JPS59107251A - Gas detecting element - Google Patents

Gas detecting element

Info

Publication number
JPS59107251A
JPS59107251A JP21721682A JP21721682A JPS59107251A JP S59107251 A JPS59107251 A JP S59107251A JP 21721682 A JP21721682 A JP 21721682A JP 21721682 A JP21721682 A JP 21721682A JP S59107251 A JPS59107251 A JP S59107251A
Authority
JP
Japan
Prior art keywords
gas
added
sensitivity
sulfate ions
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21721682A
Other languages
Japanese (ja)
Other versions
JPS6222419B2 (en
Inventor
Yoshihiko Nakatani
吉彦 中谷
Masayuki Sakai
界 政行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21721682A priority Critical patent/JPS59107251A/en
Publication of JPS59107251A publication Critical patent/JPS59107251A/en
Publication of JPS6222419B2 publication Critical patent/JPS6222419B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To improve gaseous methane sensitivity by using a sintered body or sintered film formed by adding Ge or Th as an additive to ZnFe2O4 contg. sulfate ion as a sensitive body. CONSTITUTION:ZnO and Fe2O3 are wet mixed and is subjected to drying, grinding and heat treatment. The mixture is again ground and Fe2(SO4)3-XH2O is added as an additive for incorporating sulfate ion to the powder and both are mixed. GeO2 or ThO2 is added to the mixture thereof and is dry mixed. An org. binder is added to the mixture and is then granulated. The powder is press molded to a prism shape and is calcined in air. Au is deposited by evaporation on the surface of the sintered body, whereby a pair of comb-shaped electrodes are formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は可燃性ガスの検知に使用する複合金属酸化物半
導体を用いたガス検知素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a gas detection element using a composite metal oxide semiconductor for use in detecting combustible gases.

従来例の構成とその問題点 近年、可燃性ガスの検知素子材料につbて種々の研究開
発が活発化してきている。これは、一般家庭を中心に各
種工場などで可燃性ガスによる爆発事故や有害ガスによ
る中毒事故が多発し、大きな社会問題となっていること
に強く起因している。
Conventional Structures and Their Problems In recent years, various research and developments have become active regarding materials for detecting flammable gases. This is strongly attributable to the fact that explosion accidents caused by flammable gases and poisoning accidents caused by harmful gases occur frequently, mainly in households and in various factories, and have become a major social problem.

特にプロパンガスは、爆発下限界(LEL)が低く、か
つ比重が空気よシも大きく、部屋に停滞しやすいために
事故があとを断たず、毎年多数の死傷者を出してbる。
Propane gas, in particular, has a low explosive limit (LEL) and a higher specific gravity than air, so it easily stagnates in rooms, resulting in numerous accidents and injuries every year.

近年になって、酸化第二錫(S no 2 )やガンマ
型酸化第二鉄(γ−Fe2O3)などの金属酸化物を用
いたガス検知素子が実用化され、ガス漏れ警報器などに
応用されている。そして、ガス漏れなどの事態が発生し
てもLELに至るまでの間に、プロパンガスの存在をい
ち早く検知し、爆発を未然に防げるようになっている。
In recent years, gas detection elements using metal oxides such as stannic oxide (S no 2 ) and gamma-type ferric oxide (γ-Fe2O3) have been put into practical use, and are being applied to gas leak alarms. ing. Even if a situation such as a gas leak occurs, the presence of propane gas can be quickly detected before reaching the LEL, making it possible to prevent an explosion.

ところで、日本でもメタンガスを主成分とする液化天然
ガス(LNG)が一般家庭用として用いられるようにな
シ、徐々に普及して来ている。したがって、このLNG
の主成分であるメタンガスを感度よく検出するガス検知
素子の要請も非常に大きくなってきている。
Incidentally, in Japan, liquefied natural gas (LNG) whose main component is methane gas is gradually becoming popular for general household use. Therefore, this LNG
The demand for gas detection elements that can detect methane gas, the main component of which is highly sensitive, is also increasing.

勿論、すでにメタンガスに感応するガス検知素子は開発
されてはいるが、その多くは感応体材料に増感剤として
貴金属触媒を用いているため、種々のガスによる触媒被
毒の問題、メタンガスに対する感度が小さい点、あるい
は特性の経時変化が大きい点などの課題を抱えている。
Of course, gas detection elements that are sensitive to methane gas have already been developed, but many of them use noble metal catalysts as sensitizers in the sensitizer material, so there are problems with catalyst poisoning by various gases and sensitivity to methane gas. However, there are issues such as a small amount of change in characteristics over time, or a large change in characteristics over time.

したがって、実用に際しては未だ不十分な特性であるの
が現状である。
Therefore, the current situation is that the properties are still insufficient for practical use.

発明の目的 本発明はこのような状況に鑑みてなされたもので、メタ
ンガスに対しても実用上十分大きな感度を持ったガス検
知素子を提供するものである。メタンガスはそれ自身非
常に安定なガスであるだけに、これに十分な感度を有す
る検知素子は非常に高活性である必要がある。したがっ
て、メタンガスに対して大きな感度を実現するために1
、従来は、貴金属触媒を感応体材料に添加して用いるか
、あるいは感応体を例えば460℃以上のかなシ高い温
度で動作させるなどの工夫がなされてきた0これに対し
、本発明は貴金属触媒を一切添加することなく、また4
0o℃と比較的低い動作温度でも対メ“タン感度の大き
い素子を実現するものである0発明の構成 本発明は亜鉛フェライト(Z n F e 204)を
ガス感応体として用いたガス検知素子において、これに
含まれる種々の陰イオンのガス感応特性に及?Yす影響
、ならびに添加物の効果について検討している中で見出
されたものである。すなわち、ガス感応体の母材料であ
る硫酸イオンを含有するZnFe2O4にGoあるいは
Thを添加することによりガス感応特性とその信頼性が
飛躍的に向上し、しかも先述のメタンガスに対しても実
用上十分大きな感度を実現し得ることを見出したことに
よってなされたものである。
OBJECTS OF THE INVENTION The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a gas detection element having a sensitivity sufficiently high for practical use even to methane gas. Since methane gas itself is a very stable gas, a detection element that has sufficient sensitivity for methane gas needs to be extremely active. Therefore, to achieve greater sensitivity to methane gas, 1
Conventionally, efforts have been made to use a noble metal catalyst by adding it to the sensitive material, or to operate the sensitive body at a temperature much higher than, for example, 460°C.In contrast, the present invention uses a noble metal catalyst. 4 without adding any
Structure of the Invention The present invention realizes an element with high sensitivity to methane even at a relatively low operating temperature of 0°C. This was discovered while studying the effects of various anions contained in this material on the gas-sensitive characteristics, as well as the effects of additives.In other words, the base material of the gas-sensitive material, We have discovered that by adding Go or Th to ZnFe2O4 containing sulfate ions, the gas sensitivity characteristics and its reliability are dramatically improved, and it is also possible to achieve a sensitivity that is sufficiently high for practical use even to the aforementioned methane gas. This was done by

実施例の説明 以下に本発明の詳細を実施例を用いて説明する。Description of examples The details of the present invention will be explained below using examples.

まず実施例1においては、Z n F e 204に含
有される硫酸イオンの量を一定にし、添加物であるG。
First, in Example 1, the amount of sulfate ions contained in Z n Fe 204 was kept constant, and the amount of G as an additive was kept constant.

あるいはThの添加量ならびにそれらの組み合わせを変
えた場合について述べることにする。
Alternatively, a case will be described in which the amount of Th added and the combination thereof are changed.

〔実施例1〕 酸化亜鉛(ZnO)の市販試薬を41y1酸化第二鉄(
Fe203)の市販試薬を80yそれぞれ秤取し、これ
をステンレススチール製のポットで5時間湿式混合した
。この混合物を乾燥、粉砕し、然る後に1300℃の温
度で2時間熱処理した。これを再度粉砕し、これに硫酸
イオンを含有させるため添加物として、硫酸第二鉄( Fe2(S04)3−xH2O)試薬を35F添加し、
らいかい機で2時間混合した。これらの混合物をいくつ
かに等分割し、これにそれぞれ市販の酸化ゲルマニウム
((jeo2)および酸化トリウム(Th2)試薬を単
独あるいは複数の組み合わせで添加した。
[Example 1] A commercially available reagent of zinc oxide (ZnO) was converted into 41y1 ferric oxide (
80y of commercially available reagents of Fe203) were each weighed out and wet-mixed in a stainless steel pot for 5 hours. This mixture was dried, ground and then heat treated at a temperature of 1300° C. for 2 hours. This was ground again, and ferric sulfate (Fe2(S04)3-xH2O) reagent was added at 35F as an additive to contain sulfate ions.
The mixture was mixed for 2 hours in a rice cooker. These mixtures were equally divided into several parts, and commercially available germanium oxide ((jeo2) and thorium oxide (Th2) reagents were respectively added thereto either singly or in combination.

そしてそれぞれの粉体をさらにらいかい機で3時間乾式
混合した。そしてこれらにそれぞれ有機バインダーを加
えて100〜200μの大きさの粒子に整粒した。次に
これらの粉体を直方体形状に加圧成型し、空気中で60
0℃の温度で1時間焼成した。次にこの焼結体の表面に
Auを蒸着して一対の櫛形電極を形成し、その裏面には
白金発熱体を無機接着剤で貼シつけてヒータとして検知
素子を作製した。この発熱体に電流を通じ、その電流値
を調節して素子の動作温度を制御した。素子温度を40
0ひに保持して、そのガス感応特性を測定した。
Then, each powder was further dry-mixed for 3 hours using a miller. Then, an organic binder was added to each of these, and the particles were sized into particles having a size of 100 to 200 μm. Next, these powders were pressure-molded into a rectangular parallelepiped shape and heated in air for 60 minutes.
It was baked for 1 hour at a temperature of 0°C. Next, Au was vapor-deposited on the surface of this sintered body to form a pair of comb-shaped electrodes, and a platinum heating element was adhered to the back surface with an inorganic adhesive to produce a sensing element as a heater. A current was passed through this heating element, and the current value was adjusted to control the operating temperature of the element. Set the element temperature to 40
The gas sensitivity characteristics were measured while maintaining the temperature at zero.

空気中における抵抗値()la)については、乾燥した
空気が乱流のできない程度にゆっ〈シ攪拌されている容
積50tの測定容器中で測定し、ガス中での抵抗値(R
q)はこの容器の中に純度99%以上のメタン(CH4
)及び水素(H2)の各ガスを容量比率にして10pp
m/秒の割合で流入させ、その濃度が0.2容量チに達
した時にそれぞれ測定した。測定するガス濃度を0.2
%に選んだのは、ガス検知素子として実用上要望される
検知濃度がそのガスの爆発下限界濃度(LEL)の数1
0分の1から数分の1の範囲であシ、上記のガスのそれ
ぞれのLELが約2容量チから5容量チであるからであ
る。
The resistance value ()la) in air was measured in a measuring container with a volume of 50 tons in which dry air was stirred slowly to the extent that no turbulence occurred, and the resistance value (R
q) contains methane (CH4) with a purity of 99% or more in this container.
) and hydrogen (H2) in a volume ratio of 10pp.
It was made to flow in at a rate of m/sec, and each measurement was made when the concentration reached 0.2 volume. The gas concentration to be measured is 0.2
% was chosen because the detection concentration practically required for a gas detection element is the number 1 of the lower explosive limit concentration (LEL) of the gas.
This is because the LEL of each of the above gases is approximately 2 to 5 volumes, ranging from 1/0 to several fractions.

またガス感応体に含まれる硫酸イオン(SO4)の存在
は赤外線吸収スペクトルで確認し、含有されている量は
TG−DTA曲線及び螢光X線分析から同定した。その
結果、これらの焼結感応体に含まれている硫酸イオンの
量は0.23〜0.26重量係であった。
Further, the presence of sulfate ions (SO4) contained in the gas sensitive material was confirmed by infrared absorption spectroscopy, and the amount contained was identified from the TG-DTA curve and fluorescent X-ray analysis. As a result, the amount of sulfate ions contained in these sintered sensitive bodies was 0.23 to 0.26% by weight.

第1図および第2図に、添加物をそれぞれ単独で添加し
た場合のガス感応特性の添加量依存性を示す。感応特性
は、(1)ガス感度(1(a/Rq) 、(ii)抵抗
経時変化率ΔR(感応体を400’Cの温度で2000
時間保持した場合の抵抗値の初期値に対する変化率)で
評価した。また第1表には、添加物を組み合わせて用い
た場合のやはりガス感度(Ra/f(q)  と、抵抗
経時変化率(ΔH)を示す0なお△Rは表中の()内に
記載した。
FIG. 1 and FIG. 2 show the dependence of the gas sensitivity characteristics on the amount added when each additive is added alone. The sensitivity characteristics are (1) gas sensitivity (1(a/Rq)), (ii) resistance change rate over time ΔR (the sensitive body is heated to 2000 at a temperature of 400'C
The resistance value was evaluated based on the rate of change from the initial value when the resistance value was maintained for a certain period of time. Table 1 also shows the gas sensitivity (Ra/f(q)) and resistance change rate over time (ΔH) when additives are used in combination. did.

第1図、第2図、および第1表から明らかなように、G
eあるいはThを単独ないしは組み合わせて添加するこ
とによシ、ガス感応特性(ガス感度: Ra /Rq 
)が大きく向上している。また注目すべきは抵抗値の経
時変化であシ、これらの添加物を加えることによシそ突
変化率が大巾に減少している。このようにGeあるいは
Thの添加によりガス感応特性と信頼性の飛躍的な向上
が実現できることがわかる。
As is clear from Figures 1, 2, and Table 1, G
By adding e or Th alone or in combination, gas sensitivity characteristics (gas sensitivity: Ra /Rq
) has improved significantly. Also worth noting is the change in resistance value over time, and the addition of these additives significantly reduces the rate of change. It can thus be seen that the addition of Ge or Th can dramatically improve the gas sensitivity characteristics and reliability.

本発明において添加物総量を0.1〜60モルチに限定
したのは、0.1モルチ未満では、第1図〜第2図およ
び第1表に見られるように、ガス感応特性ならび扛信頼
性を向上せしめる効果が見られず、逆に50モルチを超
えると抵抗値自身が高くなり、また特性の安定性に欠け
るからである。表中で朱印を付したものがこれらに該当
するものであり、第1表の中では比較例として記載して
おいた。
The reason why the total amount of additives is limited to 0.1 to 60 molty in the present invention is that if it is less than 0.1 molty, as shown in Figures 1 to 2 and Table 1, the gas sensitivity characteristics and This is because no effect of improving the resistance is observed, and on the other hand, if it exceeds 50 molts, the resistance value itself becomes high and the stability of the characteristics is lacking. Those marked with a red seal in the table correspond to these, and are listed as comparative examples in Table 1.

(以下余白) 第1表 米比較例 ところで、一般的に感応体はある程度非晶質の状態の金
属酸化物の方が、結晶化されているものよシ可燃性ガス
に対する吸着現象などの物理化学現象が活性になシ易い
と言われている。しかし、はぼ完全に近く結晶化されて
いる市販試薬を用いて作成したZnFe2o4でも、硫
酸イオンを含有せしめ、さらにGoあるいはThを添加
することにより極めて高い活性度を宗し、しかもこれが
経時的に安定なため、結果的に非常に大きなガス感度と
高い信頼性を実現し得ることがわかる。
(Left below) Table 1 Comparative Examples By the way, in general, metal oxides in a somewhat amorphous state are better than crystallized ones due to their physical and chemical properties, such as adsorption phenomena for combustible gases. It is said that the phenomenon tends to become active. However, even ZnFe2o4 prepared using a commercially available reagent that is almost completely crystallized can achieve extremely high activity by containing sulfate ions and further adding Go or Th. Because of its stability, it can be seen that extremely high gas sensitivity and high reliability can be achieved as a result.

この実施例1では、感応体が焼結体の場合であり、含有
される硫酸イオン量が一定で、そして添加物の量、組み
合わせが異る場合について述べた。
In Example 1, the sensitive body is a sintered body, the amount of sulfate ions contained is constant, and the amounts and combinations of additives are varied.

次に示す実施例2では感応体が焼結膜の場合で、実施例
1とは逆に添加物の種類と量を一定にして含有される硫
酸イオンの量を変えた場合について述べる。すなわち実
施例2では、本発明が感応体を焼結膜とした場合でも有
効であることを確認し、また含有される硫酸イオン量が
ガス感応特性に対してどのような効果を持つかにつじで
述べる。
In Example 2 shown below, the sensitive body is a sintered film, and contrary to Example 1, the type and amount of additives are kept constant and the amount of sulfate ions contained is varied. In other words, in Example 2, it was confirmed that the present invention is effective even when the sensitive body is a sintered film, and the effect of the amount of sulfate ions contained on the gas sensitivity characteristics was investigated. state

〔実施例2〕 実施例1と同様の方法で作成されたZ n F e 2
04100Fにやはシ市販の酸化ゲルマニウム(G e
 O2)および酸化トリウム(’rho2)試薬を第2
表に示す様な割合になる様に秤取し、それぞれをらいか
い機にて2時間混合した。次にそれぞれの混合粉体を8
等分割し、これに予め種々の濃度に調製された硫酸第二
鉄 (Fe2(SO2)−3−xH2O)溶液を加え、しか
る後にそれぞれの粉体をやはりらいかい機で1時間混合
した。このようにして代表例としての酸化物組成の種類
が3種類(試料A−C)、硫酸イオン量の異るものがそ
れぞれ酸化物組成に対して8種類、計24種類の試料が
得られた。
[Example 2] Z n Fe 2 prepared in the same manner as Example 1
04100F Niyahashi commercially available germanium oxide (G e
O2) and thorium oxide ('rho2) reagent in the second
The proportions shown in the table were weighed out, and each was mixed in a sieve machine for 2 hours. Next, add 8 pieces of each mixed powder.
Ferric sulfate (Fe2(SO2)-3-xH2O) solutions prepared in advance at various concentrations were added to the powders, and then the respective powders were mixed for 1 hour using a miller. In this way, a total of 24 types of samples were obtained, including 3 types of representative oxide compositions (samples A-C) and 8 types of oxide compositions with different amounts of sulfate ions. .

(以 下金 白) 第2表 このようにして得られたいくつかの混合粉体を空気中で
400℃の温度で2時間熱処理した。さらにこの粉体を
60〜iooμに整粒し、トリエタノールアミンを加え
てペースト化した。一方、ガス検知素子の基板として縦
、横それぞれ6胴、厚み0.5關のアルミナ基板を用意
し、この表面に0.6町の間隔に櫛形に金ペーストを印
刷し、焼きつけて一対の櫛形電極を形成した。そして、
アルミナ基板の裏面には金電極の間に市販の酸化ルテニ
ウムのグレーズ抵抗体を印刷し、焼きっけてヒータとし
た。
(Hereinafter referred to as Kinpaku) Table 2 Several mixed powders thus obtained were heat treated in air at a temperature of 400°C for 2 hours. Further, this powder was sized to a size of 60 to iooμ, and triethanolamine was added to form a paste. On the other hand, as a substrate for the gas detection element, an alumina substrate with 6 cylinders in both the vertical and horizontal directions and a thickness of 0.5 mm was prepared. Gold paste was printed on the surface in a comb shape at intervals of 0.6 cm, and then baked to form a pair of comb shapes. An electrode was formed. and,
A commercially available ruthenium oxide glaze resistor was printed on the back side of the alumina substrate between the gold electrodes and baked to form a heater.

次に、上述のペーストを基板の表面に約65μの厚みに
印刷し、定温で自然乾燥させた後、400℃の温度にな
るまで徐々に加熱し、この温度で1時間保持した。この
段階でペーストが蒸発し硫酸イオンを含有するそれぞれ
の複合酸化物組成の焼結膜になった。このガス感応体の
厚みは約66μであった。このようにしてガス検知素子
を得た。
Next, the above-mentioned paste was printed on the surface of the substrate to a thickness of about 65 μm, air-dried at a constant temperature, and then gradually heated to a temperature of 400° C. and held at this temperature for 1 hour. At this stage, the paste evaporated and became a sintered film of each composite oxide composition containing sulfate ions. The thickness of this gas sensitive member was approximately 66μ. A gas sensing element was thus obtained.

またガス感応膜に含まれる硫酸イオン量の同定は、上記
の各ペーストの一部を、アルミナ基板に印刷するのでは
なく、ペーストのまま上述と同じ様に400℃の温度で
徐加熱し、これをTG−DTAならびに螢光X線分析に
かけて行な、った。また硫酸イオンの存在の確認は実施
例1と同じく赤外線吸収スペクトルを分析することにょ
シ行なった0 それぞれの検知素子のガス感応特性を実施例1の場合と
同様の方法で測定した。第3図〜第6図に酸化物組成の
異る試料A〜Cのガス感度(Ra/Rg)と含有される
硫酸イオンとの関係をそれぞれ示す。また第3表には、
経時特性の代表例として、試料A〜Cにおいて硫酸イオ
ンが2〜5重量%含有されてbるものについて実施例1
と同じ方法で評価した時の抵抗値の経時変化率を示す。
In addition, to identify the amount of sulfate ions contained in the gas-sensitive membrane, rather than printing a portion of each of the above pastes on an alumina substrate, the paste itself was slowly heated to 400°C in the same manner as described above. were subjected to TG-DTA and fluorescent X-ray analysis. The presence of sulfate ions was confirmed by analyzing the infrared absorption spectrum as in Example 1.The gas sensitivity characteristics of each sensing element were measured in the same manner as in Example 1. FIGS. 3 to 6 show the relationship between the gas sensitivity (Ra/Rg) and the sulfate ions contained in samples A to C having different oxide compositions, respectively. Also, in Table 3,
As a representative example of the aging characteristics, Example 1 is shown for samples A to C containing 2 to 5% by weight of sulfate ions.
It shows the rate of change in resistance value over time when evaluated using the same method as .

なお実施例2においては、被検ガスとしてはメタンとプ
ロパンを用いた。
In Example 2, methane and propane were used as the test gases.

第3図〜第6図から明らかなように、感応体が焼結膜で
あっても、実施例1で得られたのとほぼ同じ特性が得ら
れている。また第3表からも明らかなように、抵抗値の
経時変化率も実施例1と同様非常に小さい。
As is clear from FIGS. 3 to 6, almost the same characteristics as those obtained in Example 1 are obtained even when the sensitive body is a sintered film. Furthermore, as is clear from Table 3, the rate of change in resistance value over time is also very small, as in Example 1.

また第3図〜第5図を見ればわかるように、硫酸イオン
の量が0.005  重量%未満ではGeあるいはTh
の添加効果がなく本発明の効果が期待できない。また逆
に10.0重量%を超えると特性の安定性、あるいは機
械的強度の面で実用性に欠けるようになる。本発明のガ
ス検知素子に含有される硫酸イオンの量を0.005〜
10.0 重量係に限定したのは上述した点に依る。
Furthermore, as can be seen from Figures 3 to 5, if the amount of sulfate ions is less than 0.005% by weight, Ge or Th
Since there is no effect of addition of , the effect of the present invention cannot be expected. On the other hand, if it exceeds 10.0% by weight, it becomes impractical in terms of stability of properties or mechanical strength. The amount of sulfate ions contained in the gas sensing element of the present invention is from 0.005 to
10.0 The reason for limiting it to the weight category is based on the point mentioned above.

(以下金 白) 第3表 ところで、実施例1および2では出発原料として市販の
酸化物試薬を用いたものについて述べたが、本発明は最
終的に感応体の組成が前述した範囲内のものであればよ
く、何ら出発原料や製造工法を限定するものではない。
(Hereinafter referred to as "Kinpaku") Table 3 By the way, in Examples 1 and 2, commercially available oxide reagents were used as starting materials, but in the present invention, the final composition of the reactor was within the above-mentioned range. Any starting material or manufacturing method is not limited in any way.

また実施例においては被検ガスとしてメタンと、水素あ
るいはプロパンを用いたが、本発明の効果がこれらのガ
スに決して限定されるものでなく、エタン、インブタン
、アルコールといった可熱性ガスに対しても有効である
ことは勿論である。
In addition, although methane, hydrogen, or propane were used as the test gases in the examples, the effects of the present invention are by no means limited to these gases, and can also be applied to heatable gases such as ethane, imbutane, and alcohol. Of course, it is effective.

発明の詳細 な説明したように、本発明のガス恢知素子は、硫酸イオ
ンを含有するZ n k e 204に添加物とじてG
oあるいはThを添加した焼結体あるいは焼結膜を感応
体として用いたものであり、これにより、特にメタンガ
ス感度が飛細的に向上し、これまで貴金属触媒を用いず
には微量検知が難かしいとされてきたメタンガスに対し
て400℃という比較的低い温度でも非常に大きい感度
を実現tイ4+るものである1oこれは都市ガスの天然
ガス(主成分:メタンガス感度に伴って要求が大きくな
9つ“)ある社会ニーズに的確に対応するものであり、
その効果は惨めで大なるものがある。また、本発明のい
まひとつの効果は寿命特性、特に通電による但抗値の経
時変化の大幅な軽減である。これは換言すれば、あらゆ
る検知素子の最も重要な要素である素子の信頼性の向上
に極めて大きな冨与をもたらすものである。
As described in detail, the gas sensing element of the present invention contains G as an additive in Znke 204 containing sulfate ions.
This method uses a sintered body or a sintered film to which O or Th is added as a sensitive body, and this dramatically improves the sensitivity of methane gas, which was previously difficult to detect in trace amounts without using a precious metal catalyst. It has achieved extremely high sensitivity even at a relatively low temperature of 400°C for methane gas, which has been considered to be a natural gas (main component: methane gas). It accurately responds to certain social needs,
The effect is terrible and great. Another effect of the present invention is a significant reduction in the life characteristics, especially the change over time in the resistance value due to energization. In other words, this brings an extremely large advantage to improving the reliability of the element, which is the most important element of any sensing element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の一実施例における添加物
量と、メタンおよび水素に対する感度(Ra/Rq)な
らびに抵抗経時変化率(△H)との関係を示した特性図
、第3図〜第5図は本発明の他の実施例における硫酸イ
オン含有滑と、メタンおよびプロパンに対する感度(H
a/Rq)との関係を、3つの代表的な酸化物組成につ
いて示した特性図である。
Figures 1 and 2 are characteristic diagrams showing the relationship between the amount of additives, sensitivity to methane and hydrogen (Ra/Rq), and rate of change in resistance over time (△H) in one embodiment of the present invention, and Figure 3 - Figure 5 shows the sensitivity to methane and propane (H
a/Rq) for three typical oxide compositions.

Claims (2)

【特許請求の範囲】[Claims] (1)硫酸イオンがo、oos〜1o重量%含有された
亜鉛フェライト(znFe204)に、添加物としてゲ
ルマニウム(Ge ) 、およびトリウム(Th)のう
ち少なくともひとつが、それぞれCs e O2、およ
びTE01に換算して添加物総量で0.1〜60モルチ
含むものをガス感応体〆して用いることを特徴とするガ
ス検知素子。
(1) Zinc ferrite (znFe204) containing o, oos to 10% by weight of sulfate ions, and at least one of germanium (Ge) and thorium (Th) as additives are added to Cs e O2 and TE01, respectively. A gas sensing element characterized in that a gas sensitive material containing 0.1 to 60 mole of additives in total is used as a gas sensing element.
(2)ガス感応体が加圧成型し、焼成して得られる焼結
体、またはペーストを印刷して焼成して得られる焼結膜
であることを特徴とする特許請求の範囲第(1)項記載
のガス検知素子。
(2) Claim (1) characterized in that the gas sensitive body is a sintered body obtained by pressure molding and firing, or a sintered film obtained by printing and firing a paste. The gas detection element described.
JP21721682A 1982-12-10 1982-12-10 Gas detecting element Granted JPS59107251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21721682A JPS59107251A (en) 1982-12-10 1982-12-10 Gas detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21721682A JPS59107251A (en) 1982-12-10 1982-12-10 Gas detecting element

Publications (2)

Publication Number Publication Date
JPS59107251A true JPS59107251A (en) 1984-06-21
JPS6222419B2 JPS6222419B2 (en) 1987-05-18

Family

ID=16700675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21721682A Granted JPS59107251A (en) 1982-12-10 1982-12-10 Gas detecting element

Country Status (1)

Country Link
JP (1) JPS59107251A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5352200A (en) * 1976-10-22 1978-05-12 Hitachi Ltd Manufacture of gas sensor material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5352200A (en) * 1976-10-22 1978-05-12 Hitachi Ltd Manufacture of gas sensor material

Also Published As

Publication number Publication date
JPS6222419B2 (en) 1987-05-18

Similar Documents

Publication Publication Date Title
EP0022369B1 (en) Combustible gas detecting elements
JPS59107251A (en) Gas detecting element
JPS6223252B2 (en)
JPS6222414B2 (en)
JPS623375B2 (en)
JPS6222417B2 (en)
JPS6160381B2 (en)
JPS59107250A (en) Gas detecting element
JPS5994050A (en) Gas detection element
JPS59107252A (en) Gas detecting element
JPS58200152A (en) Gas detection element
JPS5957154A (en) Gas detecting element
JPS6222415B2 (en)
JPS6160382B2 (en)
JPS6160383B2 (en)
JPS6160385B2 (en)
JPH027025B2 (en)
JPH0225452B2 (en)
JPS6155068B2 (en)
JPS5957151A (en) Gas detecting element
JPS6222416B2 (en)
JPS5992339A (en) Gas detecting element
JPS6160379B2 (en)
JPS58201053A (en) Gas detecting element
JPH0230459B2 (en) GASUKENCHISOSHI