JPS59108948A - Gas detecting element - Google Patents

Gas detecting element

Info

Publication number
JPS59108948A
JPS59108948A JP21943282A JP21943282A JPS59108948A JP S59108948 A JPS59108948 A JP S59108948A JP 21943282 A JP21943282 A JP 21943282A JP 21943282 A JP21943282 A JP 21943282A JP S59108948 A JPS59108948 A JP S59108948A
Authority
JP
Japan
Prior art keywords
gas
added
oxide
50mol
detecting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21943282A
Other languages
Japanese (ja)
Other versions
JPS6223252B2 (en
Inventor
Yoshihiko Nakatani
吉彦 中谷
Masayuki Sakai
界 政行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21943282A priority Critical patent/JPS59108948A/en
Publication of JPS59108948A publication Critical patent/JPS59108948A/en
Publication of JPS6223252B2 publication Critical patent/JPS6223252B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To obtain a gas detecting element, which has sufficiently high sensitivity for methane gas in actual operation, by adding a specified amount of Ge or Th to MgFe2O4 including sulfuric acid ions, which are a parent material of a gas sensitive body. CONSTITUTION:Ferric sulfate [Fe2(SO4)3-xH2O] reagent is added to magnesium (MgFe2O4), and 0.005-10wt% of oxide ions are included. Germanium oxide (GeO2) and sodium oxide (ThO2) are added to the mixture so that total amount of the added material becomes 0.1-50mol%. Then this powder is compresses and molded in a rectangular parallelopiped shape. Au is evaporated on the surface of a burned sintered body. Thus a comb shaped electrode in a unitary body is formed. A platinum heating body is stuck to the back surface of the electrode with an inorganic bonding agent, and a detecting element is formed as a heater. The reason why the total amount of the added material is limited to 0.1- 50mol% is as follows: at the value less than 0.1mol%, gas responsive characteristic and reliability are not improved; and at the value exceeding 50mol%, resistance value itself becomes high and the characteristics are not stable.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は可燃性ガスの検知に使用する複合金属酸化物半
導体を用いたガス検知素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a gas detection element using a composite metal oxide semiconductor for use in detecting combustible gases.

従来例の構成とその問題点 近年、可燃性ガスの検知素子材料について種々の研究開
発が活発化してきている。これは、一般家庭を中心に各
種工場などで可燃性ガスによる爆発事故や有毒ガスによ
る中毒事故が多発し、大きな社会問題となっていること
に強く起因している。
Conventional Structures and Their Problems In recent years, various research and developments have become active regarding materials for sensing elements for flammable gases. This is strongly attributable to the fact that explosions caused by flammable gases and poisoning accidents caused by toxic gases occur frequently, mainly in households and in various factories, and these have become major social problems.

特にプロパンガスは、爆発下限界(LEL)が低く、か
つ比重が空気よりも大きく、部屋に停滞しやすいために
事故があとを断たず、毎年多数の死傷者を出している。
Propane gas, in particular, has a low explosive limit (LEL) and a higher specific gravity than air, so it tends to stagnate in rooms, resulting in numerous accidents and injuries every year.

近年になって、酸化第二錫(S no2)やガンマ型酸
化第二鉄(γ−Fe2O3)などの金属酸化物を用いた
ガス検知素子が実用化され、ガス漏れ警報器などに応用
されている。そして、ガス漏れなどの事態が発生しても
LELに至るまでの間に、プロ、+ンガスの存在をいち
早く検知し、爆発を未然に防げるようになっている。
In recent years, gas detection elements using metal oxides such as stannic oxide (S no 2) and gamma-type ferric oxide (γ-Fe2O3) have been put into practical use, and have been applied to gas leak alarms. There is. In addition, even if a situation such as a gas leak occurs, the presence of gas can be quickly detected before the LEL is reached, and an explosion can be prevented.

ところで、日本でもメタンガスを主成分とする液化天然
ガス(LNG)  が一般家庭用として゛用いられるよ
うになり、徐々に普及して来ている。したがって、この
LNGの主成分であるメタンガスを感度よく検出するガ
ス検出素子の要請も非常に大きくなってきている。
Incidentally, in Japan, liquefied natural gas (LNG), whose main component is methane gas, has come to be used for general household use and is gradually becoming popular. Therefore, there is an increasing demand for gas detection elements that can detect methane gas, which is the main component of LNG, with high sensitivity.

勿論、すでにメタンガスに感応するガス検知素子は開発
されてはいるが、その多くは感応体材料に増感剤として
貴金属触媒を用いているため、種々のガスによる触媒被
毒の問題、メタンガスに対する感度が小さい点、あるい
は特性の経時変化が大きい点などの課題を抱えている。
Of course, gas detection elements that are sensitive to methane gas have already been developed, but many of them use noble metal catalysts as sensitizers in the sensitizer material, so there are problems with catalyst poisoning by various gases and sensitivity to methane gas. However, there are issues such as a small amount of change in characteristics over time, or a large change in characteristics over time.

したがって、実用に際しては・未だ不十分な特性である
のが現状である。
Therefore, the current situation is that the properties are still insufficient for practical use.

発明の目的 本発明はこのような状況に鑑みてなされたもので、メタ
ンガスに対しても実用上十分大きな感度を持ったガス検
知素子を提供するものである。メタンカスはそれ自身非
常に安定なカスであるだけに、これに十分な感度を有す
る検知素子は非常に高活性である必要がある。したがっ
て、メタンガスに対して大きな感度を実現するためには
、従来は、貴金属触媒を感応体材料に添加して用いるが
、あるいは感株体を例えば460℃以上のがなり高い高
い温度で動作させるなどの工夫がなされてきた。これに
対し、本発明は貴金属触媒を一切添加することなく、ま
た4001:と比較的低い動作温度でも対メタン感度の
大きい素子を実現するものである。
OBJECTS OF THE INVENTION The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a gas detection element having a sensitivity sufficiently high for practical use even to methane gas. Since methane gas itself is very stable, a detection element with sufficient sensitivity needs to be extremely active. Therefore, in order to achieve high sensitivity to methane gas, conventionally, a noble metal catalyst is added to the susceptor material, or the susceptor is operated at a relatively high temperature of, for example, 460°C or higher. Efforts have been made to In contrast, the present invention realizes an element with high sensitivity to methane even at a relatively low operating temperature of 4001: without adding any noble metal catalyst.

発明の構成 本発明はマグネシウムフェライ) (Mg Fe 20
4 )をガス感応体として用いたガス検知素子において
、これに含まれる種々の陰イオンのガス感応特性に及ぼ
す影響、ならびに添加物の効果について検討している中
で見出されたものである。すなわち、ガス感応体の母材
料である硫酸イオンを含有するMg Fe 204にG
eあるいはTh を添加することによりガス感応特性と
その信頼性が飛躍的に向上し、しかも先述のメタンガス
に対しても実用上十分大きな感度を実現し得ることを見
出したことによってなされたものである。
Structure of the invention The present invention is based on magnesium ferrite) (Mg Fe 20
This was discovered while studying the effects of various anions contained in the gas detection element using 4) as a gas sensitive material, as well as the effects of additives on the gas sensitivity characteristics. That is, G
This was achieved by discovering that adding e or Th dramatically improves gas sensitivity characteristics and its reliability, and that it is also possible to achieve a sufficiently high sensitivity for practical use even to the aforementioned methane gas. .

実施例の説明 以下に本発明の詳細を実施例を用いて説明する。Description of examples The details of the present invention will be explained below using examples.

まず実施例1においては、Mg F e204に含有さ
れる硫酸イオンの量を一定にし、添加物であるGeある
いはTh の添加量ならびにそれらの組み合わせを変え
た場合について述べることにする。
First, in Example 1, a case will be described in which the amount of sulfate ions contained in Mg Fe204 is kept constant, and the amount of Ge or Th 2 added as an additive and the combination thereof are changed.

〔実施例1〕 酸化マグネシウム(McrO)を20y、酸化第二鉄(
Fe203) 2 a o yそれぞれ秤取し、これを
ステンレススチール製のポットで5時間湿式混合した。
[Example 1] 20y of magnesium oxide (McrO) and ferric oxide (
Each of Fe203) 2 a o y was weighed out and wet mixed in a stainless steel pot for 5 hours.

この混合物を乾燥、粉砕し、然る後に1000℃の温度
で2時間熱処理した。これを再度粉砕し、これに硫酸イ
オンを含有させるため添加物として、硫酸第二鉄(Fe
2(SO2)3−xH2O)試薬を25y添加し、らい
かい機で2時間混合した。これらの混合物をいくつかに
等分割し、これにそれぞれ市販の酸化ゲルマニウム(G
eO2)および酸化トリウム(The2)を単独あるい
は複数の組み合わせで添加した。そしてそれぞれの粉体
をさらにらいかい機で3時間乾式混合した。そしてこれ
らにそれぞれ有機バインダーを加えて100〜200μ
の大きさの粒子に整粒した。次にこれらの粉体を直方体
形状に加圧成型し、空気中で600℃の温度で1時間焼
成した。次にこの焼結体の表面にAuを蒸着して一体の
櫛形電極を形成し、その裏面には白金発熱体を無機接着
剤で貼りつけてヒータとし検知素子を作製した。この発
熱体に電流を通じ、その電流値を調節して素子の動作温
度を制御した。素体温度を400℃に保持して、そのガ
ス感応特性を測定した0 空気中における抵抗値(Ra )については、乾燥した
空気が乱流のできない程度にゆっくシ攪拌されている容
積504の測定容器中で測定し、ガス中での抵抗値(R
q )はこの容器の中に純度99係以上のメタン(CH
4)及び水素(H2)の各ガスを容量比率にして1op
pm/秒の割合で流入させ、その濃度が0.2容量係に
達した時にそれぞれ測定した。測定するガス濃度を0.
2係に選んだのは、ガス検知素子として実用上要望され
る検知濃度がそのガスの爆発下限界濃度(LEL)の数
10分の1から数分の1の範囲であり、上記のガスのそ
れぞれのLELが約2容量チから5容量チであるからで
ある。
This mixture was dried, ground and then heat treated at a temperature of 1000° C. for 2 hours. This was ground again, and ferric sulfate (Fe) was added as an additive to contain sulfate ions.
2(SO2)3-xH2O) reagent was added for 25y and mixed for 2 hours using a sieve machine. These mixtures were divided equally into several parts, and commercially available germanium oxide (G) was added to each part.
eO2) and thorium oxide (The2) were added singly or in combination. Then, each powder was further dry-mixed for 3 hours using a miller. Then, add an organic binder to each of these and add 100 to 200μ
The particles were sized to . Next, these powders were pressure-molded into a rectangular parallelepiped shape and fired in air at a temperature of 600° C. for 1 hour. Next, Au was vapor-deposited on the surface of this sintered body to form an integrated comb-shaped electrode, and a platinum heating element was attached to the back surface with an inorganic adhesive to serve as a heater and to produce a sensing element. A current was passed through this heating element, and the current value was adjusted to control the operating temperature of the element. The temperature of the element body was maintained at 400°C and its gas sensitivity characteristics were measured.The resistance value (Ra) in the air was measured in a volume 504 where dry air was stirred slowly to the extent that no turbulence occurred. The resistance value (R
q) contains methane (CH) with a purity of 99 or higher in this container.
4) and hydrogen (H2) gas at a volume ratio of 1op
It was flowed in at a rate of pm/sec, and each measurement was made when the concentration reached 0.2 volume. The gas concentration to be measured is set to 0.
The 2nd section was selected because the detection concentration practically required for a gas detection element is in the range of several tenths to several tenths of the lower explosive limit concentration (LEL) of the gas. This is because each LEL is approximately 2 to 5 volumes.

またガス感応体に含まれる硫酸イオン(SO4)の存在
は赤外線吸収スペクトルで確認し、含有されている量は
TG −D T A曲線及び螢光X線分析から同定した
。その結果、これらの焼結感応体に含まれている硫酸イ
オンの量は0.16〜0.19重量係であった。
Further, the presence of sulfate ions (SO4) contained in the gas sensitive material was confirmed by infrared absorption spectrum, and the amount contained was identified from the TG-DTA curve and fluorescent X-ray analysis. As a result, the amount of sulfate ions contained in these sintered sensitive bodies was 0.16 to 0.19% by weight.

第1図および第2図に、添加物をそれぞれ単独で添加し
た場合のガス感応特性の添加量依存性を示す。感応特性
は、(1)ガス感度(Ra/Rq ) 、(ii)抵抗
経時変化率ΔR(感応体を400℃の温度で2000時
間保持した場合の抵抗値の初期値に対する変化率)で評
価した。また第1表には、添加物を組み合わせて用いた
場合のやはりガス感度(Ra/R(J)と、抵抗経時変
化率(ΔR)を示す。なおΔRは表中の()内に記載し
た。
FIG. 1 and FIG. 2 show the dependence of the gas sensitivity characteristics on the amount added when each additive is added alone. The sensitivity characteristics were evaluated using (1) gas sensitivity (Ra/Rq), and (ii) resistance change rate over time ΔR (rate of change in resistance value from the initial value when the sensitive body was held at a temperature of 400°C for 2000 hours). . Table 1 also shows the gas sensitivity (Ra/R (J)) and resistance change rate over time (ΔR) when additives are used in combination. ΔR is indicated in parentheses in the table. .

第1図、第2図、および第1表から明らかなように、G
e あるいはTh を単独ないしは組み合わせて添加す
ることによシ、ガス感応特性(ガス感f!j : Ra
/Rg )が大きく向上している。また注目すべきは抵
抗値の経時変化であり、これらの添加物を加えることに
よりその変化が大巾に減少している。このようにGe 
 あるいはTh の添加によりガス感応特性と信頼性の
飛躍的な向上が実現できることがわかる。
As is clear from Figures 1, 2, and Table 1, G
By adding e or Th singly or in combination, gas sensitivity characteristics (gas sensitivity f!j: Ra
/Rg) has been greatly improved. Also noteworthy is the change in resistance value over time, and the addition of these additives significantly reduces this change. In this way Ge
Alternatively, it can be seen that the addition of Th 2 can dramatically improve gas sensitivity characteristics and reliability.

本発明において添加物総量i0.1〜50モル係に限定
したのは、0.1モル係未満では上記の第1図、第2図
および第1表に見られるように、ガス感応特性ならびに
信頼性を向上せしめる効果が見られず、逆に60モルチ
ヲ超えると抵抗値自身が高くなり、また特性の安定性に
欠けるからである。
In the present invention, the total amount of additives i is limited to 0.1 to 50 mol. If the total amount of additives is less than 0.1 mol, as shown in FIGS. This is because no effect of improving the resistance is observed, and on the contrary, if it exceeds 60 moltiwos, the resistance value itself becomes high and the stability of the characteristics is lacking.

表中で朱印を付したものがこれらに該当するものであり
、第1表の中では比較例として記載しておいた0 (以下余白) 第  1  表 ところで、一般的に感応体はある程度非晶質の状態の金
属酸化物の方が、結晶化されているものより可燃性ガス
に対する吸着現象などの物理化学現象が活性になり易い
と云われている。しかし、はぼ完全に近く結晶化されて
いる市販試薬を用いて作成したlvigF e204で
も、硫酸イオンを含有せしめ、さらにGoあるいはTh
を添加することにより極めて高い活性度を示し、しかも
これが経時的に安定なため、結果的に非常に大きなガス
感度と高い信頼性を実現し得ることがわかる。
Those marked with a red seal in the table correspond to these, and in Table 1, they are listed as comparative examples. It is said that physicochemical phenomena such as adsorption phenomena for flammable gases are more likely to become active in metal oxides in a pure state than in crystallized ones. However, lvigF e204, which was prepared using a commercially available reagent that is almost completely crystallized, contains sulfate ions and further contains Go or Th.
It can be seen that by adding , extremely high activity is exhibited, and since this is stable over time, it is possible to realize extremely high gas sensitivity and high reliability as a result.

この実施例1では、感応体が焼結体の場合であり、含有
される硫酸イオン量が一定で、そして添加物の量9組み
合わせが異る場合について述べた。
In Example 1, the sensitive body is a sintered body, the amount of sulfate ions contained is constant, and nine combinations of amounts of additives are varied.

次に示す実施例2では感応体が焼結膜の場合で、実施例
1とは逆に添加物の種類と量を一定にして含有される硫
酸イオンの量を変えた場合について述べる。すなわち実
施例2では、本発明が感応体全焼結膜とした場合でも有
効であることを確認し、また含有される硫酸イオン量が
ガス感応特性に対してどのような効果を持つかについて
述べる。
In Example 2 shown below, the sensitive body is a sintered film, and contrary to Example 1, the type and amount of additives are kept constant and the amount of sulfate ions contained is varied. That is, in Example 2, it is confirmed that the present invention is effective even when the sensitive body is entirely sintered, and the effect of the amount of sulfate ions contained on the gas sensitivity characteristics will be described.

〔実施例2〕 実施例1と同様の方法で作成されたMgFe2O410
0yにやはり市販の酸化ゲルマニウム(GeO2)およ
び酸化トリウム(The2)試薬を第2表に示す様な割
合になる様に秤取し、それぞれをもいかい機にて2時間
混合した。次にそれぞれの混合粉体を8等分割し、これ
に予め種々の濃度に調製された硫酸第二鉄(Fe2(S
04)3−xH2O)溶液を加え、しかる後にそれだれ
の粉体をやはりらいかい機で1時間混合した。このよう
にして代表例としての酸化物組成の種類が3種類(試料
A−C)、硫酸イオン量の異るものがそれぞれの酸化物
組成に対して8種類、計24種類の試料が得られた。
[Example 2] MgFe2O410 created by the same method as Example 1
0y, commercially available germanium oxide (GeO2) and thorium oxide (The2) reagents were weighed out in the proportions shown in Table 2, and each was mixed for 2 hours using a mokai machine. Next, each mixed powder was divided into eight equal parts, and ferric sulfate (Fe2 (S
04) 3-xH2O) solution was added and then each powder was mixed for 1 hour, also in a miller. In this way, a total of 24 types of samples were obtained, including 3 types of representative oxide compositions (samples A-C) and 8 types of samples with different amounts of sulfate ions for each oxide composition. Ta.

第2表 このようにして得られたいくつかの混合粉体を空気中で
4oo℃の温度で2時間熱処理した。さらにこの粉体を
50〜1oOμに整粒し、トリエタノールアミンを加え
てペースト化した。一方、ガス検知素子の基板として縦
、横それぞれ6rrrrn、厚み0.5mmのアルミナ
基板を用意し、この表面に0.5叫の間隔に櫛形に金ペ
ーストヲ印刷し、焼きつけて一対の櫛形電極を形成した
。そして、アルミナ基板の裏面には金電極の間に市販の
酸化ルテニウムのグレーズ抵抗体を印刷し、焼きつけて
ヒータとした。
Table 2 Several of the mixed powders thus obtained were heat treated in air at a temperature of 40° C. for 2 hours. Further, this powder was sized to a size of 50 to 100μ, and triethanolamine was added to form a paste. On the other hand, as a substrate for the gas detection element, an alumina substrate with a length of 6 mm and a thickness of 0.5 mm was prepared, and gold paste was printed on the surface in a comb shape at intervals of 0.5 mm and baked to form a pair of comb-shaped electrodes. did. A commercially available ruthenium oxide glaze resistor was printed on the back side of the alumina substrate between the gold electrodes and baked to form a heater.

次に、上述のペース)f基板の表面に約65μの厚みに
印刷し、室温で自然乾燥させた後、400℃の温度にな
るまで徐々に加熱し、この温度で1時間保持した。この
段階でペーストが蒸発し硫酸イオンを含有するそれぞれ
の複合酸化物組成の焼結膜になった。このガス感応体の
厚みは約66μであった。このようにしてガス検知素子
を得た。
Next, it was printed to a thickness of about 65 μm on the surface of the above-mentioned PACE) f substrate, air-dried at room temperature, and then gradually heated to a temperature of 400° C. and held at this temperature for 1 hour. At this stage, the paste evaporated and became a sintered film of each composite oxide composition containing sulfate ions. The thickness of this gas sensitive member was approximately 66μ. A gas sensing element was thus obtained.

またガス感応膜に含まれる硫酸イオン量の同定は、上記
の各ペーストの一部を、アルミナ基板に印刷するのでは
なく、ペーストのまま上述と同じ様に400℃の温度で
徐加熱し、これをTG−DTAならびに螢光線分析にか
けて行なった。また硫酸イオンの存在の確認は実施例1
と同じく赤外線吸収スペクトルを分析することにより行
なった。
In addition, to identify the amount of sulfate ions contained in the gas-sensitive membrane, rather than printing a portion of each of the above pastes on an alumina substrate, the paste itself was slowly heated to 400°C in the same manner as described above. were subjected to TG-DTA and fluorescence analysis. In addition, the presence of sulfate ions was confirmed in Example 1.
This was done by analyzing the infrared absorption spectrum in the same way as in .

それぞれの検知素子のカス感応特性を実施袖1の場合と
同様の方法で測定した。第3〜第5図に酸化物組成の異
る試料A〜Cのカス感度(Ra/Rq)と含有される硫
酸イオンとの関係をそれぞれ示す0また第3表には、経
時特性の代表例として、試料A−Cにおいて硫酸イオン
が2〜5重量係含有されているものについて実施例1と
同じ方法で評価した時の抵抗値の経時変化率を示す。な
お実施例2においては、被検ガスとしてはメタンとプロ
パンを用いた。
The scum sensitivity characteristics of each sensing element were measured in the same manner as in the case of Example 1. Figures 3 to 5 show the relationship between the sulfuric acid ions and the sulfuric acid ions contained in samples A to C with different oxide compositions. The following shows the rate of change in resistance value over time when samples A to C containing 2 to 5 weight percent of sulfate ions were evaluated in the same manner as in Example 1. In Example 2, methane and propane were used as the test gases.

第3図〜第5図から明らかなように、感応体が焼結膜で
あっても、実施例1で得ら扛たのとほぼ同じ特性が得ら
れている。また第3表からも明らかなように、抵抗値の
経時変化率も実施例1と同様非常に小さい。
As is clear from FIGS. 3 to 5, almost the same characteristics as those obtained in Example 1 are obtained even when the sensitive body is a sintered film. Furthermore, as is clear from Table 3, the rate of change in resistance value over time is also very small, as in Example 1.

また第3図〜第6図を見ればわかるように、硫酸イオン
の量が0.005重量%未満ではGeあるいはThの添
加効果がなく本発明の効果が期待できない。
Further, as can be seen from FIGS. 3 to 6, if the amount of sulfate ions is less than 0.005% by weight, there is no effect of adding Ge or Th, and the effects of the present invention cannot be expected.

また逆に10.0重量%を超えると特性の安定性、ある
いは機械的強度の面で実用性に欠けるようになる。本発
明のガス検知素子に含有される硫酸イオンの量’izo
、005〜10.0重量%に限定したのは上述した点に
依る。
On the other hand, if it exceeds 10.0% by weight, it becomes impractical in terms of stability of properties or mechanical strength. The amount of sulfate ions contained in the gas detection element of the present invention
, 005 to 10.0% by weight based on the above-mentioned points.

第3表 ところで、実施例1および2では出発原料として市販の
酸化物試薬を用いたものについて述べたが、本発明は最
終的に感応体の組成が前述した範囲内ものであればよく
、何ら出発原料や製造工法を限定するものではない。
Table 3 By the way, in Examples 1 and 2, commercially available oxide reagents were used as starting materials, but in the present invention, the final composition of the reactor may be within the above-mentioned range, and any It does not limit the starting materials or manufacturing method.

また実施例においては被検ガスとしてメタンと、水素あ
るいはプロパンを用いたが本発明の効果がこれらのガス
に決して限定されるものでなく、エタン、イソブタン、
アルコールといった可燃性ガスに対しても有効であるこ
とは勿論である。
Furthermore, in the examples, methane, hydrogen, or propane were used as the test gases, but the effects of the present invention are by no means limited to these gases; ethane, isobutane,
Of course, it is also effective against flammable gases such as alcohol.

発明の詳細 な説明したように、本発明のガス検知素子は、硫酸イオ
ンを含有するMg F e 204  に添加物として
GeあるいはThを添加した焼結体あるいは焼結膜を感
応体として用いたものであり、これにより、特にメタン
ガス感度が飛躍的に向上し、これまで貴金属触媒を用い
ずには微量検知が難かしいとされてきたメタンガスに対
して400℃という比較的低い温度でも非常に大きい感
度を実現し得るものである。これは都市ガスの天然ガス
(主成分:メタンガス)化に伴って要求が太きくなりつ
つある社会ニーズに的確に対応するものであり、その効
果は極めて犬なるものがある。また、本発明のいまひと
つの効果は寿命特性、特に通電による抵抗匝の経時変化
の大幅な軽減である。これは換言すれば、あらゆる検知
素子の最も重要な要素である素子の信頼性の向上に極め
て大きな寄与をもたらすものである。
As described in detail, the gas sensing element of the present invention uses a sintered body or a sintered film obtained by adding Ge or Th as an additive to Mg Fe 204 containing sulfate ions as a sensitive body. As a result, the sensitivity of methane gas in particular has been dramatically improved, and even at a relatively low temperature of 400 degrees Celsius, it has achieved extremely high sensitivity for methane gas, which had previously been considered difficult to detect in trace amounts without using a precious metal catalyst. This is something that can be achieved. This precisely responds to social needs, which are becoming increasingly demanding as city gas is replaced with natural gas (main component: methane gas), and its effects are extremely impressive. Another effect of the present invention is a significant reduction in the life characteristics, especially the change over time of the resistor due to energization. In other words, this makes an extremely large contribution to improving the reliability of the element, which is the most important element of any sensing element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の一実施例における添加物
量と、メタンおよび水素に対する感度(Ra /Rg 
)ならびに抵抗経時変化率(ΔR)との関係を示した特
性図、第3図〜第6図は本発明の他の実施例における硫
酸イオン含有量と、メタンおよびプロパンに対する感度
(Ra/Rcr )との関係を、3つの代表的な酸化物
組成について示した特性図である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第3
図 イ竪宥不LMイオン量 C重量えジ 第4図 令宥雀九酸イオン量(V量λ)
Figures 1 and 2 show the amount of additives and the sensitivity to methane and hydrogen (Ra /Rg
) and resistance change rate over time (ΔR). Figures 3 to 6 show the relationship between sulfate ion content and sensitivity to methane and propane (Ra/Rcr) in other examples of the present invention. FIG. 3 is a characteristic diagram showing the relationship between three typical oxide compositions. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 3
Figure A: Amount of LM ions C weight: Figure 4: Amount of Nanaate ions (V amount λ)

Claims (2)

【特許請求の範囲】[Claims] (1)硫酸イオンがo、oos〜10重量係含有された
マグネシウムフェライト(MgFe2O4)に、添加物
としてゲルマニウム(Ge ) 、およびトリウム(T
h)のうち少なくともひとつが、それぞれGeO2、お
よびTh02に換算して添加物総量で0.1〜50モル
チ含むものをガス感応体として用いることを特徴とする
ガス検知素子。
(1) Magnesium ferrite (MgFe2O4) containing o, oos to 10 sulfate ions by weight, germanium (Ge) and thorium (T
A gas sensing element characterized in that at least one of h) contains 0.1 to 50 mole of additives in total in terms of GeO2 and Th02, respectively, as a gas sensitive material.
(2)  ガス感応体が加圧成型し、焼成して得られる
焼結体、寸たけペーストを印刷して焼成して得られる焼
結膜であることを特徴とする特許請求の範囲第(1)項
記載のガス検知素子。
(2) Claim (1) characterized in that the gas sensitive body is a sintered body obtained by pressure molding and firing, or a sintered film obtained by printing and firing a thin paste. Gas detection element described in section.
JP21943282A 1982-12-14 1982-12-14 Gas detecting element Granted JPS59108948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21943282A JPS59108948A (en) 1982-12-14 1982-12-14 Gas detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21943282A JPS59108948A (en) 1982-12-14 1982-12-14 Gas detecting element

Publications (2)

Publication Number Publication Date
JPS59108948A true JPS59108948A (en) 1984-06-23
JPS6223252B2 JPS6223252B2 (en) 1987-05-22

Family

ID=16735303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21943282A Granted JPS59108948A (en) 1982-12-14 1982-12-14 Gas detecting element

Country Status (1)

Country Link
JP (1) JPS59108948A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05285191A (en) * 1992-04-15 1993-11-02 Senefua Kk Moxa cauterizer
JP2020041833A (en) * 2018-09-07 2020-03-19 フィガロ技研株式会社 Gas detection device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5352200A (en) * 1976-10-22 1978-05-12 Hitachi Ltd Manufacture of gas sensor material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5352200A (en) * 1976-10-22 1978-05-12 Hitachi Ltd Manufacture of gas sensor material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05285191A (en) * 1992-04-15 1993-11-02 Senefua Kk Moxa cauterizer
JP2020041833A (en) * 2018-09-07 2020-03-19 フィガロ技研株式会社 Gas detection device

Also Published As

Publication number Publication date
JPS6223252B2 (en) 1987-05-22

Similar Documents

Publication Publication Date Title
JPS5853862B2 (en) Flammable gas detection element
JPS59108948A (en) Gas detecting element
JPS5994050A (en) Gas detection element
JPS623375B2 (en)
JPS6160381B2 (en)
JPS59107252A (en) Gas detecting element
JPS6222414B2 (en)
JPS6160386B2 (en)
JPS58201054A (en) Gas detecting element
JPS58200152A (en) Gas detection element
JPS6222417B2 (en)
JPS59107250A (en) Gas detecting element
JPS6160385B2 (en)
JPS6160383B2 (en)
JPS5992339A (en) Gas detecting element
JPS59107251A (en) Gas detecting element
JPS6155068B2 (en)
JPS58200150A (en) Gas detection element
JPS58201053A (en) Gas detecting element
JPS6160384B2 (en)
JPS6222416B2 (en)
JPS6160379B2 (en)
JPS6222415B2 (en)
JPS6160377B2 (en)
JPH027025B2 (en)