JPH07318499A - Surface defect detecting device - Google Patents

Surface defect detecting device

Info

Publication number
JPH07318499A
JPH07318499A JP11504594A JP11504594A JPH07318499A JP H07318499 A JPH07318499 A JP H07318499A JP 11504594 A JP11504594 A JP 11504594A JP 11504594 A JP11504594 A JP 11504594A JP H07318499 A JPH07318499 A JP H07318499A
Authority
JP
Japan
Prior art keywords
inspected
defect
width direction
lattice
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11504594A
Other languages
Japanese (ja)
Inventor
Minoru Onaka
実 大中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11504594A priority Critical patent/JPH07318499A/en
Publication of JPH07318499A publication Critical patent/JPH07318499A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To optically, efficiently and accurately detect a microscopic recess- projection defect caused on a surface of a steel plate used as an exterior trim material for an automobile or a domestic appliance or the like. CONSTITUTION:A device optically detects a microscopic recessprojection defect on a surface of a material 22 to be inspected. At least a single grid projector 21 is oppositely arranged on a surface of the carrying material 22 to be inspected in order to project grid stripes 23 having a constant stripe period obtained by interference of light in the width direction of the carrying material 22 to be inspected. A proper number of image pickup units 24 are arranged in close vicinity to the grid projector 21 in order to pick up an image of the grid stripes 23 projected on the material 22 to be inspected. A signal processor 25 is arranged to quantitatively determine a change in a stripe period in the width direction of the material 22 to be inspected from signals obtained by these image pickup units 24.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば自動車や家電製
品等の外装材として使用される鋼板表面に発生する微小
な深さの凹状欠陥又は高さの凸状欠陥を、光学的に効率
よくかつ高精度に検出できる検出装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is capable of optically and efficiently removing minute depth concave defects or height convex defects generated on the surface of a steel sheet used as an exterior material for automobiles and home appliances. The present invention also relates to a detection device that can detect with high accuracy.

【0002】[0002]

【従来の技術】例えば自動車のボディに使用される外装
鋼板は、プレス成型等の加工が加わるので、プレス成型
時に、被成型板である被検査材の裏面側に付着した異物
や、被検査材の表面側に発生した微小表面欠陥、あるい
はプレス金型に付着した異物等によってプレス成型品に
微小な欠陥を生じる。この微小な欠陥は、例えば深さが
数十μm程度であっても、塗装後、外観にあらわれるの
で外装鋼板としては使用できなくなる。従って、プレス
成型前、及びプレス成型後にこのような微小な表面欠陥
を検出することは、品質管理の重要な項目の1つとなっ
ている。
2. Description of the Related Art For example, an exterior steel sheet used for a body of an automobile is subjected to processing such as press forming. Therefore, at the time of press forming, foreign matter adhered to the back surface side of a material to be inspected, which is a plate to be molded, or a material to be inspected. A minute defect occurs in the press-molded product due to a minute surface defect generated on the surface side of the, or a foreign substance adhered to the press die. Even if the depth is, for example, about several tens of μm, these minute defects appear in the appearance after coating and cannot be used as an exterior steel plate. Therefore, detecting such minute surface defects before and after press molding is one of the important items of quality control.

【0003】この微小な表面欠陥を検出する装置とし
て、従来より光学式の欠陥検出装置が開発されてきた。
そして、その方式は大別すると次の2つになる。 健全部との反射光量差から欠陥を検出する方式 欠陥部の凹凸量を計測し、その大小から欠陥を検出
する方式
As a device for detecting this minute surface defect, an optical defect detection device has been conventionally developed.
The methods are roughly classified into the following two. Method to detect defects from the difference in the amount of reflected light from a sound area Method to detect defects based on the size of the unevenness of the defective area

【0004】このうちについては、図5に示すよう
に、レーザ1から照射するレーザ光を回転ミラー2で走
査しながら被検査材3の表面に照射し、その反射光を光
電変換器4により受光する方式(「目視検査の自動化技
術」p44〜46,日刊工業新聞社刊)等がある。な
お、図5中の5はフレネルレンズ、6は干渉フィルタを
示す。またについては、欠陥の凹凸によって生じる光
学系の焦点ズレから欠陥を検出する焦点法(特開平6−
74903号)等がある。
Among these, as shown in FIG. 5, laser light emitted from the laser 1 is applied to the surface of the material 3 to be inspected while scanning with the rotating mirror 2, and the reflected light is received by the photoelectric converter 4. There is a method to do so ("Automatic technology of visual inspection" p44-46, published by Nikkan Kogyo Shimbun). In FIG. 5, 5 is a Fresnel lens and 6 is an interference filter. As for the above, a focus method for detecting a defect from a focus shift of an optical system caused by unevenness of the defect (Japanese Patent Laid-Open No. 6-
74903).

【0005】[0005]

【発明が解決しようとする課題】の方式は、健全部と
欠陥部の反射光量差を検出する原理であるので、汚れや
錆等、健全部と反射率の異なる欠陥や、すり疵等の反射
光量差を生ずる程度の深さを有する欠陥の検出には適し
た方式である。しかも、搬送中における検査が比較的容
易であるので、鋼板表面の自動検査装置として一般的に
用いられているものである。
The method of [Problem to be solved by the invention] is based on the principle of detecting the difference in the amount of reflected light between a sound portion and a defective portion, and therefore, a defect such as dirt or rust having a different reflectance from the sound portion, or a reflection such as a scratch or the like. This method is suitable for detecting a defect having a depth that causes a light amount difference. Moreover, since the inspection during transportation is relatively easy, it is generally used as an automatic inspection device for the surface of a steel sheet.

【0006】しかしながら、上記したような自動車や電
化製品の外装材として用いられる材料に発生した深さが
数十μm程度の微小な欠陥は、健全部との反射光量差が
乏しいので、の方式ではその検出は困難である。
However, since the minute defect having a depth of about several tens of μm generated in the material used as the exterior material for automobiles and electric appliances as described above has a small difference in the amount of reflected light from the sound portion, the method of Its detection is difficult.

【0007】一方、の方式は、図6に示すように、切
り出した被検査材3をステージ7上に乗せ、ステージ7
を水平面方向に移動させつつそれぞれの位置において自
動焦点光学系の鉛直方向移動量を検出することにより、
被検査材3表面の凹凸を計測するものであるから、計測
精度がよく、微小な凹凸欠陥も検出可能であるが、反面
検査に多大の時間を要するという問題があることに加え
てオンラインでの適用は不可能である。なお、図6中の
8は表面高さ量検出装置、9は信号処理装置、10は表
示装置、11は水平面方向スケーラ、12は高さ方向ス
ケーラを示す。
On the other hand, in the method (1), as shown in FIG. 6, the cut inspection material 3 is placed on the stage 7,
By moving the vertical direction of the automatic focusing optical system at each position while moving the
Since the unevenness of the surface of the material 3 to be inspected is measured, the measurement accuracy is good and minute unevenness defects can be detected, but on the other hand, there is a problem that the inspection takes a lot of time and online Not applicable. In FIG. 6, 8 is a surface height amount detecting device, 9 is a signal processing device, 10 is a display device, 11 is a horizontal plane direction scaler, and 12 is a height direction scaler.

【0008】このように、現状では上記した微小な欠陥
をオンラインで自動的に、高精度かつ効率よく検出でき
る装置はないので、搬送ラインを移動する被検査材を停
止させた後、検査員が被検査材表面を砥石を使って研磨
することにより生じる欠陥部と健全部の光沢差を目視判
定することにより、あるいは凸状欠陥の場合は研磨時の
触感により欠陥判定を行っているのが実態である。
As described above, at present, there is no device that can automatically and automatically detect the above-mentioned minute defects online with high precision and efficiency. Actually, the defect is judged by visually judging the difference in gloss between the defective part and the sound part caused by polishing the surface of the material to be inspected with a grindstone, or in the case of a convex defect by the tactile feel during polishing. Is.

【0009】従って、検査そのものが非常に官能的であ
り個人差があるという問題に加え、砥石による研磨作業
が、検査員の大きな負担となっている。
Therefore, in addition to the problem that the inspection itself is very sensual and there are individual differences, the polishing work with a grindstone places a heavy burden on the inspector.

【0010】本発明は、上記した従来の表面欠陥検出装
置にあった問題点に鑑みてなされたものであり、数十μ
m程度の微小な凹凸欠陥を、オンラインで自動的に、高
精度にかつ効率よく検出できる表面欠陥検出装置を提供
することを目的としている。
The present invention has been made in view of the problems in the above-described conventional surface defect detecting apparatus, and is made up of several tens μ.
It is an object of the present invention to provide a surface defect detection device capable of automatically detecting a minute irregularity defect of about m, automatically, with high accuracy and efficiency.

【0011】[0011]

【課題を解決するための手段】上記した目的を達成する
ために、本発明の表面欠陥検出装置は、被検査材表面の
微小欠陥を光学的に検出する装置であって、被検査材の
幅方向に、光の干渉によって得られる一定の縞周期を持
った格子縞を投影すべく、被検査材の表面に相対して配
置された少なくとも1台の格子投影器と、被検査材の幅
方向に投影された格子縞を撮像すべく前記格子投影器に
近接配置された適数台の撮像器と、これら撮像器によっ
て得られた信号から被検査材幅方向における縞周期の変
動を定量化する信号処理器を具備させているのである。
In order to achieve the above-mentioned object, a surface defect detecting apparatus of the present invention is an apparatus for optically detecting a minute defect on the surface of a material to be inspected and having a width of the material to be inspected. Direction, in order to project a lattice fringe having a constant fringe period obtained by the interference of light, at least one grating projector disposed facing the surface of the inspection material and the width direction of the inspection material. An appropriate number of imagers arranged close to the lattice projector to image the projected lattice fringes, and signal processing for quantifying the variation of the fringe period in the width direction of the material to be inspected from the signals obtained by these imagers. It is equipped with a container.

【0012】本発明において、干渉縞を格子縞として被
検査材表面に投影するのは、原理的にも明らかなよう
に、上記したような微小欠陥を検出するために必要な細
かい格子縞周期が得られることに加えて、更に下記の2
つの理由による。
In the present invention, the interference fringes are projected onto the surface of the material to be inspected as lattice fringes, as is clear from the principle, and a fine lattice fringe period necessary for detecting the above-mentioned minute defects can be obtained. In addition to the following 2
For one reason.

【0013】先ず第1は、通常の金型格子を用いて格子
縞を投影(金型格子の陰影を投影)する場合には、凹凸
の計測ピッチ及び計測精度が使用した格子のピッチによ
って限定されるが、干渉縞の場合には干渉光学系の調整
により容易に格子縞周期を変更できるので、計測ピッチ
及び計測精度が検査対象に応じて容易に変更可能であ
る。
First, in the case of projecting a grid fringe (projecting a shadow of a mold grid) using a normal mold grid, the measurement pitch of irregularities and the measurement accuracy are limited by the pitch of the grid used. However, in the case of interference fringes, the grating fringe period can be easily changed by adjusting the interference optical system, so the measurement pitch and measurement accuracy can be easily changed according to the inspection target.

【0014】次に第2は、通常の金型格子を用いた場
合、切り出した被検査材への適用時には被検査材の湾曲
により、また被検査材搬送時にはパスライン変動により
金型格子と被検査材の距離が変化するので、格子縞がぼ
けてしまい計測精度が低下するが、干渉縞を格子縞とす
る場合には使用する光の可干渉範囲においてはそのよう
な心配はない。
Secondly, in the case of using an ordinary die grid, the die grid and the die grid are in contact with each other due to the bending of the inspected material when applied to the cut out inspected material and the change of the path line when the inspected material is conveyed. Since the distance of the inspection material changes, the lattice fringes are blurred and the measurement accuracy is reduced, but when the interference fringes are lattice fringes, there is no such concern in the coherent range of the light used.

【0015】また、本発明において、格子投影器により
搬送中の被検査材の全幅に格子縞を投影し、この被検査
材の全幅に投影された格子縞の全てを適数の撮像器によ
り一度に撮像すれば、被検査材の搬送中に連続して未検
査領域なく検査することも可能である。
Further, in the present invention, the lattice projector projects the lattice fringes on the entire width of the material to be inspected, and all the lattice fringes projected on the entire width of the material to be inspected are imaged at once by an appropriate number of image pickup devices. Then, it is possible to continuously inspect the material to be inspected without any uninspected area.

【0016】[0016]

【作用】本発明の表面欠陥検出装置は、被検査材の表面
に相対して配置された少なくとも1台の格子投影器から
光の干渉によって得られる被検査材幅方向に一定の縞周
期を持った格子縞を被検査材に投影する。そして、被検
査材の幅方向に投影された格子縞を前記格子投影器に近
接配置された適数の撮像器によって異なる角度から撮像
する。最後に、これら撮像器によって得られた信号から
信号処理器では被検査材幅方向における縞周期の変動を
定量化する。
The surface defect detecting apparatus of the present invention has a constant fringe period in the width direction of the material to be inspected, which is obtained by the interference of light from at least one grating projector arranged to face the surface of the material to be inspected. The checkered pattern is projected on the material to be inspected. Then, the lattice fringes projected in the width direction of the inspection material are imaged from different angles by an appropriate number of image pickup devices arranged close to the lattice projector. Finally, the signal processor quantifies the variation of the fringe period in the width direction of the material to be inspected from the signals obtained by these image pickup devices.

【0017】[0017]

【実施例】以下、本発明の表面欠陥検出装置を図1〜図
4に示す1実施例に基づいて説明する。図1は本発明装
置の全体構成を示す概略図、図2は本発明装置を構成す
る格子投影器の詳細図、図3は欠陥による縞周期変動の
説明図、図4は本発明装置を構成する信号処理器におけ
る縞周期変動算出方法の説明図であり、(a)は撮像器
の光軸方向から格子縞を見た図、(b)は(a)図にお
けるaとbの撮像器の出力信号を表した図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A surface defect detecting apparatus of the present invention will be described below based on an embodiment shown in FIGS. FIG. 1 is a schematic diagram showing the overall configuration of the device of the present invention, FIG. 2 is a detailed view of a grating projector that constitutes the device of the present invention, FIG. 3 is an explanatory diagram of fringe period fluctuation due to a defect, and FIG. 4 is a diagram of the device of the present invention. 6A and 6B are explanatory diagrams of a fringe period variation calculation method in the signal processor, in which FIG. 7A is a diagram of a lattice fringe viewed from the optical axis direction of the image pickup device, and FIG. It is the figure showing the signal.

【0018】図1において、21は搬送中の被検査材2
2の表面幅方向に一定の縞周期(明暗ピッチ)を持った
格子縞23を斜め方向から照射すべく、前記被検査材2
2の表面に相対して例えば角度φをもって例えば1台配
置された格子投影器である。
In FIG. 1, reference numeral 21 is a material to be inspected 2 being conveyed.
In order to irradiate the lattice stripes 23 having a constant stripe period (bright / dark pitch) in the surface width direction of 2 from the oblique direction,
It is a grating projector in which, for example, one unit is arranged at an angle φ relative to the surface of 2.

【0019】この格子投影器21は例えば図2に示すよ
うに、レーザ投光器21aと、このレーザ投光器21a
より射出されたレーザスポットを拡大する拡大レンズ系
21bと、この拡大レンズ系21bによって広げられた
レーザ光束21cを2方向に分割するビームスプリッタ
21dと、このビームスプリッタ21dによって分割さ
れたレーザ光束21cを反射する反射ミラー21e,2
1fを備えており、これら反射ミラー21e,21fで
反射したそれぞれのレーザ光束21cは再度ビームスプ
リッタ21dを通過し、搬送中の被検査材22の表面幅
方向に角度φの方向から照射される。
This grating projector 21 is, for example, as shown in FIG. 2, a laser projector 21a and this laser projector 21a.
A magnifying lens system 21b that magnifies the emitted laser spot, a beam splitter 21d that divides the laser light flux 21c expanded by this magnifying lens system 21b into two directions, and a laser light flux 21c that is split by this beam splitter 21d. Reflecting reflection mirrors 21e, 2
Each of the laser light fluxes 21c reflected by the reflection mirrors 21e and 21f passes through the beam splitter 21d again and is irradiated from the direction of the angle φ to the surface width direction of the inspection target material 22 being conveyed.

【0020】ここで、反射ミラー21fのみをレーザ光
束21cの入射方向と垂直な方向から角度θだけ傾ける
と、2分割されたレーザ光束21cに角度θに応じた光
路差が生じ、被検査材22の幅方向に一定の縞周期を持
った格子縞23が照射されることになる。
Here, if only the reflection mirror 21f is tilted by an angle θ from the direction perpendicular to the incident direction of the laser light beam 21c, an optical path difference corresponding to the angle θ is generated in the laser light beam 21c divided into two parts, and the inspection target material 22 is obtained. The lattice stripes 23 having a constant stripe period are radiated in the width direction.

【0021】24は上記したように搬送中の被検査材2
2の表面幅方向に照射された一定の縞周期を持った格子
縞23を撮像すべく、被検査材22の鉛直上方に例えば
前記格子投影器21と近接して適数台設置された例えば
CCDラインセンサのような幅方向に視野を有する撮像
器である。これらの撮像器24によって撮像された格子
縞23は信号処理器25によってその縞周期が算出さ
れ、被検査材22の表面に凹凸欠陥が存在する場合に
は、縞周期が健全部と異なることから欠陥が存在すると
判定する。
Reference numeral 24 denotes the material to be inspected 2 being conveyed as described above.
2, a suitable number of CCD lines, for example, are installed vertically above the material 22 to be inspected in the vicinity of the grid projector 21 in order to capture an image of the grid fringes 23 having a constant fringe period irradiated in the surface width direction. It is an imager having a field of view in the width direction like a sensor. The lattice fringes 23 imaged by these image pickup devices 24 have a fringe period calculated by the signal processor 25. If the surface of the inspected material 22 has irregularities, the fringe period is different from that of a sound portion, and thus the defect is a defect. Is determined to exist.

【0022】以下、図3を用いて被検査材22の表面に
凹状欠陥がある場合に生じる格子縞23の縞周期の変動
について詳細に説明する。図3において、被検査材22
の表面に照射される格子縞23の縞周期Poは、使用す
るレーザの波長をλとすると、図2における角度θを用
いて下記数式1で表される。
The variation of the fringe period of the lattice fringes 23 that occurs when the surface of the inspection material 22 has a concave defect will be described in detail below with reference to FIG. In FIG. 3, the material 22 to be inspected
The fringe period Po of the lattice fringes 23 radiated on the surface of is expressed by the following mathematical formula 1 using the angle θ in FIG. 2 where the wavelength of the laser used is λ.

【0023】[0023]

【数1】Po=λ/(2× tanθ)[Equation 1] Po = λ / (2 × tan θ)

【0024】次に、格子縞23が被検査材22に対し図
2に示すように角度φで照射されるとすると、被検査材
22に対向する位置に設置された撮像器24の光軸方向
での健全部における格子縞23の縞周期Pnは下記数式
2で表される。
Next, assuming that the lattice fringes 23 are irradiated onto the inspection target material 22 at an angle φ as shown in FIG. 2, in the optical axis direction of the image pickup device 24 installed at a position facing the inspection target material 22. The fringe period Pn of the lattice fringes 23 in the sound portion is expressed by Equation 2 below.

【0025】[0025]

【数2】Pn=Po/ sinφ[Formula 2] Pn = Po / sin φ

【0026】ここで、被検査材22に深さdをもった凹
状欠陥26が存在する場合を考えると、凹状欠陥26の
エッジ部において本来ならば図3のA点に格子縞23の
明点が存在するはずのものが、A’点に格子縞23の明
点が移動することになる。従って、凹状欠陥26のエッ
ジ部における格子縞23の縞周期Pdは撮像器24の光
軸方向でみた場合には下記数式3で表され、健全部にお
ける格子縞23の縞周期Pnとは異なることになる。
Now, considering the case where the inspection target material 22 has a concave defect 26 having a depth d, the bright point of the lattice fringe 23 is originally at the point A in FIG. 3 at the edge portion of the concave defect 26. What should have existed, the bright points of the lattice fringes 23 move to point A '. Therefore, the fringe period Pd of the lattice fringes 23 at the edge portion of the concave defect 26 is represented by the following mathematical formula 3 when viewed in the optical axis direction of the image pickup device 24, and is different from the fringe period Pn of the lattice fringes 23 in the sound portion. .

【0027】[0027]

【数3】Pd=Pn+d/ tanφ[Formula 3] Pd = Pn + d / tan φ

【0028】以上説明したように、凹状欠陥26部にお
いては撮像器24上に結像される格子縞23の縞周期が
健全部と異なるので、縞周期の変動(d/tanφ)を算出
すれば欠陥の検出が可能となることは明らかである。こ
のことは凸状欠陥部でも同様である。
As described above, since the fringe period of the lattice fringes 23 imaged on the image pickup device 24 in the concave defect portion 26 is different from that of the sound portion, the defect can be obtained by calculating the variation of the fringe period (d / tan φ). It is clear that the detection of This also applies to the convex defect portion.

【0029】次に、本発明における格子投影器21(光
学系の各パラメータ)について、実際の設定値を用いて
数十μmの深さ又は高さの凹凸を持った欠陥の検出が可
能であることを説明する。レーザの波長λ=0.488
μm(Arレーザ)、反射ミラー21fの傾斜角度θ=
0.05°とすると、上記数式1よりPo=0.28m
mとなる。また、格子縞23の照射角φ=5°とする
と、上記数式2よりPn=3.2mmとなる。従って、
格子縞23は被検査材22の幅方向に3.2mmピッチ
で照射されることになるが、通常微小な凹凸欠陥の面積
は直径が数十mmであるので、凹凸を算出する板幅方向
サンプリングピッチとしては問題ないと考えられる。
Next, with respect to the grating projector 21 (each parameter of the optical system) in the present invention, it is possible to detect defects having unevenness with a depth or height of several tens of μm by using actual set values. Explain that. Laser wavelength λ = 0.488
μm (Ar laser), the inclination angle θ of the reflection mirror 21f =
If 0.05 °, Po = 0.28m from the above formula 1.
m. Further, if the irradiation angle φ of the lattice stripes 23 is 5 °, then Pn = 3.2 mm from the above mathematical formula 2. Therefore,
The lattice stripes 23 are irradiated at a pitch of 3.2 mm in the width direction of the material 22 to be inspected. However, since the area of a fine unevenness defect is usually several tens of mm in diameter, the sampling pitch in the plate width direction for calculating the unevenness is obtained. It seems that there is no problem.

【0030】次に、撮像器24において欠陥の凹凸を計
測する分解能について説明する。撮像器24として、C
CD素子24a数が5000pixel のCCDラインセン
サを使用し、その被検査材22幅方向の視野が160m
mとなるようなカメラレンズ24bを用いるとすると、
視野内には160mm/3.2mm=50周期分の格子
縞23が撮像される。この時、格子縞23の1周期Pn
に相当する画素数は5000pixel /50周期=100
pixel となる。
Next, the resolution for measuring the unevenness of the defect in the image pickup device 24 will be described. As the imager 24, C
A CCD line sensor with the number of CD elements 24a of 5000 pixels is used, and the field of view in the width direction of the inspected material 22 is 160 m.
Assuming that the camera lens 24b having m is used,
In the visual field, the lattice fringes 23 of 160 mm / 3.2 mm = 50 cycles are imaged. At this time, one period Pn of the lattice stripes 23
The number of pixels corresponding to is 5000 pixels / 50 cycles = 100
It becomes pixel.

【0031】従って、撮像器24における欠陥の凹凸を
計測する分解能をΔdとすると、Δdは上記した数式3
においてPd=2×Pnとなる場合の欠陥の深さdを1
00分割した値と等価であるので、Δd=Pn× tanφ
/100=2.8μmとなる。これは、数十μmの凹凸
を持った欠陥を検出するには十分な分解能である。
Therefore, assuming that the resolution for measuring the irregularities of the defect in the image pickup device 24 is Δd, Δd is given by the above-mentioned formula 3
In case of Pd = 2 × Pn, the defect depth d is set to 1
Since it is equivalent to the value divided by 00, Δd = Pn × tan φ
/100=2.8 μm. This is a resolution sufficient to detect a defect having unevenness of several tens of μm.

【0032】以上の説明は、光学系のパラメータ設定値
の一例であり、必ずしも上記の値を用いる必要がないこ
とは言うまでもなく、検出したい欠陥の形状(凹凸、面
積)に応じて最適なパラメータを決定すればよい。ま
た、基本となる縞周期Poは反射ミラーの振れ角θを変
えるだけで容易に変更が可能である。さらに、被検査材
22の搬送中に上下方向の変動が生じた場合には、格子
縞23の明暗位置は変化するが縞周期は変動しないの
で、周期変動を算出する事により欠陥を検出する上では
問題は生じない。
The above description is an example of the parameter setting values of the optical system, and it goes without saying that it is not always necessary to use the above values, and the optimum parameters can be set according to the shape (concavity and convexity, area) of the defect to be detected. Just decide. Further, the basic fringe period Po can be easily changed only by changing the deflection angle θ of the reflection mirror. Furthermore, when vertical fluctuations occur during the transportation of the material 22 to be inspected, the bright and dark positions of the lattice stripes 23 change but the stripe cycle does not change. Therefore, in detecting the defect by calculating the cycle fluctuation, There is no problem.

【0033】またさらに、撮像器24としてCCDライ
ンセンサを使用した場合には、通常CCDラインセンサ
の走査周波数は数kHzであり、パスライン変動の周波
数(通常、数Hz〜数十Hz)よりもかなり高い周波数
であるので、CCDラインセンサの一走査中に格子縞2
3の明暗位置に極端な変化が生じることも考えにくく、
問題とはならない。なお、被検査材22の例えば全幅を
検査する場合には上記パラメータ設定値で述べれば、被
検査材22の全幅を1600mmとすると、幅方向に1
0台のCCDラインセンサを設置すればよい。
Furthermore, when a CCD line sensor is used as the image pickup device 24, the scanning frequency of the CCD line sensor is usually several kHz, which is higher than the pass line fluctuation frequency (normally several Hz to several tens Hz). Since the frequency is quite high, the lattice stripes 2 during one scan of the CCD line sensor.
It is unlikely that the light and dark positions of 3 will change extremely,
It doesn't matter. In the case of inspecting, for example, the entire width of the inspected material 22, if the above-mentioned parameter setting value is mentioned, assuming that the inspected material 22 has an overall width of 1600 mm, it is 1
It suffices to install 0 CCD line sensors.

【0034】最後に、信号処理器25における縞周期変
動の算出方法を図4を用いて説明する。図4(a)は撮
像器24の光軸方向から格子縞23を見た図であり、こ
の図より、欠陥部においては特にエッジ部の縞周期が変
動することが判る。この撮像器24の視野は被検査材2
2が搬送されることによって図4(a)のaからbへと
変化するが、それぞれの視野における撮像器24の出力
信号を示したのが図4(b)である。
Finally, a method of calculating the fringe period variation in the signal processor 25 will be described with reference to FIG. FIG. 4A is a view of the lattice stripes 23 viewed from the optical axis direction of the image pickup device 24. From this figure, it can be seen that the stripe period of the edge portion particularly varies in the defective portion. The field of view of the image pickup device 24 is the inspection object 2
4 is changed from “a” to “b” in FIG. 4A when 2 is conveyed, but FIG. 4B shows the output signal of the image pickup device 24 in each visual field.

【0035】信号処理器25では撮像器24からの図4
(b)ような出力信号を適当なしきい値で2値化した後
縞周期を算出し、縞周期に変動がある部分を欠陥と判定
する。ここで、変動有無の基準となる縞周期は、撮像器
24の一視野内の平均の縞周期を使ってもよいし、被検
査材22の走行方向における複数の視野から得られる平
均の縞周期を用いてもよい。
In the signal processor 25, as shown in FIG.
After binarizing the output signal as shown in (b) with an appropriate threshold value, the fringe period is calculated, and a portion having a variation in the fringe period is determined as a defect. Here, as the fringe period which is the reference of the presence or absence of fluctuation, an average fringe period within one visual field of the image pickup device 24 may be used, or an average fringe period obtained from a plurality of visual fields in the traveling direction of the inspection target material 22. May be used.

【0036】なお、以上の説明は被検査材22の搬送中
における欠陥検出について説明したが、静止している被
検査材22に対しても格子投影器21や撮像器24を被
検査材22の長手方向に走査すればよいことは言うまで
もない。また、本実施例では1台の格子投影器21で被
検査材22の全幅に格子縞を投影するものを示したが、
複数の格子投影器21を例えば千鳥状に配置し、これら
複数の格子投影器21によって被検査材22の全幅に格
子縞を投影してもよい。また、本実施例では被検査材2
2の全幅に格子縞を投影するものを示したが、全幅に投
影しなくてもよい。
In the above description, the defect detection during the transportation of the inspected material 22 has been described, but the grating projector 21 and the image pickup device 24 are used for the inspected material 22 even when the inspected material 22 is stationary. It goes without saying that scanning may be performed in the longitudinal direction. In addition, in the present embodiment, one grid projector 21 projects grid fringes on the entire width of the material 22 to be inspected.
For example, a plurality of grid projectors 21 may be arranged in a staggered pattern, and the grid stripes may be projected on the entire width of the inspection target material 22 by the plurality of grid projectors 21. Further, in this embodiment, the material to be inspected 2
Although the grid pattern is projected on the entire width of No. 2, it is not necessary to project the grid pattern on the entire width.

【0037】[0037]

【発明の効果】以上説明したように、本発明の表面欠陥
検出装置によれば、被検査材の表面に相対して配置され
た少なくとも1台の格子投影器から光の干渉によって得
られる一定の縞周期を持った格子縞を被検査材の幅方向
に投影し、被検査材に投影された格子縞を前記格子投影
器に近接配置された適数台の撮像器によって異なる角度
から撮像した後、これら撮像器によって得られた信号か
ら信号処理器で被検査材幅方向における縞周期の変動を
定量化するので、従来の光学式欠陥検出装置では検出が
困難であった微小な凹凸欠陥を、被検査材の搬送中にお
いても自動的にかつ高精度に検出できる。また、目視に
よる検出のような個人差もない。
As described above, according to the surface defect detecting apparatus of the present invention, a certain amount of light can be obtained by the interference of light from at least one grating projector arranged to face the surface of the material to be inspected. After projecting a lattice fringe having a fringe period in the width direction of the inspected material, the lattice fringes projected on the inspected material are imaged from different angles by an appropriate number of image pickup devices arranged close to the lattice projector, and then these Since the signal processor quantifies the fluctuation of the fringe period in the width direction of the material to be inspected from the signal obtained by the imager, it is possible to inspect the minute unevenness defects that were difficult to detect by the conventional optical defect detection device. It is possible to detect automatically and with high accuracy even during the transportation of the material. Further, there is no individual difference such as visual detection.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明装置の全体構成を示す概略図である。FIG. 1 is a schematic diagram showing the overall configuration of a device of the present invention.

【図2】本発明装置を構成する格子投影器の詳細図であ
る。
FIG. 2 is a detailed view of a grating projector which constitutes the device of the present invention.

【図3】欠陥による縞周期変動の説明図である。FIG. 3 is an explanatory diagram of fringe period variation due to a defect.

【図4】本発明装置を構成する信号処理器における縞周
期変動算出方法の説明図であり、(a)は撮像器の光軸
方向から格子縞を見た図、(b)は(a)図におけるa
とbの撮像器の出力信号を表した図である。
4A and 4B are explanatory diagrams of a fringe period variation calculation method in a signal processor constituting the device of the present invention, FIG. 4A is a diagram of a lattice fringe seen from the optical axis direction of the image pickup device, and FIG. In
It is a figure showing the output signal of the image sensor of b.

【図5】従来の表面欠陥検出装置の説明図である。FIG. 5 is an explanatory diagram of a conventional surface defect detection device.

【図6】従来の表面欠陥検出装置の説明図である。FIG. 6 is an explanatory diagram of a conventional surface defect detection device.

【符号の説明】[Explanation of symbols]

21 格子投影器 22 被検査材 23 格子縞 24 撮像器 25 信号処理器 21 Lattice Projector 22 Inspected Material 23 Lattice Stripe 24 Imager 25 Signal Processor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被検査材表面の微小欠陥を光学的に検出
する装置であって、被検査材の幅方向に、光の干渉によ
って得られる一定の縞周期を持った格子縞を投影すべ
く、被検査材の表面に相対して配置された少なくとも1
台の格子投影器と、被検査材の幅方向に投影された格子
縞を撮像すべく前記格子投影器に近接配置された適数台
の撮像器と、これら撮像器によって得られた信号から被
検査材幅方向における縞周期の変動を定量化する信号処
理器を具備したことを特徴とする表面欠陥検出装置。
1. A device for optically detecting microscopic defects on the surface of a material to be inspected, for projecting lattice fringes having a constant fringe period obtained by interference of light in the width direction of the material to be inspected. At least one that is arranged relative to the surface of the material to be inspected
Table grating projector, a suitable number of image sensors arranged in close proximity to the grating projector to image the lattice stripes projected in the width direction of the material to be inspected, and the signal to be inspected from these image sensors A surface defect detecting device comprising a signal processor for quantifying a variation of a fringe period in a material width direction.
JP11504594A 1994-05-27 1994-05-27 Surface defect detecting device Pending JPH07318499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11504594A JPH07318499A (en) 1994-05-27 1994-05-27 Surface defect detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11504594A JPH07318499A (en) 1994-05-27 1994-05-27 Surface defect detecting device

Publications (1)

Publication Number Publication Date
JPH07318499A true JPH07318499A (en) 1995-12-08

Family

ID=14652828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11504594A Pending JPH07318499A (en) 1994-05-27 1994-05-27 Surface defect detecting device

Country Status (1)

Country Link
JP (1) JPH07318499A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002250694A (en) * 2001-02-23 2002-09-06 Hitachi Ltd Method and device for contactless visual inspection
KR101340336B1 (en) * 2010-04-29 2013-12-13 주식회사 미르기술 Vision inspection apparatus
TWI490481B (en) * 2013-05-27 2015-07-01 中原大學 On - line Inspection Method for Panel 3D Defects
CN115165920A (en) * 2022-09-06 2022-10-11 南昌昂坤半导体设备有限公司 Three-dimensional defect detection method and detection equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002250694A (en) * 2001-02-23 2002-09-06 Hitachi Ltd Method and device for contactless visual inspection
KR101340336B1 (en) * 2010-04-29 2013-12-13 주식회사 미르기술 Vision inspection apparatus
TWI490481B (en) * 2013-05-27 2015-07-01 中原大學 On - line Inspection Method for Panel 3D Defects
CN115165920A (en) * 2022-09-06 2022-10-11 南昌昂坤半导体设备有限公司 Three-dimensional defect detection method and detection equipment

Similar Documents

Publication Publication Date Title
US5125741A (en) Method and apparatus for inspecting surface conditions
US7499156B2 (en) Closed region defect detection system
US9891168B2 (en) Device and method for sensing at least one partially specular surface with column-by-column analysis of the global or local intensity maximum
JP2012078144A (en) Surface defect inspection device for transparent body sheet-like material
JPS6036013B2 (en) Metal surface defect inspection method
JPH06241758A (en) Flaw inspection device
JP2012013614A (en) Specular inspection method and specular inspection device
JP2008157788A (en) Surface inspection method and device
JPH03295408A (en) Method and instrument for inspecting uneven surface
JPH0373831A (en) Device for inspecting defect
JPH07318499A (en) Surface defect detecting device
JPH07218449A (en) Method for optically detecting surface defect
JP2006017685A (en) Surface defect inspection device
JPH06281593A (en) Method and apparatus for inspecting surface
JPH07239304A (en) Detector for detecting defect of surface layer
JPH09105618A (en) Method and apparatus for inspection of defect on smooth surface of object as well as method and apparatus for measurement of roughness on surface of object
JP4035558B2 (en) Surface inspection device
JPH0972722A (en) Board external appearance inspecting apparatus
JPS5933855B2 (en) Surface inspection method
JPH0868760A (en) Surface laser flaw detector
JP2000314707A (en) Device and method for inspecting surface
JP2008032669A (en) Optical scanning type planal visual inspecting apparatus
JPH07225198A (en) Line inspection method of glass substrate
JP6984964B1 (en) Surface shape inspection device and surface shape inspection method
JPH0599639A (en) Inspection device for small unevenness of planar object