JPS59111384A - Compound semiconductor element - Google Patents

Compound semiconductor element

Info

Publication number
JPS59111384A
JPS59111384A JP57221437A JP22143782A JPS59111384A JP S59111384 A JPS59111384 A JP S59111384A JP 57221437 A JP57221437 A JP 57221437A JP 22143782 A JP22143782 A JP 22143782A JP S59111384 A JPS59111384 A JP S59111384A
Authority
JP
Japan
Prior art keywords
layer
compound semiconductor
type
semiconductor layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57221437A
Other languages
Japanese (ja)
Inventor
Atsushi Shibata
淳 柴田
Kenzo Hatada
畑田 賢造
Yoichi Sasai
佐々井 洋一
Ichiro Nakao
中尾 一郎
Soichi Kimura
木村 壮一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57221437A priority Critical patent/JPS59111384A/en
Publication of JPS59111384A publication Critical patent/JPS59111384A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/002Devices characterised by their operation having heterojunctions or graded gap
    • H01L33/0025Devices characterised by their operation having heterojunctions or graded gap comprising only AIIIBV compounds

Abstract

PURPOSE:To obtain the titled compound semiconductor element by which the loss of electric power is suppressed minor and, in addition, the area of the element is made smaller and the yield can be upgraded by a method wherein the collector layer of a bipolar transistor is used in common with the LD of a semiconductor laser and the LD to be used as a collector load is made into a structure which is controlled by corrector current, by arranging the bipolar transistor in longitudinal type to the LD of the semiconductor laser. CONSTITUTION:A quadrilayer 302 of InGaAsP is epitaxially grown on an N type InP substrate 301. After that, a P type InP layer 303 is epitaxially grown, and, in addition, a P type InGaAsP layer 304, the so-called cap layer 304, is grown. The back surface of the N type InP substrate 301 is performed an etching in order to grow epitaxially a buffer layer. Then, a P type InP layer 305, which is subjected to become the base layer, is epitaxially grown. Impurities are selectively diffused or implanted on the base layer 305 for forming an emitter layer 306. In this case, as the emitter layer 306 becomes an N type, an npn transistor is formed in longitudinal type to a P clad layer 303, an active layer 302 and an N clad layer 301, by which the LD is constituted, because the substrate 301 and the base layer 305, which are subjected to become the collector layer, are an N type and a P type respectively.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、化合物半導体素子に関し、特に半導体レーザ
ー(以下LDと略す)等のダイオード及びその駆動素子
の一体化構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a compound semiconductor device, and particularly to an integrated structure of a diode such as a semiconductor laser (hereinafter abbreviated as LD) and its driving element.

従来例の構成とその問題点 LDは、光通信等情報の高密度伝送から最近その開発が
活発に行われている。更に、LDは光通信においては、
電気信号を光信号に変換する素子であり、電気信号処理
とLDとを一体化する集積回路(以下ICと略す)が最
近注目を浴びている。
Conventional configurations and their problems LDs have recently been actively developed for high-density transmission of information such as optical communications. Furthermore, LD is used in optical communication,
Integrated circuits (hereinafter abbreviated as ICs), which are elements that convert electrical signals into optical signals and which integrate electrical signal processing and LD, have recently been attracting attention.

従来の一体化ICの構造は、接合型FETとLDと金I
C化したものが発表されている。この構造を第1図に示
す。第1図にて、1は半絶縁性のGaAs基板、2はn
型のGaAs層3はn型ノAItGaAs層、4はn型
のGaAs層、6はp型のAnGaAs層、6は絶縁性
被膜、7は導電性金属、8はソース電極、9はゲート電
極、10はドレイン電極、11はゲート拡散層、12は
p型高濃度層を示す。なお第2図に第1図に示した断面
構造素子の等価回路を示す。第1図と同じ番号の箇所は
同じ名称を示す。この構造はプレーナ型に近いが、完全
なプレーナ型ではな(FET部分はn型GaAs層2ま
で選択的にエツチングするかもしくはLD部分を選択的
にエピタキシャル成長させる。それゆえ、段差を生じ製
造上歩留りが悪い。また低電圧大電流が取りにくいこと
から消費電力損が大きく、これによってLDのしきい電
流値(以下Ithと略す)が上昇し、発振効率を低下さ
せる。更に、相互コンダクタンス(以下qmと略す)を
大きくするためにゲート長Lq に対するゲート幅Wq
 の比を大きく取る必要があるため、素子面積が大きく
なる。
The structure of a conventional integrated IC is a junction FET, LD, and gold I.
A version of C has been announced. This structure is shown in FIG. In Figure 1, 1 is a semi-insulating GaAs substrate, 2 is an n
3 is an n-type GaAs layer, 4 is an n-type GaAs layer, 6 is a p-type AnGaAs layer, 6 is an insulating film, 7 is a conductive metal, 8 is a source electrode, 9 is a gate electrode, 10 is a drain electrode, 11 is a gate diffusion layer, and 12 is a p-type high concentration layer. Note that FIG. 2 shows an equivalent circuit of the cross-sectional structure element shown in FIG. 1. Places with the same numbers as in FIG. 1 indicate the same names. Although this structure is close to a planar type, it is not a completely planar type (the FET part is selectively etched down to the n-type GaAs layer 2, or the LD part is selectively grown epitaxially. Therefore, a step occurs and the manufacturing yield is reduced. In addition, since it is difficult to obtain low voltage and large current, the power consumption loss is large, which increases the threshold current value (hereinafter referred to as Ith) of the LD and reduces the oscillation efficiency.Furthermore, the mutual conductance (hereinafter referred to as qm ) to increase the gate width Wq relative to the gate length Lq.
Since it is necessary to take a large ratio, the element area becomes large.

以上の説明に述べた如く、第1図の構造では素子構造が
複雑なため製造歩留りが悪く、更に素子面積が大きいこ
とは、大口径のウェハーそしてエピタキシャル成長技術
が困難な現在、価格的に高価なものとなる。更に、FE
Tであるため低電圧大電流動作が難かしく、それゆえ電
力損失が大きくLDのIthi上昇させる悪循環となる
As mentioned above, the structure shown in Figure 1 has a complicated device structure, which results in poor manufacturing yields, and the large device area means that it is expensive at present, when large-diameter wafers and epitaxial growth technology are difficult to use. Become something. Furthermore, F.E.
Since it is T, it is difficult to operate at a low voltage and a large current, which results in a vicious cycle in which the power loss is large and the Ithi of the LD is increased.

発明の目的 本発明者らは、LDの駆動素子の電力損失を小さくする
という観点から、駆動素子にバイポーラトランジスタを
用いることに着眼し、その結果、LDとバイポーラトラ
ンジスタを縦型に配置すれば、電力損失が小さく、素子
面積も小さくなることを見い出した。したがって本発明
は、以上述べましたような従来例の問題点に鑑みて、ダ
イオードとバイポーラトランジスタを一体化するととも
に、電力損失を小さく抑えIthの増加を小さくし、更
に素子面積を小さくして歩留向上の可能な化合物半導体
素子を得るものである。
Purpose of the Invention The present inventors focused on using a bipolar transistor as the driving element from the viewpoint of reducing the power loss of the driving element of the LD, and as a result, if the LD and the bipolar transistor are arranged vertically, It has been found that power loss is small and the device area is also small. Therefore, in view of the problems of the conventional example as described above, the present invention integrates a diode and a bipolar transistor, reduces power loss, minimizes increase in Ith, and further reduces the element area. The present invention provides a compound semiconductor device that can be used as a storage device.

発明の構成 本発明は、LDに対して縦型にバイポーラトランジスタ
を配置して、バイポーラトランジスタのコレクタ層iL
Dと共用させ、コレクタ負荷としてのLDをコレクタ電
流で制御する構造を提供するものである。
Structure of the Invention The present invention has a bipolar transistor arranged vertically with respect to an LD, and a collector layer iL of the bipolar transistor.
This provides a structure in which the LD is shared with D and the LD as a collector load is controlled by the collector current.

実施例の説明 第3図に本発明の第1実施例によるプレーナ構造の化合
物半導体素子の断面構造を示す。第4図は\その等価回
路を示す。第3図において、301は単結晶n型InP
基板、3o12はInGaAsPの4元層でいわゆる活
性層と呼ばれる。303はp型InP層でPクラッド層
と呼ばれる。304はp型の4元層でキャップ層と呼ば
れる。305はp型InP層でベース層である。306
はn型1nP層でエミツタ層、307.308.309
は各々コレクタ電極、ベース電極、エミッタ電極を示す
DESCRIPTION OF EMBODIMENTS FIG. 3 shows a cross-sectional structure of a planar compound semiconductor device according to a first embodiment of the present invention. Figure 4 shows its equivalent circuit. In FIG. 3, 301 is a single crystal n-type InP
The substrate 3o12 is a quaternary layer of InGaAsP and is called an active layer. 303 is a p-type InP layer called a P cladding layer. 304 is a p-type quaternary layer called a cap layer. 305 is a p-type InP layer and is a base layer. 306
is an n-type 1nP layer and an emitter layer, 307.308.309
represent a collector electrode, a base electrode, and an emitter electrode, respectively.

以下に第3図の構造の製造方法を示す。n型InP基板
301上にInGaAsP 04元層302fエピタキ
シヤル成長させる。その後、Pクラッド層と呼ばれるp
型1nP層303’iiエピタキシャル成長させ、更に
p型I nGaAs P層304いわゆるキャップ層3
04を成長させる。その後、n型InP基板301の裏
面をエツチングして、n型1nPlいわゆるバッファ層
をエピタキシャル成長させる。
A method of manufacturing the structure shown in FIG. 3 will be described below. An InGaAsP 04 source layer 302f is epitaxially grown on an n-type InP substrate 301. After that, p
A type 1nP layer 303'ii is epitaxially grown, and a p-type InGaAs P layer 304 is formed as a so-called cap layer 3.
Grow 04. Thereafter, the back surface of the n-type InP substrate 301 is etched to epitaxially grow an n-type 1nPl so-called buffer layer.

これは、基板の結晶欠陥を防ぐためで、特になくても良
い。その後、ベース層となるp型InP層305’iエ
ピタキシャル成長させる。ベース層306の上に拡散マ
スク等を用いて、Te、S、Si等の不純物を選択的に
拡散もしくは注入して、エミッタ層306f、形成する
。この場合、エミツタ層306はn型となるから、コレ
クタ層となる基板3o1.ベース層306が各々n型、
p型であるので、npnトランジスタがLD’i構成す
るpクラッド層303.活性層302.nクラッド層3
01に対して縦型に形成される0すなわち、npnトラ
ンジスタのコレクタ層と、LDのnクラッド層とを基板
301が共用している構造に本発明の特長がある。
This is to prevent crystal defects in the substrate, and is not particularly necessary. Thereafter, a p-type InP layer 305'i, which becomes a base layer, is epitaxially grown. Using a diffusion mask or the like, impurities such as Te, S, and Si are selectively diffused or implanted onto the base layer 306 to form an emitter layer 306f. In this case, since the emitter layer 306 becomes n-type, the substrate 3o1. The base layer 306 is n-type,
Since it is a p-type, the p cladding layer 303. which the npn transistor constitutes LD'i. Active layer 302. n cladding layer 3
The present invention is characterized by a structure in which the substrate 301 shares the collector layer of the npn transistor formed vertically with respect to the npn transistor 301 and the n cladding layer of the LD.

抵抗性電極307.308.309は、p型InP層に
対してAu−Zn等の金属材料、n型InP層に対して
Au−8n等の金属材料を蒸着等によって被着させ電極
形成する。
The resistive electrodes 307, 308, and 309 are formed by depositing a metal material such as Au-Zn on the p-type InP layer and a metal material such as Au-8n on the n-type InP layer by vapor deposition or the like.

以上に述べたように、本発明の第1実施例において、プ
レーラ型LDとnpnバイポーラトランジスタとが、n
型InP基板301 f nクラッド層。
As described above, in the first embodiment of the present invention, the planer type LD and the npn bipolar transistor are
Type InP substrate 301 f n cladding layer.

コレクタ層として各々共用することで縦型構造を形成し
ている。バイアス電圧はエミッタ電極309を共通とし
て、コレクタ電極307に正の電圧源を接続し、ベース
電極30Bにはベース電流を流し込む。ベース電流の制
御でコレクタ電流によって、コレクタ電極307’i介
して接続されているLDは駆動される。
By sharing each layer as a collector layer, a vertical structure is formed. The emitter electrode 309 is used as a common bias voltage, a positive voltage source is connected to the collector electrode 307, and a base current is applied to the base electrode 30B. The LD connected via the collector electrode 307'i is driven by the collector current by controlling the base current.

第6図に本発明の第2実施例によるプレーナ構造の化合
物半導体素子の断面構造を示す。第2実施例は、第1実
施例に対してLDの構造をプレーナ型から溝型にした点
が異なる。溝構造にすることによってLDに対する電流
集中を上げ、よってIthi低下させようとするもので
ある。
FIG. 6 shows a cross-sectional structure of a planar compound semiconductor device according to a second embodiment of the present invention. The second embodiment differs from the first embodiment in that the structure of the LD is changed from a planar type to a groove type. By creating a groove structure, the current concentration to the LD is increased, thereby reducing Ithi.

第6図にて、501はn型InP基板、502はInG
aAsP 4元の活性層、603はp型InPHのpク
ラッド層、504はp型I nGaAs Pのキャップ
層、505はp型InP層のベース層、606はn型I
nP層のエミツタ層、507はAu・Zn等の金属によ
るコレクタ電極、508.509はAu −3n等の金
属によるベース、エミッタ電極、610はp型拡散もし
くは注入層で電流狭守層となる。
In FIG. 6, 501 is an n-type InP substrate, 502 is InG
aAsP quaternary active layer, 603 is a p-cladding layer of p-type InPH, 504 is a cap layer of p-type InGaAsP, 505 is a base layer of p-type InP layer, 606 is an n-type I
507 is a collector electrode made of a metal such as Au or Zn; 508 and 509 are base and emitter electrodes made of a metal such as Au-3n; and 610 is a p-type diffusion or injection layer which serves as a current blocking layer.

611はn型1nP層でnクラッド層、612はI n
GaAgP 4元層、513は絶縁被膜を各々示す。
611 is an n-type 1nP layer and n cladding layer, 612 is In
A GaAgP quaternary layer and 513 indicate an insulating film.

以下に第5図の構造の製造方法を示す。n型InP基板
501の片面にZnあるいはCd等の不純物を拡散もし
くは注入でp型InP層510を形成する。
A method of manufacturing the structure shown in FIG. 5 will be described below. A p-type InP layer 510 is formed on one side of an n-type InP substrate 501 by diffusing or implanting an impurity such as Zn or Cd.

これを電流狭守層という。しかる後、選択的にn型In
P基板601をブロムメタノール系あるいは塩酸リン酸
系のエツチング液にてエツチングして溝を形成する。そ
の後、n型1nP層のnクラッドNi511 、 In
GaAsP 4元の活性層502.p型InP層のpク
ラッド層tso3.p型のI nGaAg P 4元の
キャップ層604を順にエピタキシャル成長させる。
This is called the current narrowing layer. After that, selectively n-type In
A groove is formed by etching the P substrate 601 with a bromethanol-based or hydrochloric acid-phosphoric acid-based etching solution. After that, an n-type 1nP layer of n-clad Ni511, In
GaAsP quaternary active layer 502. P cladding layer tso3. of p-type InP layer. A p-type InGaAgP quaternary cap layer 604 is then epitaxially grown.

次に、n型InP基板601のもう一方の面の結晶欠陥
など取り除くだめのエツチング処理をしてから、特に必
要ないがバッファーとしてn型InP層をエピタキシャ
ル成長させ、次いで、ベース層となるp型InP層60
5.オーミックを取るだめのInGaAsP 4元層5
12ftエピタキシヤル成長させる。しかる後前記溝と
縦方向で一致するように、選択的にエミツタ層tsoe
を形成する。エミツタ層506は、Te、s、si等の
不純物を拡散あるいは注入によって形成する。4元層5
12を、硝酸系あるいは硫酸化過酸化水素系で選択的に
エツチングした後、CV D (Chemical V
aPer Deposition)法などによって絶縁
被膜513f:形成し、選択的に開孔した後、Au−Z
n、Au−8n などの金属によって電極508.50
9i形成する。もちろん、コレクタ電極607も形成す
る。
Next, after performing an etching process to remove crystal defects on the other side of the n-type InP substrate 601, an n-type InP layer is epitaxially grown as a buffer although it is not particularly necessary, and then a p-type InP layer is grown as a base layer. layer 60
5. InGaAsP 4-element layer 5 that cannot take ohmic
12ft epitaxial growth. Thereafter, the emitter layer tsoe is selectively formed so as to coincide with the groove in the longitudinal direction.
form. The emitter layer 506 is formed by diffusing or implanting impurities such as Te, s, and Si. 4-layer layer 5
After selectively etching 12 with nitric acid or sulfated hydrogen peroxide, CVD (Chemical V
After forming an insulating film 513f by a per deposition method or the like and selectively opening holes, Au-Z
Electrode 508.50 by metal such as n, Au-8n
Form 9i. Of course, a collector electrode 607 is also formed.

以上に述べたように、本発明の第2実施例において、溝
を設けたLDとnpnバイポーラトランジスタとが、n
型InP基板301 i共用することで縦型構造を形成
している。
As described above, in the second embodiment of the present invention, the grooved LD and the npn bipolar transistor are
By sharing the type InP substrate 301i, a vertical structure is formed.

なお、本発明に関する実施例としてI nP −I n
GaAs Pの4元系を例に出して説明したが、GaA
s −AfiGaAsの3元系とても同様に構成できる
ことはいう着でもない。また、npn  バイポーラト
ランジスタと縦型構造をとるLDとしてプレーナ、溝型
を実施例に出したが、埋込型、TS型でも同様に形成で
きる。さらに、LDの代わりにLED(発光ダイオード
)等の他の発光素子を形成してもよい。
In addition, as an example related to the present invention, I nP −I n
The explanation was given using the quaternary system of GaAs P as an example, but GaAs
It goes without saying that the ternary system of s-AfiGaAs can be constructed in a very similar manner. Further, although planar and trench type LDs have been shown in the embodiments as LDs having a vertical structure and an npn bipolar transistor, buried type and TS types can also be formed in the same manner. Furthermore, other light emitting elements such as LEDs (light emitting diodes) may be formed instead of LDs.

発明の効果 以上の説明に述べたように、本発明は、(1)LDおよ
びその駆動素子としてバイポーラトランジスタを用いる
一体化IC構造によって電力損失を少なくしてLDi動
作できる。このことは、従来問題としている発熱による
LDのIthの増加すなわち発振効率を下げることがな
い。
Effects of the Invention As described above, the present invention provides (1) LDi operation with reduced power loss due to the integrated IC structure using bipolar transistors as the LD and its driving element. This prevents an increase in Ith of the LD due to heat generation, which is a conventional problem, that is, a decrease in oscillation efficiency.

(2)LDおよびその駆動素子としてのバイポーラトラ
ンジスタの一体化IC構造において、LDのクラッド層
と前記トランジスタのコレクタ層とを共用することによ
って、LDの電流狭T層の直上にトランジスタを構成で
きる縦型構造とした。これによって、横方向電流成分が
なくなり、効率よ(LDの電流狭を層に電流を流せる。
(2) In an integrated IC structure of an LD and a bipolar transistor as its driving element, by sharing the cladding layer of the LD and the collector layer of the transistor, the transistor can be constructed directly above the current narrow T layer of the LD. It has a type structure. This eliminates the lateral current component, allowing current to flow through the LD layer more efficiently.

(3)基板の両面に化合物半導体層を成長させることは
、LDの不純濃度とトランジスタの不純物濃度とを、独
立に制御できる利点を有する。
(3) Growing compound semiconductor layers on both sides of the substrate has the advantage that the impurity concentration of the LD and the impurity concentration of the transistor can be controlled independently.

(4)縦型構造によってIC化面積を小さくできるので
高密度IC化が可能である。
(4) Since the vertical structure allows the IC area to be reduced, high-density ICs are possible.

などの有用な効果をもつもので、工業的に十分価1直あ
るものである。
It has useful effects such as, and has sufficient industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のLD一体化IC構造の断面図、第2図は
第1図に示すIC構造の等価回路図、第3図は本発明の
第1実施例であるLDとバイポーラトランジスタの一体
化した化合物半導体素子の断面図、第4図は同素子の等
価回路図、第5図は本発明の第2実施例であるLDとバ
イポーラトランジスタの一体化した化合物半導体装置の
断面図である。 301.501・・・・・化合物半導体素子、302゜
502・・・・・・化合物半導体層(活性層)、303
゜503・・・・・・化合物半導体層(クラッド層)、
304゜604・・・・・・化合物半導体層(キャップ
層)、306゜506・・・・・・化合物半導体層(ベ
ース層)、306゜506・・・・・・エミツタ層、3
07.507・・・・・・コレクタ電極、308.50
8・・・・・ベース電極、309゜509・・・・・・
エミッタ電極、510・・・・・・電流狭を層、611
・・・・・・クラッド層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 f 第2図
Fig. 1 is a cross-sectional view of a conventional LD integrated IC structure, Fig. 2 is an equivalent circuit diagram of the IC structure shown in Fig. 1, and Fig. 3 is an integrated LD and bipolar transistor according to the first embodiment of the present invention. 4 is an equivalent circuit diagram of the same device, and FIG. 5 is a sectional view of a compound semiconductor device in which an LD and a bipolar transistor are integrated, which is a second embodiment of the present invention. 301.501...Compound semiconductor element, 302°502...Compound semiconductor layer (active layer), 303
゜503...Compound semiconductor layer (cladding layer),
304°604... Compound semiconductor layer (cap layer), 306°506... Compound semiconductor layer (base layer), 306°506... Emitter layer, 3
07.507...Collector electrode, 308.50
8...Base electrode, 309°509...
Emitter electrode, 510... Layer for current narrowing, 611
・・・・・・Clad layer. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure f Figure 2

Claims (1)

【特許請求の範囲】 (1)第1の導電型の化合物半導体基板の一方の主面に
、異種接合を形成する第1の化合物半導体層を有し、前
記化合物半導体基板とは導電型を逆にする第2の導電型
の第2の化合物半導体層を前記第1の化合物半導体層上
に有し、前記第2の化合物半導体層上に第2の導電型の
第3の化合物半導体層を有し、前記化合物半導体基板の
他方の主面に前記化合物半導体基板とは逆の導電型であ
る第2の導電型の第4の化合物半導体層を有し、前記第
3の化合物半導体層、第4の化合物半導体層の上に各々
抵抗性電極を有し、前記化合物半導体基板をコレクタ層
とし、前記第1.第2.第3の化合物半導体層および前
記化合物半導体基板により形成されたダイオードを有し
、前記第4の化合物半導体層をベース層とし、このベー
ス層内又はベース層上にエミツタ層を有することを特徴
とする化合物半導体素子。 (2)  エミツタ層は、第4の化合物半導体層の中に
選択的に不純物を拡散することによって形成されるもの
であることを特徴とする特許請求の範囲第1項に記載の
化合物半導体素子。 (3)エミツタ層は、第4の化合物半導体層の中に選択
的に不純物を注入することによって形成されるものであ
ることを特徴とする特許請求の範囲第1項に記載の化合
物半導体素子。 (4)  エミツタ層が、第4の化合物半導体層上に選
択的に形成され前記第4の化合物半導体層と異種音 接合になるように形成した第6の化合物半導体層よりな
ることを特徴とする特許請求の範囲第1項に記載の化合
物半導体素子。 (5)ベース層又はエミツタ層上に、化合物半導体層を
介して抵抗性電極を形成することを特徴とする特許請求
の範囲第1項に記載の化合物半導体素子。 (6ン  化合物半導体基板に選択的に電流狭を層を形
成することを特徴とする特許請求の範囲第1項に記載の
化合物半導体素子。 (7)  化合物半導体基板の電流狭窄層間に溝部を形
成したことを特徴とする特許請求の範囲第1項に記載の
化合物半導体素子。 (8)化合物半導体基板の電流狭窄層と第1の化合物半
導体層との間に、前記電流狭中層とは逆の導電型の化合
物半導体層を設けたことを特徴とする特許請求の範囲第
1項に記載の化合物半導体素子。
[Scope of Claims] (1) A first compound semiconductor layer forming a heterojunction is provided on one main surface of a compound semiconductor substrate of a first conductivity type, and the conductivity type is opposite to that of the compound semiconductor substrate. a second compound semiconductor layer of a second conductivity type on the first compound semiconductor layer, and a third compound semiconductor layer of a second conductivity type on the second compound semiconductor layer. and a fourth compound semiconductor layer of a second conductivity type, which is a conductivity type opposite to that of the compound semiconductor substrate, on the other main surface of the compound semiconductor substrate, and the third compound semiconductor layer, the fourth compound semiconductor layer, each has a resistive electrode on the compound semiconductor layer of the first compound semiconductor layer, the compound semiconductor substrate is used as a collector layer, and the first compound semiconductor substrate is a collector layer. Second. It is characterized by having a diode formed by a third compound semiconductor layer and the compound semiconductor substrate, using the fourth compound semiconductor layer as a base layer, and having an emitter layer in or on the base layer. Compound semiconductor device. (2) The compound semiconductor device according to claim 1, wherein the emitter layer is formed by selectively diffusing impurities into the fourth compound semiconductor layer. (3) The compound semiconductor device according to claim 1, wherein the emitter layer is formed by selectively implanting impurities into the fourth compound semiconductor layer. (4) The emitter layer is characterized by comprising a sixth compound semiconductor layer selectively formed on the fourth compound semiconductor layer so as to form a heterophonic junction with the fourth compound semiconductor layer. A compound semiconductor device according to claim 1. (5) The compound semiconductor device according to claim 1, wherein a resistive electrode is formed on the base layer or the emitter layer via a compound semiconductor layer. (6) A compound semiconductor device according to claim 1, characterized in that a current confinement layer is selectively formed on a compound semiconductor substrate. (7) A groove is formed between the current confinement layers of the compound semiconductor substrate. The compound semiconductor device according to claim 1, characterized in that: (8) between the current confinement layer of the compound semiconductor substrate and the first compound semiconductor layer, a layer opposite to the current confinement layer; 2. The compound semiconductor device according to claim 1, further comprising a conductive type compound semiconductor layer.
JP57221437A 1982-12-16 1982-12-16 Compound semiconductor element Pending JPS59111384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57221437A JPS59111384A (en) 1982-12-16 1982-12-16 Compound semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57221437A JPS59111384A (en) 1982-12-16 1982-12-16 Compound semiconductor element

Publications (1)

Publication Number Publication Date
JPS59111384A true JPS59111384A (en) 1984-06-27

Family

ID=16766722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57221437A Pending JPS59111384A (en) 1982-12-16 1982-12-16 Compound semiconductor element

Country Status (1)

Country Link
JP (1) JPS59111384A (en)

Similar Documents

Publication Publication Date Title
KR890003379B1 (en) Compound semiconductor intergrated circuit device
US4987468A (en) Lateral heterojunction bipolar transistor (LHBT) and suitability thereof as a hetero transverse junction (HTJ) laser
US6339233B1 (en) Metal clad ridge waveguide (“MCRW”) laser semiconductor structure with doped semiconductor substrate
JPH04324691A (en) Compound semiconductor device
US5164797A (en) Lateral heterojunction bipolar transistor (LHBT) and suitability thereof as a hetero transverse junction (HTJ) laser
JPH0719934B2 (en) Laser diode array and manufacturing method thereof
JPS60216591A (en) Semiconductor light emitting element
JPH05218586A (en) Semiconductor laser device and manufacture of the same
US5073895A (en) Semiconductor laser
JPH11284280A (en) Semiconductor laser device, its manufacture and manufacture of iii-v compound semiconductor element
JPS59111384A (en) Compound semiconductor element
JPS59113678A (en) Compound semiconductor element
JPH0614574B2 (en) Semiconductor laser
JPH01212483A (en) Semiconductor device
JPH05218585A (en) Semiconductor light emitting device
JPS59222987A (en) Compound semiconductor element and manufacture thereof
US6081000A (en) AlAs oxide insulating layer between a conductive III-V substrate and an optoelectronic semiconductor device and method of manufacturing thereof
JP3261032B2 (en) Light emitting diode array
JPH05190970A (en) Manufacturing method of semiconductor laser
JPS6356955A (en) Optoelectronic integrated circuit device
JPS5951585A (en) Manufacture of semiconductor device
KR100234350B1 (en) Fabricating method of compound semiconductor device
JP3426834B2 (en) Method for manufacturing light emitting diode array
KR960002646B1 (en) The compound semiconductor device and the manufacturing method thereof
JPS59222988A (en) Compound semiconductor element and manufacture thereof