JPS59108903A - Method for detecting seamed position of seam welded steel pipe - Google Patents

Method for detecting seamed position of seam welded steel pipe

Info

Publication number
JPS59108903A
JPS59108903A JP21879482A JP21879482A JPS59108903A JP S59108903 A JPS59108903 A JP S59108903A JP 21879482 A JP21879482 A JP 21879482A JP 21879482 A JP21879482 A JP 21879482A JP S59108903 A JPS59108903 A JP S59108903A
Authority
JP
Japan
Prior art keywords
laser light
seam
seamed
reflected
patterns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21879482A
Other languages
Japanese (ja)
Inventor
Yuichiro Asano
浅野 有一郎
Akira Torao
彰 虎尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP21879482A priority Critical patent/JPS59108903A/en
Publication of JPS59108903A publication Critical patent/JPS59108903A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Abstract

PURPOSE:To detect the seamed position after annealing highly accurately without errors, by projecting laser light having a specified wavelength at a specified incident angle, and discriminating a seamed part and a parent material part based on the anisotropy of an equal intensity curve of a reflected light intensity distribution. CONSTITUTION:Laser light is projected at an incident angle of more than 70 deg. and less than 90 deg., with the wavelength of the laser light being more than 0.2mum and less than 0.7mum. The laser light 12 from a helium neon laser light source 30 is made to scan in the lateral direction in the vicinity of a seamed part 10b by a beam scanner 32. Reflected patterns 22 and 22' are obtained on a screen 16. The images of the reflected patterns 22 and 22' are picked up by a CCD camera 34. An operating device 38 judges whether the images are longer in the direction of a longitudinal axis 20 or in the direction of a lateral axis 18 on the screen 16. A laser light projecting angle is detected by a mirror rotating position detector 33. When the reflected patterns 22 and 22' are longer in the direction of the lateral axis 18, the patterns are judged to be the seamed position, and the result is outputted.

Description

【発明の詳細な説明】 本発明は、電縫管のシーム位置検出方法に係り、特に、
電縫管の溶接、探傷作業の自動化に際して用いるのに好
適な、電縫管の表面にレーザ光を照射した時の、反射光
強度分布からシーム位置を検出するようにした電縫管の
シーム位置検出方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a seam position detection method of an electric resistance welded pipe, and particularly,
The seam position of an ERW tube is detected from the intensity distribution of reflected light when the surface of the ERW tube is irradiated with a laser beam, which is suitable for use in automating ERW tube welding and flaw detection work. Concerning improvements in detection methods.

一般に、電縫鋼管においては、溶接ヒートを切削した後
、溶接ビードの余盛切削部(以下シーム部と称するンを
超音波探傷することによって、電縫鋼管の品質を確保す
ることが行われており、このような工程においては、超
音波探傷器を自動的にシーム部に追従させるため、シー
ム位置を自動的に検出する技術が不可欠である。このた
め従来から、電磁的方法、超音波による方法や光学的方
法が提案されている。
Generally, in ERW steel pipes, the quality of the ERW steel pipes is ensured by performing ultrasonic flaw detection on the excess cutting part of the weld bead (hereinafter referred to as the seam part) after cutting the weld heat. Therefore, in such a process, technology to automatically detect the seam position is essential in order to have the ultrasonic flaw detector automatically follow the seam.For this reason, conventional methods such as electromagnetic methods and ultrasonic methods have been used. methods and optical methods have been proposed.

このうち光学的方法は、一般に、物体表面に傷や切削跡
等の異常点がある場合、これにレーザ光  ・を投射す
れば、異常点の形状、方向性に対応した特徴的な反射光
強度分布(以下反射パターンと称する)を生じることを
利用したもので、例えば、特願昭50−101835号
に提案されている如く、電縫管母材部ではほぼ等方向な
反射パターンを生ずるのに対し、シーム部では、シーム
部に残っている鋼管長手方向の切削傷により、反射バタ
−ンが異方性を示すことを利用して、シーム部と母材部
の識別を行うようにしている。
Among these methods, optical methods are generally used when there are abnormal points such as scratches or cutting marks on the surface of an object, and by projecting a laser beam onto the surface, a characteristic reflected light intensity corresponding to the shape and direction of the abnormal point can be detected. This method takes advantage of the fact that a distribution (hereinafter referred to as a reflection pattern) occurs.For example, as proposed in Japanese Patent Application No. 50-101835, an almost isodirectional reflection pattern is generated in the base material of an ERW tube. On the other hand, at the seam, the reflection pattern exhibits anisotropy due to cutting scratches left in the seam in the longitudinal direction of the steel pipe, which is used to distinguish between the seam and the base material. .

しかしながら従来は、レーザ光の波長や、入射方向、反
射パターンの検出位置等に関して特に限定されていなか
ったので、例えば、ビード切削後シーム部をアニールす
る電縫鋼管については、下記のような問題点を有してい
た。
However, in the past, there were no particular limitations on the wavelength of the laser beam, the direction of incidence, the detection position of the reflection pattern, etc., so for example, for ERW steel pipes whose seams are annealed after bead cutting, the following problems arise: It had

(1)アニール後のシーム部性状は、切削傷の方向性が
極めて不鮮明であり、レーザ光反射パターンの異方性の
差異が不明確である。
(1) Regarding the properties of the seam after annealing, the directionality of cutting scratches is extremely unclear, and the difference in anisotropy of the laser beam reflection pattern is unclear.

(2)アニール後のシーム部上にはスケールやスケール
脱落跡が存在し、レーザ光反則率が場所により大幅に変
化するため、反射パターンの検出が困難となる。
(2) There are scales and scale drop-off marks on the seam after annealing, and the laser light reflection rate varies greatly depending on the location, making it difficult to detect the reflection pattern.

従って、従来の方法においては、シーム位置を誤検出す
る可能性が高く、そのままでは実用に適さなかった。
Therefore, in the conventional method, there is a high possibility of erroneously detecting the seam position, and it is not suitable for practical use as it is.

本発明は、前記従来の問題点を解消するへくなされたも
ので、電縫管ビード切削後、特にアニール後のシーム位
置を、高精度に、且つ、誤まりなく検出することができ
る電縫管のシーム位置検出方法を提供することを目的と
する。
The present invention has been devised to solve the above-mentioned conventional problems, and provides an electric resistance welding machine that can detect the seam position after cutting an electric resistance welding tube bead, especially after annealing, with high precision and without error. An object of the present invention is to provide a method for detecting the seam position of a pipe.

本発明は、電縫管の表面にレーザ光を照射した時の、反
射光強度分布からシーム位置を検出するようにした電縫
管のシーム位置検出方法において、前記レーザ光の波長
を0,2μ01以上0.7μIll以下として、電縫管
長手方向中心軸を含む面内の、入射角が70’以上90
°未満となるような方向から照射し、該レーザ光の正反
射光軸に垂直な面内上における反射光強度分布の等強度
曲線の異方性の差異から、シーム部と母材部の識別を行
うようにして、前記目的を達成したものでおる。
The present invention provides a method for detecting the seam position of an ERW tube, in which the seam position is detected from the intensity distribution of reflected light when the surface of the ERW tube is irradiated with a laser beam. The angle of incidence in the plane containing the longitudinal center axis of the ERW tube is 70' or more and 90' or more.
The seam part and the base material part can be identified from the difference in anisotropy of the iso-intensity curve of the reflected light intensity distribution on the plane perpendicular to the specular reflection optical axis of the laser beam. By doing so, the above objective has been achieved.

以下図面を参照して、本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

本発明においては、第1図に示す如く、電縫管10の表
面に照射される入射レーザ光12及びその正反射光軸1
4は、電縫管10の中心軸10aと一致する直線CDを
面内に含む百〇DEF上にある。又、反射パターンを得
るためのスクリーン16は、前記正反射光軸14に垂直
とされ、スクリーン16上にある軸18.20は、いず
れも正反射光軸14とスクリーン16の交点Bを通り、
各4面CD E Fに乗直及、び平行く面CDErニー
F〉にある。従って、入射レーザ光12は、電縫管10
のシーム部101)上の点へで反射して、スクリーン1
6上に反射パターン22を生しる。図において、24は
法線、10cは母材部である。
In the present invention, as shown in FIG.
4 is on the 100 DEF that includes the straight line CD coinciding with the central axis 10a of the electric resistance welded tube 10 in its plane. Further, the screen 16 for obtaining the reflection pattern is perpendicular to the specular reflection optical axis 14, and the axes 18 and 20 on the screen 16 both pass through the intersection B of the specular reflection optical axis 14 and the screen 16,
Each of the four planes CD E F is perpendicular to and parallel to the plane CDEr knee F〉. Therefore, the incident laser beam 12
is reflected to a point on the seam 101) of the screen 1
A reflective pattern 22 is produced on 6. In the figure, 24 is a normal line, and 10c is a base material portion.

このような配置において、前記シーム部10bは長手方
向に方向性を有し、2乗平均粗さRは、長手方向で0.
1〜0.2μm  (=RL)、管周方向で0.2〜1
.5μm <=Rc)である。ここで、2乗平均粗さR
は、被測定表面の表面方向1次元座標をχ、高さ方向座
標をZ(χ)とすれ又、BeCkllla旧1によれば
、2乗平均粗さRの不規則金属面に、波長λのコヒーレ
ント光〈レーザ光)が、入射角αで入射した場合、反射
面として2次元モデルl (χ)を仮定すると、次式に
示されるような9の値に応じて、gくく1で拡散nk乱
が小さい鏡面的反則状態、9〉〉1で強い拡散散乱状態
、9α1で、これらの中間的状態となることが推論され
る。
In such an arrangement, the seam portion 10b has directionality in the longitudinal direction, and the root mean square roughness R is 0.0 in the longitudinal direction.
1 to 0.2 μm (=RL), 0.2 to 1 in the circumferential direction
.. 5 μm <= Rc). Here, the root mean square roughness R
Let the one-dimensional coordinate in the surface direction of the surface to be measured be χ, and the coordinate in the height direction be Z(χ). Also, according to BeCklla Old 1, on an irregular metal surface with a root mean square roughness R, a surface with a wavelength λ is When coherent light (laser light) is incident at an incident angle α, assuming a two-dimensional model l (χ) as the reflecting surface, it is diffused by g × 1 according to the value of 9 as shown in the following equation. It is inferred that a specular irregular state with small disturbance, a strong diffuse scattering state with 9〉〉1, and an intermediate state between these with 9α1.

(1=  (4π RCO3α / λ )  2 、
、、   (3)ここで、長手方向の方向性が反射パタ
ーンに表われるためには、シーム部管周方向粗さRcに
対して、g >> 1が成立することが必要であり、9
≧10、Rc=0.2μm1α−〇°から波長λに関す
る条件を求めるとλ≦0.7μIllが得られる。
(1= (4π RCO3α/λ) 2,
,, (3) Here, in order for the directionality in the longitudinal direction to appear in the reflection pattern, it is necessary that g >> 1 holds true for the circumferential direction roughness Rc of the seam portion, and 9
≧10, Rc=0.2μm1α−〇°, when the condition regarding the wavelength λ is determined, λ≦0.7μIll is obtained.

他方、シーム長手方向の方向性のみを強調するためには
、シーム部長手方向粗さRLが極力無視てきゆ7条件が
良い。即ち、入射レーザ光12の入射軸とシーム部10
bとの関係を第1図のようにとり、g≦1とすると、R
L=0.15μmとして、COSθ/λ≦0.5が得ら
れる。ここて250.7μmとすれば、θ≧70°が得
られる。
On the other hand, in order to emphasize only the directionality in the longitudinal direction of the seam, it is preferable to use the condition 7 in which the seam longitudinal direction roughness RL is ignored as much as possible. That is, the incident axis of the incident laser beam 12 and the seam portion 10
If the relationship with b is taken as shown in Figure 1 and g≦1, then R
When L=0.15 μm, COSθ/λ≦0.5 is obtained. Here, if it is 250.7 μm, θ≧70° can be obtained.

又、Rc≦0.2μmになる微小な凹凸に散乱されるこ
とを防ぐための条件を求めると、g≦1において、RL
=0.2μm、θ=85° (実現可能な最大角)とし
て、220.2μm)1が1qられる。
Also, when determining the conditions to prevent scattering from minute irregularities where Rc≦0.2μm, when g≦1, RL
= 0.2 μm, θ = 85° (maximum realizable angle), 220.2 μm) 1 is calculated as 1q.

このような条件を満足させることにより、アニール後の
電縫管についても、切削傷の方向性を鮮1明化すること
ができ、レーザ光反射パターンの異方性の差異を明確化
することができる。
By satisfying these conditions, it is possible to clarify the directionality of cutting scratches on the annealed ERW tube, and it is possible to clarify the difference in anisotropy of the laser beam reflection pattern. can.

又、対象物の対空気屈折率をn、光束の対象物表面への
入射角をα、その点の反射率をRとすると、入射光束の
偏光方向が対象面に平行な場合(入射角αの値が大きけ
れば、反則光成分はほとんどこの偏光となり、−膜性は
失われない)の反射率R(α、n)は、フレネルの公式
から明らかな如く、第2図に示される如くとなる。更に
、屈折率nが異なる場合の反射率の比のα依存性は、第
3図に示す如くとなる。これらから、入射角α〉70°
の領域で、反射率Rが大幅に増大し、急速に1に近づく
ため、屈折率の差(対象物の違い)ににる反射率の差は
、大幅に小さくなる。同様に、第1図においても、90
°〉θ≧70°とすることにより、シーム部10b上の
反射率のばらつきによる反射パターン強度の大幅な場所
的変動を防ぐことが可能であり、安定な反射パターン強
度を得ることができる。
Furthermore, if the air refractive index of the object is n, the angle of incidence of the light beam on the surface of the object is α, and the reflectance at that point is R, then when the polarization direction of the incident light beam is parallel to the object surface (the incident angle α If the value of is large, most of the reflected light component becomes this polarized light, and the film properties are not lost).As is clear from Fresnel's formula, the reflectance R(α, n) is as shown in Figure 2. Become. Further, the dependence of the reflectance ratio on α when the refractive index n is different is as shown in FIG. From these, the angle of incidence α〉70°
In the region, the reflectance R increases significantly and rapidly approaches 1, so the difference in reflectance due to the difference in refractive index (difference in object) becomes significantly smaller. Similarly, in Figure 1, 90
By setting °>θ≧70°, it is possible to prevent significant local variations in the reflection pattern intensity due to variations in reflectance on the seam portion 10b, and it is possible to obtain stable reflection pattern intensity.

以下図面を参照して、本発明の実施例を詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

本実施例は、第4図に示す如く、波長0,633μn1
のレーザ光を発振するヘリウムネオンレーザ光源30と
、該ヘリウムネオンレーザ光a30から発振されたレー
ザ光を、電縫管10のシーム部10bの近傍で横方向に
走査するためのビームスキャナ32と、該ビームスキャ
ナ32で用いられている反射ミラーの回転位置を検出す
るためのミラー回転位置検出器33と、反射点A或いは
/Mで反射された正反射光14.14−の反射パターン
22.22′を得るための、前出第1図に示したと同様
なスクリーン16と、該スクリーン16上に形成された
反射パターン22.22−を撮像するためのCCDカメ
ラ34と、EI CCDカメラ34の出力に対して前処
理を行うための前処理回路36と、前記CCDカメラ3
4によ−づて得られる反射パターン22.22′の等強
度曲線の一部から、反射パターン22.22−がスクリ
ーン16上の縦軸20方向に長いか横軸18方向に長い
かを判定すると共に、前記ミラー回転位置検出器33の
出力によりレーザ光の投光方位角を検出し、反則パター
ンか横軸18方向に長い場合に、方位角から決まるその
位置を、シーム位置と判定して判定結果を出力する演算
装置38とから構成されている。
In this embodiment, as shown in FIG. 4, the wavelength is 0,633 μn1.
a helium neon laser light source 30 that emits a laser beam; a beam scanner 32 that scans the laser light emitted from the helium neon laser beam a30 in the horizontal direction near the seam portion 10b of the electric resistance welded tube 10; A mirror rotational position detector 33 for detecting the rotational position of a reflection mirror used in the beam scanner 32, and a reflection pattern 22.22 of specularly reflected light 14.14- reflected at the reflection point A or /M. A screen 16 similar to that shown in FIG. a preprocessing circuit 36 for performing preprocessing on the CCD camera 3;
From a part of the iso-intensity curve of the reflection pattern 22.22' obtained based on 4, it is determined whether the reflection pattern 22.22- is longer in the direction of the vertical axis 20 or in the direction of the horizontal axis 18 on the screen 16. At the same time, the projection azimuth of the laser beam is detected by the output of the mirror rotation position detector 33, and if the foul pattern is long in the horizontal axis 18 direction, the position determined from the azimuth is determined to be the seam position. It is composed of an arithmetic unit 38 that outputs a determination result.

以下作用を説明する。The action will be explained below.

ヘリウムネオンレーザ光源30から照q1された。Illuminated by a helium neon laser light source 30 q1.

波長0.633μm1のレーザ光12は、ビームスキャ
ナ32によりシーム部10bの近傍に横方向に走査され
、その反射パターン22.22′がスクリーン16上に
得られる。この反射パターン22.22′は、CCDカ
メラ34によって撮像され、前処理回路36を介して演
算装置38に入力される。演算装置38は、前記反射パ
ターン22.22′がスクリーン16上の縦軸20方向
に長いか、或いは、横軸18方向に長いかを、等強度曲
線の一部から判定する。他方、同時刻にミラー回転位置
検出器33出力によりレーザ光投光方位角を検出し、反
射パターンが横軸18方向に長い場合には、方位角から
決まるその位置をシーム位置と判定して出力する。
The laser beam 12 with a wavelength of 0.633 μm1 is laterally scanned in the vicinity of the seam portion 10b by the beam scanner 32, and its reflection pattern 22, 22' is obtained on the screen 16. This reflection pattern 22 , 22 ′ is imaged by a CCD camera 34 and inputted to an arithmetic unit 38 via a preprocessing circuit 36 . The calculation device 38 determines whether the reflection pattern 22, 22' is longer in the vertical axis 20 direction or the horizontal axis 18 direction on the screen 16 from a part of the equal intensity curve. On the other hand, at the same time, the laser beam projection azimuth angle is detected by the output of the mirror rotation position detector 33, and if the reflection pattern is long in the horizontal axis 18 direction, the position determined from the azimuth angle is determined to be the seam position and output. do.

このようにして求められたシーム位置信号は、例えば、
超音波探傷器の位置制御装置に入力され、探傷器ヘッド
が常にシーム上に位置するように制御される。
The seam position signal obtained in this way is, for example,
This is input to the position control device of the ultrasonic flaw detector and controlled so that the flaw detector head is always positioned on the seam.

本実施例において、入射角θを60°にした場合と75
°にした場合の反射パターンを第5図に比較して示す。
In this example, when the incident angle θ is 60° and when the incident angle θ is 75°,
FIG. 5 shows a comparison of the reflection patterns when the angle is set to .degree.

第5図の左側に示された入射角θ−60°の場合(比較
例)には、シーム部に対する反射パターンの方向性が不
明確で、反則強度も場所により一定しない。それに対し
て、本光明による入射角θ−75°の場合には、シーム
上の反射パターンに、第5図の横方向に伸びる特徴的な
方向性パターンGが現われており、反射強度もほぼ一定
となっている。
In the case of the incident angle θ-60° shown on the left side of FIG. 5 (comparative example), the directionality of the reflection pattern with respect to the seam portion is unclear, and the fouling intensity is also not constant depending on the location. On the other hand, when the incident angle of the present light is θ-75°, a characteristic directional pattern G extending in the horizontal direction as shown in Fig. 5 appears in the reflection pattern on the seam, and the reflection intensity is almost constant. It becomes.

以上説明した通り、本発明によれば、電縫管ビード切削
後、特にアニール後のシーム位置を高精度に且つ誤まり
なく検出することができる。従って、電縫管等の溶接、
探傷作業を高精度で自動化することができるという優れ
た効果を有する。
As described above, according to the present invention, the seam position after cutting the electric resistance welded tube bead, especially after annealing, can be detected with high precision and without error. Therefore, welding of ERW pipes, etc.
It has the excellent effect of being able to automate flaw detection work with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る電縫管のシーム位置検出方法の
原理を説明するための斜視図、第2図は、同じく、反射
率の入射角依存性を示す線図、第3図は、同じく反射比
の入射角依存性を示す線図、第4図は、本発明に係る電
縫管のシーム位置検出方法が採用された、シーム位置検
出装置の実施例の構成を示す、′一部ジブロック線図含
む斜視図、第5図は、前記実施例における、入射角か6
0゜(比較例)と75° (本発明)の場合の反則パタ
ーンの相異を示ず線図である。 10・・・電縫管、 10b・・・シーム部、 10c・・・母材部、 12.12′・・・入射レーザ光、 14.14′・・・正反射光軸、 16・・・スクリーン、 22.22′・・・反則パターン。 代理人  高 矢  論 (ほか1名) 第2図 第3図
FIG. 1 is a perspective view for explaining the principle of the seam position detection method of an ERW pipe according to the present invention, FIG. 2 is a diagram showing the dependence of reflectance on the angle of incidence, and FIG. FIG. 4 is a diagram showing the dependence of the reflection ratio on the angle of incidence. FIG. A perspective view including a diblock diagram, FIG. 5 shows the incident angle of 6.
FIG. 3 is a diagram showing the difference in foul patterns between 0° (comparative example) and 75° (invention). DESCRIPTION OF SYMBOLS 10... ERW pipe, 10b... Seam part, 10c... Base material part, 12.12'... Incident laser beam, 14.14'... Specular reflection optical axis, 16... Screen, 22.22'...foul pattern. Agent Takaya Ron (and 1 other person) Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)電縫管の表面にレーザ光を照射した時の、反射光
強度分布からシーム位置を検出するようにした電縫管の
シーム位置検出方法において、前記し〜ザ光の波長を0
.2μm1以上0.7μ01以下として、電縫管長手方
向中心軸を含む面内の、入射角が70°以上90°未満
となるような方向から照射し、該レーザ光の正反射光軸
に垂直な面内上における反射光強度分布の等強度曲線の
異方性の差異から、シーム部と母材部の識別を行うよう
にしたことを特徴とする電縫管のシーム位置検出方法。
(1) In a seam position detection method for an ERW tube, in which the seam position is detected from the intensity distribution of reflected light when the surface of the ERW tube is irradiated with a laser beam, the wavelength of the laser light is set to 0.
.. 2μm1 or more and 0.7μ01 or less, irradiate from a direction such that the incident angle is 70° or more and less than 90° in a plane that includes the longitudinal center axis of the ERW tube, and perpendicular to the specular reflection optical axis of the laser beam. 1. A seam position detection method for an electric resistance welded pipe, characterized in that a seam portion and a base material portion are identified from the difference in anisotropy of isointensity curves of reflected light intensity distribution on a plane.
JP21879482A 1982-12-14 1982-12-14 Method for detecting seamed position of seam welded steel pipe Pending JPS59108903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21879482A JPS59108903A (en) 1982-12-14 1982-12-14 Method for detecting seamed position of seam welded steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21879482A JPS59108903A (en) 1982-12-14 1982-12-14 Method for detecting seamed position of seam welded steel pipe

Publications (1)

Publication Number Publication Date
JPS59108903A true JPS59108903A (en) 1984-06-23

Family

ID=16725466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21879482A Pending JPS59108903A (en) 1982-12-14 1982-12-14 Method for detecting seamed position of seam welded steel pipe

Country Status (1)

Country Link
JP (1) JPS59108903A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0214046A2 (en) * 1985-08-19 1987-03-11 Kawasaki Steel Corporation Method and system for locating and inspecting seam weld in metal seam-welded pipe
JPS63128240A (en) * 1986-11-18 1988-05-31 Asahi Eng Kk Reflected light type flaw detecting device
JPH0342559A (en) * 1989-06-30 1991-02-22 Jaguar Cars Ltd Method of inspecting member surface
JPH04340403A (en) * 1991-05-16 1992-11-26 Sumitomo Metal Ind Ltd Seam part position detector for seam welded steel pipe
EP0692697A3 (en) * 1994-07-12 1996-06-19 Beta Instr Co An eccentricity gauge
JP2006234781A (en) * 2004-09-29 2006-09-07 Jfe Steel Kk Method and device for detecting seam position of electro-resistance-welded tube, and method and device for controlling heating piece of seam annealer
CN104568973A (en) * 2015-02-09 2015-04-29 京东方科技集团股份有限公司 Device and method for detecting substrate
CN105293070A (en) * 2015-12-04 2016-02-03 博格华纳汽车零部件(江苏)有限公司 Equipment and method for detecting weld joints of turbine components
CN110375700A (en) * 2019-07-31 2019-10-25 华中科技大学 A kind of large-scale spiral tube quality detection device and method
CN111504225A (en) * 2020-04-30 2020-08-07 中国核工业华兴建设有限公司 Pipeline position detection method based on three-dimensional scanning
CN111521122A (en) * 2020-05-15 2020-08-11 南京航空航天大学 Method and device for measuring outer diameter of pipe shell based on photoelectric sensing
WO2022118515A1 (en) 2020-12-03 2022-06-09 Jfeスチール株式会社 Position detection device for seam portion and heated portion in welded steel pipe, manufacturing equippment of welded steel pipe, position detection method for seam portion and heated portion in welded steel pipe, manufacturing method of welded steel pipe, and quality control method for welded steel pipe
DE102020134990A1 (en) 2020-12-29 2022-06-30 Sascha Vorndran Weld and/or weld preparation measuring device
WO2022244383A1 (en) 2021-05-17 2022-11-24 Jfeスチール株式会社 Apparatus for detecting positions of seam portion and heated portion in welded steel pipe, equipment for manufacturing welded steel pipe, method for detecting positions of seam portion and heated portion in welded steel pipe, method for manufacturing welded steel pipe, and method for managing quality of welded steel pipe

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5225687A (en) * 1975-08-21 1977-02-25 Nippon Steel Corp Method of detecting weld zones of seamwelded steel pipes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5225687A (en) * 1975-08-21 1977-02-25 Nippon Steel Corp Method of detecting weld zones of seamwelded steel pipes

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0214046A2 (en) * 1985-08-19 1987-03-11 Kawasaki Steel Corporation Method and system for locating and inspecting seam weld in metal seam-welded pipe
JPS63128240A (en) * 1986-11-18 1988-05-31 Asahi Eng Kk Reflected light type flaw detecting device
JPH0342559A (en) * 1989-06-30 1991-02-22 Jaguar Cars Ltd Method of inspecting member surface
JPH04340403A (en) * 1991-05-16 1992-11-26 Sumitomo Metal Ind Ltd Seam part position detector for seam welded steel pipe
EP0692697A3 (en) * 1994-07-12 1996-06-19 Beta Instr Co An eccentricity gauge
JP2006234781A (en) * 2004-09-29 2006-09-07 Jfe Steel Kk Method and device for detecting seam position of electro-resistance-welded tube, and method and device for controlling heating piece of seam annealer
JP4591201B2 (en) * 2004-09-29 2010-12-01 Jfeスチール株式会社 Electric seam tube seam position detection method and apparatus, and electric seam tube manufacturing method and equipment
CN104568973A (en) * 2015-02-09 2015-04-29 京东方科技集团股份有限公司 Device and method for detecting substrate
CN105293070A (en) * 2015-12-04 2016-02-03 博格华纳汽车零部件(江苏)有限公司 Equipment and method for detecting weld joints of turbine components
CN105293070B (en) * 2015-12-04 2017-06-16 博格华纳汽车零部件(江苏)有限公司 Turbine part welding line detector and detection method
CN110375700A (en) * 2019-07-31 2019-10-25 华中科技大学 A kind of large-scale spiral tube quality detection device and method
CN111504225A (en) * 2020-04-30 2020-08-07 中国核工业华兴建设有限公司 Pipeline position detection method based on three-dimensional scanning
CN111521122A (en) * 2020-05-15 2020-08-11 南京航空航天大学 Method and device for measuring outer diameter of pipe shell based on photoelectric sensing
WO2022118515A1 (en) 2020-12-03 2022-06-09 Jfeスチール株式会社 Position detection device for seam portion and heated portion in welded steel pipe, manufacturing equippment of welded steel pipe, position detection method for seam portion and heated portion in welded steel pipe, manufacturing method of welded steel pipe, and quality control method for welded steel pipe
KR20230096051A (en) 2020-12-03 2023-06-29 제이에프이 스틸 가부시키가이샤 Welded steel pipe core and heating part position detection device, welded steel pipe manufacturing equipment, welded steel pipe core and heating part position detection method, welded steel pipe manufacturing method, and welded steel pipe quality control method
DE102020134990A1 (en) 2020-12-29 2022-06-30 Sascha Vorndran Weld and/or weld preparation measuring device
DE102020134990B4 (en) 2020-12-29 2022-10-13 Sascha Vorndran Weld and/or weld preparation measuring device
WO2022244383A1 (en) 2021-05-17 2022-11-24 Jfeスチール株式会社 Apparatus for detecting positions of seam portion and heated portion in welded steel pipe, equipment for manufacturing welded steel pipe, method for detecting positions of seam portion and heated portion in welded steel pipe, method for manufacturing welded steel pipe, and method for managing quality of welded steel pipe
KR20230161505A (en) 2021-05-17 2023-11-27 제이에프이 스틸 가부시키가이샤 Device for detecting the position of the deep part and heating part of welded steel pipe, manufacturing equipment for welded steel pipe, method for detecting the position of deep part and heating part of welded steel pipe, manufacturing method of welded steel pipe, and quality control method of welded steel pipe

Similar Documents

Publication Publication Date Title
JPS59108903A (en) Method for detecting seamed position of seam welded steel pipe
US5389794A (en) Surface pit and mound detection and discrimination system and method
US7499156B2 (en) Closed region defect detection system
JP4705479B2 (en) Bead shape detection method and apparatus
JPH03267745A (en) Surface property detecting method
US7436498B2 (en) Apparatus for determining the shape of a gemstone
CN110140022A (en) The quality control method and its device of the shape detecting method of the docking section of welded still pipe and the welded still pipe using this method
JP2002331383A (en) Monitoring device for cutting
GB2195178A (en) Glass object inspection
JPH07110213A (en) Joint measuring method
CA2034017C (en) Scanning device for optically scanning a surface along a line
JP2000314707A (en) Device and method for inspecting surface
JPS6242004A (en) Seam position detecting device for electric welded pipe
CN106181144B (en) A kind of detection method of concave welding bead position
JPH0648172B2 (en) Steel pipe end profile and wall thickness measuring device
JPH07318499A (en) Surface defect detecting device
JPH05340743A (en) Surface inspection method
JP2570813B2 (en) Arc surface deformation inspection method
JPS63243850A (en) Method for detecting sliver defect of rolled plate material
JPH07119703B2 (en) Surface defect inspection device
JPS62188334A (en) Inspection apparatus
JP2004156932A (en) Surface inspection apparatus
JPH0610607B2 (en) Minute interval measurement method
JPH0778416B2 (en) Freeform measurement method
JPS59173748A (en) Detection for welding position