JPS59113678A - Compound semiconductor element - Google Patents

Compound semiconductor element

Info

Publication number
JPS59113678A
JPS59113678A JP57224245A JP22424582A JPS59113678A JP S59113678 A JPS59113678 A JP S59113678A JP 57224245 A JP57224245 A JP 57224245A JP 22424582 A JP22424582 A JP 22424582A JP S59113678 A JPS59113678 A JP S59113678A
Authority
JP
Japan
Prior art keywords
layer
compound semiconductor
type inp
type
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57224245A
Other languages
Japanese (ja)
Inventor
Atsushi Shibata
淳 柴田
Kenzo Hatada
畑田 賢造
Yoichi Sasai
佐々井 洋一
Ichiro Nakao
中尾 一郎
Soichi Kimura
木村 壮一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57224245A priority Critical patent/JPS59113678A/en
Publication of JPS59113678A publication Critical patent/JPS59113678A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/002Devices characterised by their operation having heterojunctions or graded gap
    • H01L33/0025Devices characterised by their operation having heterojunctions or graded gap comprising only AIIIBV compounds

Abstract

PURPOSE:To enable to upgrade the yield by a method wherein an LD and a bipolar transistor are arranged in vertical type by using the bipolar transistor for a driving element to suppress the loss of electric power less, lessen the increase of Ith and reduce the area of the element. CONSTITUTION:A four elements layer 32 of InGaAsP is epitaxially grown on an N type InP substrate 31. After that, on the four elements layer 32 is epitaxially grown a P type InP layer 33 called a P-clad layer and an N type InP layer 34 is epitaxially grown on the P-clad layer 33. And then, impurities of Zn or Cd, etc., are selectively diffused or implanted in the N type InP layer 34 for forming a P type InP layer 35. At this time, the N type InP layer 34 being interposed between the P type InP layer 35 and the InP layer 33 is turned into the base layer and the width thereof becomes the base width. The four elements layer 32 being interposed between the N type InP substrate 31 and the P type InP layer 33 forms a double junction of a different kind and shuts the carriers in by current from the emitter of the P type InP layer 35 located right over the layer 32 to generate the laser luminescense.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は化合物半導体素子に関し、特に半導体レーザー
(以下LDと略す)等のダイオード及びその駆動素子の
一体化構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a compound semiconductor device, and particularly to an integrated structure of a diode such as a semiconductor laser (hereinafter abbreviated as LD) and its driving element.

従来例の構成とその問題点 LDは、光通信等、情報の高密度伝送から最近その開発
が活発に行われている。更に、LDは、光通信において
は、電気信号を光信号に変換する素子であり、電気信号
処理とLDとを一体化する集積回路(以下ICと略す)
が最近注目を浴びている。
Conventional Structures and Problems LDs have recently been actively developed for high-density transmission of information, such as optical communications. Furthermore, in optical communications, LD is an element that converts electrical signals into optical signals, and is an integrated circuit (hereinafter abbreviated as IC) that integrates electrical signal processing and LD.
has been attracting attention recently.

従来の一体化ICの構造は、接合型FETとLDとをI
C化したものが発表されている。この構造を第1図に示
す。第1図にて、1は半絶縁性のG a A s基板、
2はn型のG a A s層、3はn型のAI G a
 A s層、4はn型のG a A s層、6はp型の
A I G a A s層、6は絶縁性被膜、7は導電
性金属、8はソース電極、9はゲート電極、10はドレ
イン電極、11はゲート拡散層、12はp型高濃度層を
示す。
The structure of the conventional integrated IC is that the junction FET and LD are
A version of C has been announced. This structure is shown in FIG. In FIG. 1, 1 is a semi-insulating GaAs substrate,
2 is an n-type Ga As layer, 3 is an n-type AI Ga
A s layer, 4 is an n-type Ga As layer, 6 is a p-type AI Ga As layer, 6 is an insulating film, 7 is a conductive metal, 8 is a source electrode, 9 is a gate electrode, 10 is a drain electrode, 11 is a gate diffusion layer, and 12 is a p-type high concentration layer.

第2図に、第1図に示した断面構造素子の等価回路を示
す。第1図と同じ番号の箇所は、同じ名称を示す。この
構造は、プレーナ型に近いが完全なプレーナ型ではなく
、FET部分は、n型GaAs層2まで選択的にエツチ
ングするかもしくはLD部分を選択的にエピタキシャル
成長させる。それゆえ、段差を生じ製造上歩留りが悪い
。また低電圧大電流が取りにくいことから、消費電力損
が大きく、これによってLDの大きい電流値(以下Ii
hと略す)が上昇し、発振効率を低下させる。
FIG. 2 shows an equivalent circuit of the cross-sectional structure element shown in FIG. 1. The same numbers as in FIG. 1 indicate the same names. Although this structure is close to a planar type, it is not a completely planar type, and the FET portion is selectively etched down to the n-type GaAs layer 2, or the LD portion is selectively grown epitaxially. Therefore, a difference in level occurs, resulting in a poor manufacturing yield. In addition, since it is difficult to obtain low voltage and large current, the power consumption loss is large, and this results in a large current value (hereinafter referred to as Ii) of the LD.
(abbreviated as h) increases, reducing oscillation efficiency.

更に、相互コンダクタンス(以下gmと略す)を大きく
するためにゲート長Lqに対するゲート幅wgの比を大
きく取る必要があるため、素子面積が大きくなる。以上
の説明に述べた如く、第1図の構造では素子構造が複雑
なため製造歩留9が悪く、更に素子面積が大きいことは
、大口径のウェハーそしてエピタキシャル成長技術が困
難な現在、価格的に高価なものとなる。更に、FETで
あるため、低電圧大電流動作が難かしく、それゆえ電力
損失が太き(LDのIt−hを上昇させる悪循環となる
Furthermore, in order to increase mutual conductance (hereinafter abbreviated as gm), it is necessary to increase the ratio of gate width wg to gate length Lq, which increases the element area. As mentioned above, the structure shown in Figure 1 has a complicated device structure, which results in a poor manufacturing yield9, and the large device area is a problem in terms of cost, as large-diameter wafers and epitaxial growth technology are currently difficult to use. It becomes expensive. Furthermore, since it is a FET, low voltage and large current operation is difficult, and therefore power loss is large (a vicious cycle that increases It-h of the LD).

発明の目的 本発明者らは、LDの駆動素子の電力損失を小さくする
という観点から、駆動素子に)くイポーラトランジスタ
を用いることに着眼し、その結果、LDとバイポーラ・
トランジスタを縦型に配置すれば、電力損失が小さく、
素子面積も小さくなることを見い出した。したがって、
本発明は、以上述べ+たような従来例の問題点に鑑みて
、ダイオードとバイポーラトランジスタを一体化すると
ともに、電力損失を小きく抑えIt、hの増加を小さく
し、更に素子面積を小さくして歩留向上の可能な化合物
半導体素子を得るものである。
Purpose of the Invention The present inventors focused on using a bipolar transistor in the driving element from the viewpoint of reducing the power loss of the driving element of the LD, and as a result, the LD and the bipolar transistor were used as the driving element.
If the transistors are arranged vertically, power loss is small,
It has been found that the element area can also be reduced. therefore,
In view of the problems of the prior art as described above, the present invention integrates a diode and a bipolar transistor, minimizes power loss, minimizes increases in It and h, and further reduces the element area. Accordingly, a compound semiconductor device with improved yield can be obtained.

発明の構成 本発明は、LDの直上にノくイポーラトランジスタを配
置してバイポーラトランジスタのエミッタ電極から、L
Dに向けて垂直に電流を流すとともに、ベース電極によ
ってLDの駆動電流を制御する構造を提供するものであ
る。
Structure of the Invention The present invention provides a bipolar transistor that is arranged directly above the LD, and the L
This provides a structure in which a current is allowed to flow vertically toward D, and the drive current of the LD is controlled by the base electrode.

実施例の説明 第3図に本発明の第1実施例によるプレーナ構造の化合
物半導体素子の断面構造を示す0第4図はその等価回路
を示す。第3図において、31は単結晶n型InP基板
、32はInGaAsPの4元層、33はp型InP層
、34はn型InP層、35はp型のInP層、36.
37.38は各々抵抗性電極を形成する金属を示す0 以下に第3図の構造の製造方法を示すOn型InP基板
31上にInGaAsPの4元層32をエピタキシャル
成長させる。その後、4元層32上にpクラッド層と呼
ばれるp型InP層33をエピタキシャル成長し、更に
pクラッド層33上にn型工nP層34をエピタキシャ
ル成長させるoしかる後、n型1nP層34にZn  
もしくはCd等のし 不縫物を選択的に拡散ないし注入してp型InP層35
を形成する。このとき、p型InP層36及びInP層
33で狭捷れたn型InP層34は、ベース層となり、
この幅はベース幅となる。またn型InP基板31とp
型InP層33とに狭まれた4元層32は、ダブル異種
接合を形成し、直上にあるp型InP層35のエミッタ
からの電流によってキャリアをとじ込めレーザー発光を
起す。第3図ではLDとしてのpクララド層33を、バ
イポーラトランジスタのコレクタ層33として兼用して
いる。36.37.38は抵抗性電極である。
DESCRIPTION OF EMBODIMENTS FIG. 3 shows a cross-sectional structure of a planar compound semiconductor device according to a first embodiment of the present invention, and FIG. 4 shows its equivalent circuit. In FIG. 3, 31 is a single crystal n-type InP substrate, 32 is an InGaAsP quaternary layer, 33 is a p-type InP layer, 34 is an n-type InP layer, 35 is a p-type InP layer, 36.
37 and 38 respectively indicate metals forming the resistive electrodes.A quaternary layer 32 of InGaAsP is epitaxially grown on an On-type InP substrate 31, in which a method for manufacturing the structure shown in FIG. 3 will be described below. After that, a p-type InP layer 33 called a p-cladding layer is epitaxially grown on the quaternary layer 32, and an n-type InP layer 34 is epitaxially grown on the p-cladding layer 33.
Alternatively, the p-type InP layer 35 may be formed by selectively diffusing or injecting a non-woven material such as Cd.
form. At this time, the n-type InP layer 34 narrowed by the p-type InP layer 36 and the InP layer 33 becomes a base layer,
This width becomes the base width. In addition, the n-type InP substrate 31 and the p
The quaternary layer 32 sandwiched between the type InP layer 33 forms a double heterojunction, and current from the emitter of the p-type InP layer 35 directly above traps carriers and causes laser emission. In FIG. 3, the p-Clarad layer 33 as an LD is also used as the collector layer 33 of a bipolar transistor. 36, 37, 38 are resistive electrodes.

n型InP層に対してAu−8n電極を用い、p型In
P層に対してAu−Zn電極を用いればよい。
An Au-8n electrode is used for the n-type InP layer, and the p-type InP layer is
An Au-Zn electrode may be used for the P layer.

第5図は本発明による第2実施例を示す。51はn型I
nP基板、52はInGaAsPの4元層、53はp型
InP層(92271層かつコレクタ層)、64はn型
InP層(ベース層)、65はベース層64上に形成さ
れたp型のInGaAsPの4元素(エミツタ層)、5
6.57.58は各々抵抗性電極を形成する金属を示す
。ベース層54のn型InP層のエピタキシャル成長ま
では、本発明による第1実施例と同じである。第2実施
例の第1実施例と異なる点は、エミツタ層55の構成で
ある。
FIG. 5 shows a second embodiment according to the invention. 51 is n-type I
nP substrate, 52 is a quaternary layer of InGaAsP, 53 is a p-type InP layer (92271 layer and collector layer), 64 is an n-type InP layer (base layer), 65 is a p-type InGaAsP formed on the base layer 64 4 elements (emitter layer), 5
6, 57, and 58 each indicate the metal forming the resistive electrode. The steps up to the epitaxial growth of the n-type InP layer of the base layer 54 are the same as in the first embodiment of the present invention. The difference between the second embodiment and the first embodiment is the configuration of the emitter layer 55.

第1実施例では、ベース層であるn型InP層54へZ
nあるいはCd等の不純物を拡散もしくは注入によって
PN接合を形成したのに対し、第2実施例ではベース層
64との異種接合成長層とした点にある。第6図のごと
く異種接合によって、バンドギャップの大きい方をエミ
ツタ層として用いれば、バンド・ギャップ差によってベ
ース領域へキャリアの注入が起る。この第6図の構造は
、PN接合に於て、エミツタ層とベース層との濃度差を
大きくできない場合に、注入効率を上げる点で特に有効
である。
In the first embodiment, Z
Whereas the PN junction was formed by diffusing or implanting impurities such as n or Cd, the second embodiment has a different type of junction growth layer with the base layer 64. If a heterojunction is used as shown in FIG. 6, and the one with a larger band gap is used as an emitter layer, carriers will be injected into the base region due to the difference in band gap. The structure shown in FIG. 6 is particularly effective in increasing the injection efficiency when the concentration difference between the emitter layer and the base layer cannot be increased in a PN junction.

第6図は、本発明の第3実施例を示す。等価回路は第4
図に示すものと同じである。61はn型InGaAsP
の4元層、63はp型InP層(92271層、かつコ
レクタ層)、64はn型1nP層、65はp型のInP
層、6616了、68は各々抵抗性電極を形成する金属
を示す。69はn型の4元層、610はp型の4元層を
示す。n型InP層64のエピタキシャル成長までは、
本発明による第1実施例と同じである。n型InP層6
4を形成した後、n型の4元層69を薄く成長させる。
FIG. 6 shows a third embodiment of the invention. The equivalent circuit is the fourth
Same as shown in the figure. 61 is n-type InGaAsP
63 is a p-type InP layer (92271 layer and collector layer), 64 is an n-type 1nP layer, and 65 is a p-type InP layer.
Layers 6616 and 68 each represent metal forming resistive electrodes. 69 is an n-type quaternary layer, and 610 is a p-type quaternary layer. Until the epitaxial growth of the n-type InP layer 64,
This is the same as the first embodiment according to the present invention. n-type InP layer 6
After forming the n-type quaternary layer 69, a thin n-type quaternary layer 69 is grown.

その後、選択拡散もしくは選択注入をもちいてエミッタ
となるp型InP層66を形成し、選択工・ンチングを
もちいて4元層69,610を残す。4元層610は、
ZnあるいはCd等の不純物によってp型に反転してい
る。しかる後、Au−Zn等の金属によって66.67
の電極を形成し、n型のInp層基板基板61してはA
uSn等の金属によって電極68を形成する。
Thereafter, a p-type InP layer 66 to serve as an emitter is formed using selective diffusion or selective implantation, and quaternary layers 69 and 610 are left using selective etching. The four-layer layer 610 is
It is inverted to p-type by impurities such as Zn or Cd. After that, 66.67 by metal such as Au-Zn
An n-type Inp layer substrate 61 is formed with electrodes A
The electrode 68 is formed of metal such as uSn.

この第3の実施例において特徴的なことは、n型InP
層64上に形成した4元層69いわゆるキャップ層と呼
ばれる層を設けたことにより、エミッタ67及びベース
66の配線用金属材料を、Au−Zn等一種類で形成で
きる点にある。
The characteristic feature of this third embodiment is that n-type InP
By providing the quaternary layer 69, so-called a cap layer, formed on the layer 64, the emitter 67 and the base 66 can be made of one type of wiring metal material such as Au-Zn.

第7図は、本発明に関する第4の実施例を示す。FIG. 7 shows a fourth embodiment of the present invention.

第1及び第2の実施例においては、LDの構造をプレー
ナー構造としたのに対し、この第4の実施例では■構造
としてIthを低下させている。701はn型1nP基
板を示し、基板701の全面にZnもしくはCd等の拡
散あるいは注入によって電流狭雫のためのp型領域71
1を形成する。全面拡散の板701を選択的に、ブロム
・メタノール系あるいは塩酸・リン酸系のエツチング液
によって選択エツチングを行ないV溝を形成する。■溝
形成後、InGaAsP  の4元層702を成長させ
る。
In the first and second embodiments, the structure of the LD is a planar structure, whereas in the fourth embodiment, the structure is changed to a {circle around (2)} structure to reduce Ith. Reference numeral 701 indicates an n-type 1nP substrate, and a p-type region 71 for current narrowing is formed by diffusing or implanting Zn or Cd on the entire surface of the substrate 701.
form 1. The entire surface diffusion plate 701 is selectively etched using a bromine/methanol based or hydrochloric acid/phosphoric acid based etching solution to form a V-groove. (2) After forming the trench, grow a quaternary layer 702 of InGaAsP.

■溝内の成長は、面方位の1列係から成長速度が速く、
三ケ月形の形状となり、p型領域711の存在のためそ
の直上に設けたトランジスタからの電流集中を可能にす
る。4元層702を形成した後、p型InP層(922
71層かつコレクタ層)、703、更にn型InP層(
ベース層) 了04 、そして4元層(キャップ層)7
o9を順に形成する。
■The growth rate in the groove is fast from the first row of plane orientation.
It has a crescent shape, and the presence of the p-type region 711 allows current concentration from the transistor provided directly above it. After forming the quaternary layer 702, a p-type InP layer (922
71 layer and collector layer), 703, and further n-type InP layer (
base layer) 04, and quaternary layer (cap layer) 7
Form o9 in order.

前記V溝の直上にエミツタ層7’05が配置さnるよう
に、Zn  もしくはCd等の不純物を選択的に拡散な
いし注入してp型Inp層(エミツタ層)705を形成
する。しかる鏝に、エミッタ電極部、ベース電極部に対
応する4元層709,710を残存させるように硝酸系
もしくは硫酸化過酸化水素糸のエツチング液で選択エツ
チングする。しかる後、CV D (Chemical
 Vaper Deposition )法等を用いて
絶縁被膜712を形成し、エミッタ及びベース電極部の
コンタクト窓に対応する絶縁被膜712を選択的に除去
した後、Au−Zn  等の金属膜を蒸着等によって形
成し、選択的に配線ノゞターンを残存するようにエツチ
ングする。LDを介したコレクタ電極は、n型InP基
板701上に、Au−8n等の金属膜を蒸着等によって
形成する。完成したウェノ・−は、へき開によってミラ
ー面を形成しチップ化する。ICチップは、Au−8n
半田等によって電極708面をパッケージ等にダイ・ボ
ンドして、電極706.707は、ワイヤ・ボンドによ
ってI C+7−ドに組立てる。この第4実施例での特
徴は、■溝構造と電流狭窄層となる拡散層711による
横方向電流阻止によってLDのIthを低下させ、よっ
てバイポーラトランジスタの電流容量を低下せしめた点
にある。
A p-type Inp layer (emitter layer) 705 is formed by selectively diffusing or implanting impurities such as Zn or Cd so that the emitter layer 7'05 is placed directly above the V-groove. Selective etching is performed using a trowel using a nitric acid-based or sulfated hydrogen peroxide etching solution so that the quaternary layers 709 and 710 corresponding to the emitter electrode portion and the base electrode portion remain. After that, CV D (Chemical
After forming an insulating film 712 using a vapor deposition method or the like, and selectively removing the insulating film 712 corresponding to the contact windows of the emitter and base electrode parts, a metal film such as Au-Zn is formed by vapor deposition or the like. , selectively etching the wiring pattern so that it remains. The collector electrode via the LD is formed by forming a metal film such as Au-8n on the n-type InP substrate 701 by vapor deposition or the like. The completed weno is cleaved to form a mirror surface and made into chips. The IC chip is Au-8n
The surface of the electrode 708 is die-bonded to a package or the like by soldering or the like, and the electrodes 706 and 707 are assembled to the IC+7- board by wire bonding. The feature of this fourth embodiment is that the Ith of the LD is lowered by blocking the lateral current by the groove structure and the diffusion layer 711 serving as the current confinement layer, thereby reducing the current capacity of the bipolar transistor.

第8図は本発明に関する第5の実施例を示す。FIG. 8 shows a fifth embodiment of the present invention.

第6実施例は、第4実施例においてV溝の横方向電流阻
止の効果を一段と向上さぜるだめに、p型拡散層711
と4元層702との中間に、n型1nP層(いわゆるバ
ッファ層)813を設けた点におる。これによって、横
方向はp’npn構造となり電流が阻止される。
In the sixth embodiment, in order to further improve the lateral current blocking effect of the V-groove in the fourth embodiment, the p-type diffusion layer 711 is
The point is that an n-type 1nP layer (so-called buffer layer) 813 is provided between and the quaternary layer 702. This results in a p'npn structure in the lateral direction, blocking current flow.

第9図は、本発明に関する第6の実施例を示す。FIG. 9 shows a sixth embodiment of the present invention.

■溝構造及びp型拡散層711、n型バッファ層813
による電流阻止構造のLDは、第4実施例と同じである
。第6の実施例の特徴はベース層704及びエミツタ層
706を選択的拡散ないし注入によって形成した点にあ
る。これは、Stバイポーラトランジスタの構造で良く
使われるのであるが、ベース電極706直下のn型濃度
を高くしてベース抵抗を低下させ、エミツタ層705直
下のベース濃を薄くして注入効率を上げる。このように
ベース拡散あるいはベース注入を使うことによって、ト
ランジスタ特性を向上することができる。n型拡散の不
純物としては、Te、S、St等を用いれば良い。
■Groove structure, p-type diffusion layer 711, n-type buffer layer 813
The LD having the current blocking structure is the same as in the fourth embodiment. The feature of the sixth embodiment is that the base layer 704 and emitter layer 706 are formed by selective diffusion or implantation. This is often used in the structure of St bipolar transistors, and increases the n-type concentration directly under the base electrode 706 to lower the base resistance, and reduces the base concentration directly under the emitter layer 705 to increase injection efficiency. By using base diffusion or base implantation in this manner, transistor characteristics can be improved. Te, S, St, etc. may be used as the impurity for n-type diffusion.

なお、本発明に関する実施例としてInP−InGaA
gP04元系を例に出して説明したが、GaAs −A
、/GaAsの3元系としても同様に形成できることは
、いうまでもない。また、LDの代わシにLED(発光
ダイオード)等の他の発光素子を形成してもよい。
In addition, as an example related to the present invention, InP-InGaA
The explanation was given using the gP04 element system as an example, but GaAs-A
, /GaAs can be similarly formed. Furthermore, other light emitting elements such as LEDs (light emitting diodes) may be formed in place of the LD.

発明の効果 以上の説明に述べたように、本発明は (1)LDおよびその駆動素子としてバイポーラ・トラ
ンジスタを用いる一体化IC構造によって、電力損失を
少なくしてLDを動作できる。このことは従来多々発生
した発熱によるLDの1thの増加すなわち発振効率を
下げることがない。
Effects of the Invention As described above, the present invention provides (1) an integrated IC structure that uses bipolar transistors as the LD and its driving element, thereby making it possible to operate the LD with reduced power loss; This prevents an increase in 1th of the LD due to heat generation, that is, a decrease in oscillation efficiency, which has often occurred in the past.

(2)LDおよびその駆動素子としてのバイポーラ・ト
ランジスタの一体化IC構造において、LDのクラッド
層を前記バイポーラ・トランジスタのコレクタ層とする
ことによって、LDの電流狭窄層の直上にコレクタ・ベ
ース・エミッタが構成できる縦型構造となる。これによ
って、横方向電流成分がなくなり、効率よ(LDの電流
狭搾層に電流を流せる。更に、電力損失が少なく発熱が
低い。そして、IC化而面が小さいので高密度IC化が
可能である。
(2) In an integrated IC structure of an LD and a bipolar transistor as its driving element, by using the cladding layer of the LD as the collector layer of the bipolar transistor, the collector base emitter is placed directly above the current confinement layer of the LD. It is a vertical structure that can be configured with This eliminates the lateral current component and improves efficiency (current can flow through the current confinement layer of the LD.Furthermore, there is less power loss and less heat generation.Also, since the IC surface is small, high-density ICs can be implemented. be.

以上述べた効果は、十分に価値あるものであり、良好な
光ICを実現できるものである。
The above-mentioned effects are sufficiently valuable and can realize a good optical IC.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の化合物半導体素子の断面図、第2図は第
1図に示す素子の等価回路図、第3図は本発明の第1実
施例であるLDとバイポーラトランジスタの一体化化合
物半導体素子の断面図、第4図は同素子の等価回路図、
第6図は本発明の第2実施例であるLDとバイポーラト
ランジスタの一体化化合物半導体素子の断面図、第6図
は本発明の第3実施例であるLDとバイポーラ・トラン
ジスタの一体化化合物半導体素子の断面図、第7図は本
発明の第4実施例であるLDとバイポーラ・トランジス
タの一体化化合物半導体素子の断面図、第8図は本発明
の第6実施例であるLDとバイポーラトランジスタの一
体化化合物半導体素子の断面図、第9図は本発明の第6
実施例であるLDとバイポーラトランジスタの一体化化
合物半導体素子の断面図である。 31.61.61.701・・・・・・化合物半導体基
板、32,33,34,52,53,54,702゜7
03.704,711.813・・・・・・化合物半導
体層、36’、37,56,56’、57,706,7
07・・・・・・抵抗性1は極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1基筒 
1 図 f 第 21A 第3図 第4図 1J5図 第6図
FIG. 1 is a sectional view of a conventional compound semiconductor device, FIG. 2 is an equivalent circuit diagram of the device shown in FIG. 1, and FIG. 3 is an integrated compound semiconductor of an LD and a bipolar transistor according to the first embodiment of the present invention A cross-sectional view of the element, Figure 4 is an equivalent circuit diagram of the element,
FIG. 6 is a sectional view of an integrated compound semiconductor device of an LD and a bipolar transistor, which is a second embodiment of the present invention, and FIG. 6 is a cross-sectional view of an integrated compound semiconductor device of an LD and a bipolar transistor, which is a third embodiment of the invention. 7 is a cross-sectional view of an integrated compound semiconductor device of an LD and a bipolar transistor according to a fourth embodiment of the present invention, and FIG. 8 is a cross-sectional view of an integrated compound semiconductor device of an LD and a bipolar transistor according to a sixth embodiment of the present invention. FIG. 9 is a sectional view of an integrated compound semiconductor device according to the sixth aspect of the present invention.
1 is a cross-sectional view of an integrated compound semiconductor device of an LD and a bipolar transistor, which is an example. 31.61.61.701... Compound semiconductor substrate, 32, 33, 34, 52, 53, 54, 702°7
03.704,711.813...Compound semiconductor layer, 36', 37,56,56', 57,706,7
07...Resistance 1 is extreme. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 Figure f Figure 21A Figure 3 Figure 4 Figure 1J5 Figure 6

Claims (1)

【特許請求の範囲】 (1)−導電型の化合物半導体基板上に、異種接合を形
成する第1の化合物半導体層を有し、前記化合物半導体
基板とは導電型が逆の第2の導電型の第2の化合物半導
体層を前記第1の化合物半導体層上に有し、前記第2の
化合物半導体層と導電型を逆にする第3の化合物半導体
層を有し、前記化合物半導体基板及び前記第3の化合物
半導体層上に、各々抵抗性電極を有し、前記第2の化合
物半導体層をコレクタ層とし、前記第1.第2の化合物
半導体層および化合物半導体基板にてダイオードを形成
し、前記第3の化合物半導体層をベース層とし、このベ
ース層内又はベース層上にエミツタ層を有する仁とを特
徴とする化合物半導体素子。 (勢 エミツタ層が、第3の化合物半導体層の中に選択
的に不純物を拡散することによって形成されたものであ
ることを特徴とする特許請求の範囲第1項記載の化合物
半導体素子。 (榊 エミツタ層が、第3の化合物半導体層の中に選択
的に不純物を注入することによって形成されたものであ
ることを特徴とする特許請求の範囲第1項に記載の化合
物半導体素子。 (4エミツタ層が、第3の化合物半導体層上に選択的に
形成され前記第3の化合物半導体層と異種接合になるよ
うに形成した第4の化合物半導体層よりなることを特徴
とする特許請求の範囲第1項に記載の化合物半導体素子
。 ((へ)ベース層又はエミ・ンタ層上に、化合物半導体
層を介して抵抗性電極を有することを特徴とする特許請
求の範囲第1項に記載の化合物半導体素子。 (@ 化合物半導体基板に選択的に電流狭9層を有する
ことを特徴とする特許請求の範囲第1項に記載の化合物
半導体素子。 (7)化合物半導体基板の電流狭窄層間は溝部を有する
ことを特徴とする特許請求の範囲第1項に記載の化合物
半導体素子。 (瞬 化合物半導体基板の電流狭窄層と、第1の化合物
半導体層との間に、前記電流狭窄層とは逆の導電型の化
合物半導体層を有することを特徴とする特許請求の範囲
第1項に記載の化合物半導体素子。
[Scope of Claims] (1) - A first compound semiconductor layer forming a heterojunction on a conductivity type compound semiconductor substrate, and a second conductivity type compound semiconductor layer having a conductivity type opposite to that of the compound semiconductor substrate. a second compound semiconductor layer on the first compound semiconductor layer; a third compound semiconductor layer having a conductivity type opposite to that of the second compound semiconductor layer; Each has a resistive electrode on the third compound semiconductor layer, the second compound semiconductor layer is a collector layer, and the first... A compound semiconductor characterized by forming a diode using a second compound semiconductor layer and a compound semiconductor substrate, using the third compound semiconductor layer as a base layer, and having an emitter layer in or on the base layer. element. (Sakaki) The compound semiconductor device according to claim 1, wherein the emitter layer is formed by selectively diffusing impurities into the third compound semiconductor layer. The compound semiconductor device according to claim 1, wherein the emitter layer is formed by selectively implanting impurities into the third compound semiconductor layer. Claim 1, wherein the layer comprises a fourth compound semiconductor layer selectively formed on the third compound semiconductor layer so as to form a heterojunction with the third compound semiconductor layer. The compound semiconductor device according to claim 1. ((f) The compound according to claim 1, which has a resistive electrode on the base layer or the emitter layer via the compound semiconductor layer. Semiconductor device. (@ Compound semiconductor device according to claim 1, characterized in that the compound semiconductor substrate selectively has nine current narrowing layers. (7) Grooves are formed between the current narrowing layers of the compound semiconductor substrate. The compound semiconductor device according to claim 1, characterized in that it has a current confinement layer of the compound semiconductor substrate and the first compound semiconductor layer, which is opposite to the current confinement layer. The compound semiconductor device according to claim 1, characterized by having a conductive type compound semiconductor layer.
JP57224245A 1982-12-20 1982-12-20 Compound semiconductor element Pending JPS59113678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57224245A JPS59113678A (en) 1982-12-20 1982-12-20 Compound semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57224245A JPS59113678A (en) 1982-12-20 1982-12-20 Compound semiconductor element

Publications (1)

Publication Number Publication Date
JPS59113678A true JPS59113678A (en) 1984-06-30

Family

ID=16810758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57224245A Pending JPS59113678A (en) 1982-12-20 1982-12-20 Compound semiconductor element

Country Status (1)

Country Link
JP (1) JPS59113678A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993014520A1 (en) * 1992-01-21 1993-07-22 Bandgap Technology Corporation Integration of transistors with vertical cavity surface emitting lasers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414692A (en) * 1977-07-05 1979-02-03 Fujitsu Ltd Liminous semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414692A (en) * 1977-07-05 1979-02-03 Fujitsu Ltd Liminous semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993014520A1 (en) * 1992-01-21 1993-07-22 Bandgap Technology Corporation Integration of transistors with vertical cavity surface emitting lasers
US5283447A (en) * 1992-01-21 1994-02-01 Bandgap Technology Corporation Integration of transistors with vertical cavity surface emitting lasers

Similar Documents

Publication Publication Date Title
KR940005454B1 (en) Compound semiconductor device
US4987468A (en) Lateral heterojunction bipolar transistor (LHBT) and suitability thereof as a hetero transverse junction (HTJ) laser
US4506281A (en) GaAs semiconductor device
US5164797A (en) Lateral heterojunction bipolar transistor (LHBT) and suitability thereof as a hetero transverse junction (HTJ) laser
JPS60216591A (en) Semiconductor light emitting element
JPH05218586A (en) Semiconductor laser device and manufacture of the same
US6703647B1 (en) Triple base bipolar phototransistor
JPS5948976A (en) Semiconductor laser
JPS59113678A (en) Compound semiconductor element
JPS59111384A (en) Compound semiconductor element
JPH0614574B2 (en) Semiconductor laser
JPH07254731A (en) Light emitting element
JPS59222987A (en) Compound semiconductor element and manufacture thereof
JPH01212483A (en) Semiconductor device
KR100234350B1 (en) Fabricating method of compound semiconductor device
JPH05190970A (en) Manufacturing method of semiconductor laser
KR940005728B1 (en) Compound semiconductor device and making method thereof
JPS5951585A (en) Manufacture of semiconductor device
JP3261032B2 (en) Light emitting diode array
KR960002646B1 (en) The compound semiconductor device and the manufacturing method thereof
KR940005710B1 (en) Compound semiconductor and making method thereof
JPS60211972A (en) Optical integrated circuit
JPH0548194A (en) Semiconductor laser and manufacture thereof
JPH06252351A (en) Compound semiconductor element
JPS6132585A (en) Manufacture of semiconductor light-emitting element