JPS6127464A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS6127464A
JPS6127464A JP14801584A JP14801584A JPS6127464A JP S6127464 A JPS6127464 A JP S6127464A JP 14801584 A JP14801584 A JP 14801584A JP 14801584 A JP14801584 A JP 14801584A JP S6127464 A JPS6127464 A JP S6127464A
Authority
JP
Japan
Prior art keywords
compressor
way valve
refrigerant
valve
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14801584A
Other languages
Japanese (ja)
Inventor
育雄 赤嶺
堀 通真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14801584A priority Critical patent/JPS6127464A/en
Publication of JPS6127464A publication Critical patent/JPS6127464A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、冷凍サイクル中に形状記憶合金を材質とする
弁駆動素子を用いた二方弁を設け、冷媒温度によって自
動的に管路の開閉動作を行なう冷凍装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides a two-way valve using a valve drive element made of a shape memory alloy in a refrigeration cycle, and automatically opens and closes a pipe line depending on the refrigerant temperature. This relates to a refrigeration system that performs

従来例の構成とその問題点 冷凍サイクルを構成する圧縮機は、長時間停止している
と、圧縮機内部の潤滑油中に冷媒が溶は込んでくる、い
わゆる寝込み現象が発生し、この状態のまま圧縮機が起
動すると、潤滑油中に溶解していた冷媒が急激に蒸発し
、発泡現象(フォーミング現象)が起こり、潤滑油が圧
縮機外に突出し、潤滑不良となり、軸受部やその他可動
部を損傷したりすることがある。
Conventional configuration and its problems When the compressor that makes up the refrigeration cycle is stopped for a long time, a so-called stagnation phenomenon occurs in which the refrigerant dissolves into the lubricating oil inside the compressor. If the compressor is started in this state, the refrigerant dissolved in the lubricating oil will rapidly evaporate, a foaming phenomenon will occur, and the lubricating oil will protrude outside the compressor, resulting in poor lubrication and damage to bearings and other moving parts. It may cause damage to the parts.

そこで、従来は寝込み防止のために第1図に示すように
圧縮機1下部にクランクケースヒータ8を配置して、圧
縮機1停止時に常時通電させるか、始動の数時間前に通
電させるかして、圧縮機1温度を上昇させることにより
潤滑油中に溶解する冷媒の濃度を希釈化してフォーミン
グ現象を緩和させる方法が一般にとられていた。
Therefore, conventionally, in order to prevent stagnation, a crankcase heater 8 was placed at the bottom of the compressor 1 as shown in Fig. 1, and the power was turned on all the time when the compressor 1 was stopped, or it was turned on several hours before the compressor was started. Therefore, a method has generally been adopted in which the forming phenomenon is alleviated by diluting the concentration of refrigerant dissolved in the lubricating oil by increasing the temperature of the compressor 1.

しかし、この方法の場合、圧縮機1停止時にクランクケ
ースヒータ8に長時間通電するため期間エネルギー効率
が低下し、また、クランクケースヒータ8の通電を制御
する部品を必要とするためにコスト高となる。さらに、
長時間通電することによる安全性の面での問題点もある
等幾多の欠点を有していた。
However, in this method, the crankcase heater 8 is energized for a long time when the compressor 1 is stopped, which lowers the energy efficiency during the period, and also requires parts to control the energization of the crankcase heater 8, resulting in high costs. Become. moreover,
It had a number of drawbacks, including safety issues due to long-term energization.

発明の目的 本発明は、上記従来例の欠点に鑑みてなされたもので、
圧縮機に接続した冷媒配管の途中に、形状記憶合金を材
質とする、弁駆動素子を用いた三方弁を設け、圧縮機停
止後、配管内冷媒温度が低下あるいは上昇して設定温度
以下あるいは以上になると自動的に管路を閉状態とする
ことにより、圧縮機へ移動して潤滑油中に寝込む冷媒量
を少なくすることを目的とするものである。
Purpose of the Invention The present invention has been made in view of the drawbacks of the above-mentioned conventional examples.
A three-way valve made of shape memory alloy and using a valve drive element is installed in the middle of the refrigerant pipe connected to the compressor, and after the compressor is stopped, the refrigerant temperature in the pipe decreases or rises to below or above the set temperature. The purpose of this is to reduce the amount of refrigerant that moves to the compressor and stays in the lubricating oil by automatically closing the pipe line when

発明の構成 上記目的を達成するために、本発明の冷凍装置は、圧縮
機・凝縮器・減圧器および蒸発器を順次冷媒配管で連結
して冷凍サイクルを構成し、前記圧縮機に接続した前記
冷媒配管の途中に二方弁を設けるとともに、前記二方弁
を、入口ポート、出口ポート、弁体および形状記憶合金
を材質とする弁駆動素子より構成したものである。
Structure of the Invention In order to achieve the above object, the refrigeration system of the present invention comprises a refrigeration cycle in which a compressor, a condenser, a pressure reducer, and an evaporator are sequentially connected by refrigerant piping, and A two-way valve is provided in the middle of the refrigerant pipe, and the two-way valve is composed of an inlet port, an outlet port, a valve body, and a valve driving element made of a shape memory alloy.

実施例の説明 以下、図面により本発明の実施例を詳細に説明する。Description of examples Embodiments of the present invention will be described in detail below with reference to the drawings.

第2図は、本発明の一実施例で、高圧ハウジングタイプ
の圧縮機に接続した冷媒配管にそれぞれ二方弁を設けた
場合の冷凍サイクル図であり、第3図は、形状記憶合金
を材質とするコイルばね状の弁駆動素子より構成される
三方弁の一実施例を示し、さらに第4図は、形状記憶合
金を材質とする、コイルはね状の弁駆動素子の特性を示
す図であり、第5図は、二方弁内の冷媒温度の時間的変
化を示す図である。
Fig. 2 is a refrigeration cycle diagram in which a two-way valve is provided in each refrigerant pipe connected to a high-pressure housing type compressor, according to an embodiment of the present invention. FIG. 4 is a diagram showing the characteristics of a coil spring-shaped valve drive element made of a shape memory alloy. 5 is a diagram showing temporal changes in refrigerant temperature within the two-way valve.

第2図において、高圧ハウジングタイプの圧縮機1、第
1の三方弁9、凝縮器2、減圧器4、蒸発器5、第2の
三方弁10.およびアキュームレータ7を順次冷媒配管
16で連結して冷凍サイクルを構成している。3は凝縮
器用ファン、6は蒸発器用ファンである。
In FIG. 2, a high-pressure housing type compressor 1, a first three-way valve 9, a condenser 2, a pressure reducer 4, an evaporator 5, a second three-way valve 10. and the accumulator 7 are sequentially connected by a refrigerant pipe 16 to form a refrigeration cycle. 3 is a condenser fan, and 6 is an evaporator fan.

第3図において、11は両端に入口ポート12と出口ポ
ート13を有する三方弁本体である。二方弁本体11内
部には、形状記憶合金を材質とするコイルばね状の弁駆
動素子14があり、一端が出口ポート13に、他端が弁
体15に、溶接あるいは接着などの適宜手段にて接合さ
れている。
In FIG. 3, 11 is a three-way valve body having an inlet port 12 and an outlet port 13 at both ends. Inside the two-way valve body 11, there is a valve driving element 14 in the form of a coil spring made of a shape memory alloy, and one end is connected to the outlet port 13 and the other end is connected to the valve body 15 by an appropriate means such as welding or gluing. are joined together.

ここで、コイルばね状の弁駆動素子14は、いわゆる二
方向動作を示す形状記憶合金より形成されており、第1
の二方弁9では、第4図ta+に示すように、高温時(
T>T2)ではコイルばねの長さが42に、また低温時
(TくT1)では11になるようにあらかじめ記憶処理
されている。この形状変化はある温度域で急激に生ずる
壺のであり、その形状変化温度域は形状記憶合金の組成
あるいは熱処理によって調節可能である。第2の二方弁
10では、第4図[alに示すように、特性が第1の二
方弁9とは逆である。
Here, the coil spring-shaped valve drive element 14 is made of a shape memory alloy that exhibits so-called two-way operation, and the first
In the two-way valve 9, as shown in Fig. 4 ta+, at high temperature (
The length of the coil spring is stored in advance so that it becomes 42 when T>T2) and 11 when the temperature is low (T>T1). This shape change occurs rapidly in a certain temperature range of the pot, and the shape change temperature range can be adjusted by the composition of the shape memory alloy or heat treatment. The characteristics of the second two-way valve 10 are opposite to those of the first two-way valve 9, as shown in FIG. 4 [al].

以上の構成で次に第5図を参考にして作用を説明する。Next, the operation of the above configuration will be explained with reference to FIG.

冷房運転時、圧縮機1で高温高圧に圧縮されたガス冷媒
は第1の二方弁9を通り凝縮器2で高温高圧の液冷媒と
なった後、減圧器4で減圧され、低温低圧の気液二相冷
媒となって蒸発器5で蒸発し第2の二方弁10.アキュ
ームレータ7を通って圧縮機1へと還流してくる。この
時、蒸発器5において周囲空気と熱交換が行なわれ、蒸
発器用ファン6によって、その冷気が被空調室の方へ吹
き出されてくる。その後、空気調和機の運転スイッチを
オフにすると、圧縮機1、凝縮器用ファン3および蒸発
器用ファン6が停止して、冷媒・空気の循環が停止する
During cooling operation, the gas refrigerant compressed to high temperature and high pressure by the compressor 1 passes through the first two-way valve 9 and becomes high temperature and high pressure liquid refrigerant in the condenser 2, and then is depressurized by the pressure reducer 4 to become a low temperature and low pressure liquid refrigerant. The refrigerant becomes a gas-liquid two-phase refrigerant, evaporates in the evaporator 5, and passes through the second two-way valve 10. It passes through the accumulator 7 and returns to the compressor 1. At this time, the evaporator 5 exchanges heat with the surrounding air, and the evaporator fan 6 blows out the cold air toward the air-conditioned room. Thereafter, when the operation switch of the air conditioner is turned off, the compressor 1, condenser fan 3, and evaporator fan 6 are stopped, and the circulation of refrigerant and air is stopped.

このため、第1の二方弁9において、圧縮機1運転中は
高温のガス冷媒が通過していたために、第3図(blに
示すような状態にあったものが、圧縮機1が停止して冷
媒温度が低下し、設定温度以下(T<T1)になると、
第3図(a)に示すように、形状記憶合金の特性により
コイルばね状の弁駆動素子14が伸長し、弁体15が入
口ポート12に当接し、管路を閉状態とする。
For this reason, in the first two-way valve 9, while the compressor 1 was in operation, high-temperature gas refrigerant was passing through it, and the compressor 1 stopped, although it was in the state shown in Figure 3 (bl). When the refrigerant temperature decreases and becomes below the set temperature (T<T1),
As shown in FIG. 3(a), due to the characteristics of the shape memory alloy, the coil spring-shaped valve drive element 14 expands, and the valve body 15 comes into contact with the inlet port 12, closing the pipe line.

一方、第2の二方弁10においては、圧縮機1が停止し
て、冷媒温度が上昇し設定温度以上(T〉T4)になる
と、コイルばね状の弁駆動素子14が伸長し、弁体15
が入口ポート12に当接し、管路を閉状態とする。その
後、空気調和機の運転スイッチをオンにすると、圧縮機
1等が起動し、第1の二方弁9内の冷媒温度が、設定温
度以上(T>T2)になると、弁駆動素子14が収縮し
て、弁体15が入口ポート12を離れ管路を開状態とす
る。一方、第2の二方弁10内の冷媒温度が設定温度以
下(T<T3)になると、上記と同様の作用によって管
路が開状態となる。
On the other hand, in the second two-way valve 10, when the compressor 1 is stopped and the refrigerant temperature rises and becomes equal to or higher than the set temperature (T>T4), the coil spring-shaped valve drive element 14 expands and the valve body 15
comes into contact with the inlet port 12, closing the conduit. Thereafter, when the operation switch of the air conditioner is turned on, the compressor 1 etc. are started, and when the refrigerant temperature in the first two-way valve 9 reaches or exceeds the set temperature (T>T2), the valve drive element 14 starts. Upon contraction, the valve body 15 leaves the inlet port 12 and opens the pipeline. On the other hand, when the refrigerant temperature in the second two-way valve 10 becomes equal to or lower than the set temperature (T<T3), the conduit becomes open due to the same action as described above.

以上のように、本実施例においては、圧縮機1に接続し
た冷媒配管16の途中に、形状記憶合金を材質とするコ
イルばね状の弁駆動素子14を用いた第1の二方弁9、
および第2の二方弁10を設け、冷媒温度を感知して弁
駆動素子14が伸縮することを利用して管路の開閉動作
を自動的に行なわせるものである。つまり、圧縮機1停
止後、第1の二方弁9において冷媒温度が低下し、設定
温度以下(T<TI)になると管路が閉状態となり、ま
た、第2の二方弁10においては冷媒温度が上昇し設定
温度以上(T>T4)になると管路が閉状態となって、
冷媒が凝縮器2側および蒸発器5側から圧縮機1へ移動
して圧縮機1内の潤滑油に溶解するのを防ぐことができ
る。こうして圧縮機1が長時間停止中に起こる寝込み現
象を従来に比べて抑えることができ、始動時におけるフ
ォーミング現象を緩和することができる。
As described above, in this embodiment, the first two-way valve 9 uses a coil spring-shaped valve drive element 14 made of a shape memory alloy in the middle of the refrigerant pipe 16 connected to the compressor 1;
A second two-way valve 10 is provided to automatically open and close the pipeline by sensing the refrigerant temperature and utilizing the expansion and contraction of the valve drive element 14. That is, after the compressor 1 is stopped, the refrigerant temperature decreases in the first two-way valve 9 and becomes lower than the set temperature (T<TI), and the pipe becomes closed, and the second two-way valve 10 When the refrigerant temperature rises and exceeds the set temperature (T>T4), the pipe becomes closed,
It is possible to prevent the refrigerant from moving from the condenser 2 side and the evaporator 5 side to the compressor 1 and being dissolved in the lubricating oil in the compressor 1. In this way, the stagnation phenomenon that occurs when the compressor 1 is stopped for a long time can be suppressed compared to the conventional case, and the forming phenomenon at the time of startup can be alleviated.

また、圧縮機1運転時は、第1の三方弁9、および第2
の二方弁10において、第3図(blに示すようにコイ
ルばね状の弁駆動素子14が自ら収縮するために、コイ
ルばねを組み込んだ一般のチェックバルブのようにコイ
ルばねに対抗する流体の動圧によって管路を開状態とす
る場合と異なって、流動抵抗はきわめて小さいものであ
る。
Also, when the compressor 1 is in operation, the first three-way valve 9 and the second
In the two-way valve 10, as shown in FIG. Unlike the case where the pipeline is opened by dynamic pressure, the flow resistance is extremely small.

なお、本実施例では、高圧ハウジングタイプの圧縮機に
接続した冷媒配管にそれぞれ三方弁を設けたが、本発明
によれば、圧縮機内の潤滑油が存在する空間と、きわめ
て小さい流通抵抗で接続される冷媒配管、つまり本実施
例の場合では、圧縮機と凝縮器との間の管路だけに三方
弁を設けた場合でも圧縮機停止時に、潤滑油とほぼ連通
した冷媒配管を閉状態とすることによって、潤滑油中へ
の冷媒の寝込みを、かなり抑えることができるため、本
実施例と、はぼ同等の効果が得られるものである。
In this example, a three-way valve was provided for each refrigerant pipe connected to the high-pressure housing type compressor, but according to the present invention, the refrigerant pipe is connected to the space in the compressor where lubricating oil exists with extremely low flow resistance. In this example, even if a three-way valve is provided only in the pipe between the compressor and the condenser, the refrigerant pipe that is almost in communication with the lubricating oil can be closed when the compressor is stopped. By doing so, it is possible to considerably suppress the refrigerant from penetrating into the lubricating oil, so that the same effect as that of the present embodiment can be obtained.

また、本発明によれば高圧ハウジングタイプの圧縮機に
限らず、低圧ハウジングタイプの圧縮機でも、同じであ
る。
Furthermore, the present invention is applicable not only to high-pressure housing type compressors but also to low-pressure housing type compressors.

発明の効果 上記実施例から明らかなように、本発明の冷凍装置は、
圧縮機、凝縮器、減圧器および蒸発器を順次冷媒配管で
連絡して冷凍サイクルを構成し、前記圧縮機に接続した
前記冷媒配管の途中に二方弁を設けるとともに、前記二
方弁を、入口ポート・出口ポート・弁体および形状記憶
合金を材質とする弁駆動素子より構成したもので、圧縮
機停止後、1方弁内冷媒温度が低下あるいは上昇して設
定温度以下あるいは以上になると、弁駆動素子が温度を
感知して、自動的に管路を閉状態とすることによって冷
媒が圧縮機内の潤滑油に溶解するのを防止することがで
き、始動時のフォーミング現象を緩和することができる
とともに、形状記憶合金を材質とする弁駆動素子を用い
たため、電気信号や電気的な駆動源が不用となり、また
、クランクケースヒータのような、電気入力も必要とし
ない等、10 、 優れた効果を発揮するものである。
Effects of the Invention As is clear from the above embodiments, the refrigeration system of the present invention has the following features:
A compressor, a condenser, a pressure reducer, and an evaporator are sequentially connected through refrigerant piping to constitute a refrigeration cycle, and a two-way valve is provided in the middle of the refrigerant piping connected to the compressor, and the two-way valve is It is composed of an inlet port, an outlet port, a valve body, and a valve drive element made of shape memory alloy.If the refrigerant temperature in the one-way valve decreases or increases to below or above the set temperature after the compressor has stopped, The valve drive element senses the temperature and automatically closes the pipe line, which prevents the refrigerant from dissolving in the lubricating oil inside the compressor and alleviates the forming phenomenon during startup. In addition, since a valve driving element made of a shape memory alloy is used, there is no need for electrical signals or an electrical drive source, and there is no need for electrical input such as a crankcase heater. It is effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例を示す冷凍サイクル図、第2図は本発明
の一実施例を示す冷凍サイクル図、第3図(al・(b
lはそれぞれ形状記憶合金を材質とする弁駆動素子より
構成された二方弁の閉動作時および開動作時の断面図、
第4図(al・(blは同形状記憶合金を材質とする弁
駆動素子の異なる特性を示す図、第5図は、同二方弁内
の冷媒温度の時間的変化を示す図である。 1・・・・・・圧縮機、2・・・・・・凝縮器、4・・
・・・・減圧器、5・・・・・・蒸発器、16・・・・
・・冷媒配管、9,10・・・・・・二方弁、12・・
・・・・入口ポート、13・・・・・・出口ポート、1
5・・・・・・弁体、14・・・・・・弁駆動素子。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第3図 第4図 第2図
FIG. 1 is a refrigeration cycle diagram showing a conventional example, FIG. 2 is a refrigeration cycle diagram showing an embodiment of the present invention, and FIG.
1 is a cross-sectional view of a two-way valve constructed of a valve driving element made of a shape memory alloy during a closing operation and an opening operation, respectively;
FIG. 4 (al and bl are diagrams showing different characteristics of valve drive elements made of the same shape memory alloy as material, and FIG. 5 is a diagram showing temporal changes in refrigerant temperature in the same two-way valve. 1... Compressor, 2... Condenser, 4...
... pressure reducer, 5 ... evaporator, 16 ...
... Refrigerant piping, 9, 10... Two-way valve, 12...
...Inlet port, 13 ...Outlet port, 1
5... Valve body, 14... Valve drive element. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 3 Figure 4 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、凝縮器、減圧器および蒸発器を順次冷媒配管で
連結して冷凍サイクルを構成し、前記圧縮機に接続した
前記冷媒配管の途中に二方弁を設けるとともに、前記二
方弁を、入口ポート・出口ポート・弁体および形状記憶
合金を材質とする弁駆動素子より構成した冷凍装置。
A refrigeration cycle is constructed by sequentially connecting a compressor, a condenser, a pressure reducer, and an evaporator with refrigerant piping, and a two-way valve is provided in the middle of the refrigerant piping connected to the compressor, and the two-way valve is A refrigeration system consisting of an inlet port, an outlet port, a valve body, and a valve drive element made of shape memory alloy.
JP14801584A 1984-07-16 1984-07-16 Refrigerator Pending JPS6127464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14801584A JPS6127464A (en) 1984-07-16 1984-07-16 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14801584A JPS6127464A (en) 1984-07-16 1984-07-16 Refrigerator

Publications (1)

Publication Number Publication Date
JPS6127464A true JPS6127464A (en) 1986-02-06

Family

ID=15443195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14801584A Pending JPS6127464A (en) 1984-07-16 1984-07-16 Refrigerator

Country Status (1)

Country Link
JP (1) JPS6127464A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01195271A (en) * 1988-01-29 1989-08-07 Hitachi Ltd Method and device for sputtering

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01195271A (en) * 1988-01-29 1989-08-07 Hitachi Ltd Method and device for sputtering

Similar Documents

Publication Publication Date Title
JPS6127464A (en) Refrigerator
JP2921213B2 (en) refrigerator
JPS6357710B2 (en)
JPS5912273A (en) Refrigerator
JPS5958181A (en) Refrigerator
JPS6029560A (en) Heat pump type air conditioner
JPS60245967A (en) Air conditioner
JPS58133571A (en) Refrigeration cycle of air conditioner
JPS5952161A (en) Controller for flow of refrigerant of refrigerator
JPS62237260A (en) Defrostation control method of heat pump type air conditioner
JPH01208675A (en) Heat pump type hot water, heating and cooling machine
JPS5912259A (en) Controller for capacity of air conditioner
JPS5833067A (en) Refrigerator
JPS62228846A (en) Air conditioner
JPS6033455A (en) Refrigerator
JPS5956052A (en) Controller for flow of refrigerant of refrigerator
JPS58145857A (en) Refrigeration cycle
JPS6213964A (en) Air conditioner
JPS5952171A (en) Cooling device
JPS6255065B2 (en)
JPH0581819B2 (en)
JPS6337863B2 (en)
JPS63290359A (en) Air conditioner
JPS6059498B2 (en) Refrigeration equipment capacity control method
JPS63169450A (en) Heat pump type air conditioner