 Refrigerator

Publications (1)

Publication Number Publication Date
JPS5995346A true JPS5995346A (en) 1984-06-01

Family

ID=16502814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20518582A Pending JPS5995346A (en) 1982-11-22 1982-11-22 Refrigerator

Country Status (1)

Country Link
JP (1) JPS5995346A (en)

Similar Documents

Publication Publication Date Title
JPH07189954A (en) Scroll compressor
JPS5995346A (en) Refrigerator
EP3764024A1 (en) Refrigeration cycle device
JPS59115940A (en) Refrigerator
JPH0730962B2 (en) Two-stage compression refrigeration cycle
JPS5852958A (en) Refrigerator
JPS6230698Y2 (en)
JPH029107Y2 (en)
JPS58133571A (en) Refrigeration cycle of air conditioner
JPH02130350A (en) Air conditioner
JPS5958181A (en) Refrigerator
JPS5912273A (en) Refrigerator
JPS5899671A (en) Fluid control valve for refrigerator
JPS5899655A (en) Refrigerator
JPS6354984B2 (en)
JPS6129657A (en) Refrigerator
JPS5862471A (en) Refrigerator
JP2960211B2 (en) Pressure sensor destruction prevention control device for air conditioner
JPH01312361A (en) Refrigeration cycle
JPS6339827B2 (en)
JPS5843362A (en) Refrigerating cycle of air conditioner
JPS6255065B2 (en)
JPS60142164A (en) Refrigerator with rotary compressor having fluid control function
JPS6127464A (en) Refrigerator
JPS6078255A (en) Air conditioner