JPH0599639A - Inspection device for small unevenness of planar object - Google Patents

Inspection device for small unevenness of planar object

Info

Publication number
JPH0599639A
JPH0599639A JP3262431A JP26243191A JPH0599639A JP H0599639 A JPH0599639 A JP H0599639A JP 3262431 A JP3262431 A JP 3262431A JP 26243191 A JP26243191 A JP 26243191A JP H0599639 A JPH0599639 A JP H0599639A
Authority
JP
Japan
Prior art keywords
light
defect
inspection
angle
screen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3262431A
Other languages
Japanese (ja)
Inventor
Noriaki Saito
憲敬 斎藤
Masaki Fuse
正樹 布施
Manabu Kagami
学 各務
Tadashi Suga
忠 須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP3262431A priority Critical patent/JPH0599639A/en
Publication of JPH0599639A publication Critical patent/JPH0599639A/en
Pending legal-status Critical Current

Links

Landscapes

  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)

Abstract

PURPOSE:To provide an inspection device capable of recognizing defects with high accuracy and being easily controlled with a simple optical system and easily detecting unevenness defects of a large area even with a size in an order of millimeters. CONSTITUTION:An inspection device for small unevenness of planar objects comprises a laser light source 2, an optical fiber 6 of a core diameter (a), a convex lens 7 having a focal distance (f) of more than 100a, a cylindrical lens 8 for causing light to impinge on the surface of a planar subject for inspection, a screen 4 on which light reflected from the surface of the subject for inspection is projected, a CCD camera 5 for taking screen images, and an image processing portion 9. The convex lens 7 is disposed at a place separate by more than the focal distance from the end of the optical fiber and the cylindrical lens 8 forms light emitted from the convex lens 7 into rough slit light and causes the rough slit light to impinge on the surface of the planar subject for inspection at an angle of incidence phi from the diagonal direction, and light reflected at the surface in accordance with the surface configuration is projected onto the screen and the image processing portion 9 recognizes defective parts from image data.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、合成樹脂や金属製の
板、フィルム、および、表面が平滑な被検査物等にレー
ザー光を照射し、その表面反射光から被検査物の緩やか
な凹凸、異物、傷を検査する検査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention irradiates a synthetic resin or metal plate, a film, or an object to be inspected having a smooth surface with a laser beam, and from the reflected light from the surface, a gentle unevenness of the object to be inspected. , An inspection device for inspecting foreign matters and scratches.

【0002】[0002]

【従来の技術】従来、検査対象に接触しない検査装置
に、側方照明を行ない、欠陥部から生じる散乱光を真上
からCCDカメラで撮影して急峻な凹凸(ひび、突起異
物、フィッシュアイ等)を検査する装置がある。他方、
緩やかな凹凸を検査する装置としては、光の干渉を利用
した装置が提案されている。また、自動車のボディなど
の数センチオーダの大きな面積のへこみ等の検査装置と
して、ランプ光源を用いて斜めから照射させスクリーン
上に反射光を投影させる装置が提案されている(Rodger
L.R.他、Proc. SPIEVol.954, P.208,1990)。
2. Description of the Related Art Conventionally, an inspection device which does not come into contact with an object to be inspected is laterally illuminated, and scattered light generated from a defect portion is photographed from directly above by a CCD camera so that sharp irregularities (cracks, protrusion foreign matters, fish eyes, etc.) can be obtained. ) Is inspected. On the other hand,
As a device for inspecting gentle unevenness, a device utilizing light interference has been proposed. Further, as a device for inspecting a large area such as a car body such as a dent on the order of several centimeters, a device for projecting a reflected light on a screen by irradiating it obliquely with a lamp light source has been proposed (Rodger
LR et al., Proc. SPIE Vol.954, P.208, 1990).

【0003】[0003]

【発明が解決しようとする課題】側方照明し、散乱光を
CCDカメラで撮影する装置では、十分な散乱光強度が
得られるような、急峻な凹凸(ひび、突起異物、フィッ
シュアイ等)を検査することは可能だが、緩やかな凹凸
を検査することは不可能である。また、光の干渉を利用
した装置では、光学系が複雑で、被検査物の傾きや位置
決め精度が厳しい上に、画像処理も煩雑であり、工場の
製造ライン等で使用できる簡便な検査装置として顕著な
ものは見当たらない。さらに、ランプ光源を斜めから照
射させスクリーンに投影させる装置では、光源としてラ
ンプを用いており、弱い凹凸欠陥でも検出できる条件を
与えていないため、大きな面積の凹凸欠陥などは容易に
検出できるが、ミリオーダーサイズになると、不可能と
なる。
SUMMARY OF THE INVENTION In a device that laterally illuminates and captures scattered light with a CCD camera, sharp irregularities (cracks, protruding foreign matter, fish eyes, etc.) that can obtain a sufficient scattered light intensity can be obtained. It is possible to inspect, but it is not possible to inspect mild irregularities. Further, in the device utilizing the interference of light, the optical system is complicated, the inclination and positioning accuracy of the object to be inspected are strict, and the image processing is also complicated, and as a simple inspection device that can be used in a factory production line or the like. I can't find anything remarkable. Furthermore, in a device that projects a lamp light source from a diagonal direction and projects it on a screen, a lamp is used as a light source, and conditions that can detect even weak uneven defects are not given, so that large-area uneven defects can be easily detected. When it comes to the millimeter order size, it becomes impossible.

【0004】この発明は、上記の背景に基づきなされた
ものであり、その目的とするところは、緩やかな凹凸の
欠陥が検査可能であり、光学系が簡単で、簡易に操作で
きて工場の製造ライン等で使用できる簡便な検査装置と
して使用でき、大きな面積の凹凸欠陥などは容易に検出
できると共に、ミリオーダーサイズでも検出できる平面
状物の緩やかな凹凸検査装置を提供することである。
The present invention has been made on the basis of the above background, and its object is to make it possible to inspect defects of gentle unevenness, to make the optical system simple and to operate easily, and to manufacture the factory. An object of the present invention is to provide a gentle unevenness inspection device that can be used as a simple inspection device that can be used in a line or the like, and that can easily detect a large-area unevenness defect and the like and also detect even a millimeter order size.

【0005】[0005]

【課題を解決するための手段】上記課題は、以下の本発
明により解決される。すなわち、この発明の平面状物の
緩やかな凹凸検査装置は、波長λのレーザー光源と、レ
ーザー光を導くコア径aの光ファイバと、光ファイバか
らの出射光を実質的に平行にする、焦点距離fが100
×a以上の凸レンズと、凸レンズからのレーザー光を一
方向に拡大して平面状被検査物表面に入射させるシリン
ドリカルレンズと、被検査物表面からの反射光を映すス
クリーンと、スクリーン上の像を撮影するエリア型又は
ライン型CCDカメラと、CCDカメラからの画像デー
タを処理する画像処理部とから構成される、欠陥幅が
W、欠陥面の平均傾斜角がΔθである緩やかな凹凸欠陥
表面を有する被検査物に対する凹凸検査装置であって、
凸レンズが、光ファイバ端から焦点距離以上離れたとこ
ろに配置され、シリンドリカルレンズが、凸レンズから
の出射光を、入射面内で僅かな拡がり角(2θL)をも
ち、それに垂直な方向に必要な検査幅を得る拡がり角
(2θT)を持つ概略スリット光に形成し、概略スリッ
ト光を平面状被検査物表面に斜めから入射角φで入射さ
せ、表面形状を反映して表面反射した光をスクリーン上
に投影させ、画像処理部が、スクリーン上の投影像の画
像データを処理し、濃淡検査を行なって欠陥部位を判定
することを特徴とするものである。
The above-mentioned problems can be solved by the present invention described below. That is, the apparatus for inspecting gradual unevenness of a planar object according to the present invention includes a laser light source having a wavelength λ, an optical fiber having a core diameter a for guiding laser light, and a light beam emitted from the optical fiber. Distance f is 100
A convex lens of × a or more, a cylindrical lens that expands the laser light from the convex lens in one direction and makes it incident on the surface of the flat object to be inspected, a screen that reflects the light reflected from the surface of the object to be inspected, and an image on the screen. A gentle uneven defect surface having a defect width W and an average inclination angle of the defect surface of Δθ, which is composed of an area type or line type CCD camera for photographing and an image processing unit for processing image data from the CCD camera. An unevenness inspection device for an inspected object,
The convex lens is arranged at a distance more than the focal length from the end of the optical fiber, and the cylindrical lens has a slight divergence angle (2θ L ) in the incident surface for the light emitted from the convex lens, which is required in the direction perpendicular to it. Form a slit light with a spread angle (2θ T ) to obtain the inspection width, and let the slit light incident on the surface of the flat object at an angle of incidence φ, and reflect the surface reflected light reflecting the surface shape. It is characterized in that the image is projected on a screen, and the image processing unit processes the image data of the projected image on the screen and performs a density inspection to determine a defective portion.

【0006】この発明の好ましい態様において、欠陥幅
がW、欠陥面の平均傾斜角がΔθである検出対象の凹凸
欠陥の形状と、凸レンズと検出対象の凹凸欠陥間距離L
1、検出対象の凹凸欠陥とスクリーン間距離L2の関係
が、シリンドリカルレンズからの入射光と被検査物表面
の法線とのなす入射角φ、角度θ=90゜−φとすると、
{2L1L2/(L1+L2)sinθ} > {W/tanΔθ}
である。
In a preferred embodiment of the present invention, the shape of the uneven defect to be detected having a defect width of W and the average inclination angle of the defect surface is Δθ, and the distance L between the convex lens and the uneven defect of the object to be detected.
1. If the relationship between the unevenness defect to be detected and the inter-screen distance L2 is the incident angle φ between the incident light from the cylindrical lens and the normal to the surface of the object to be inspected, and the angle θ = 90 ° −φ,
{2L1L2 / (L1 + L2) sinθ}> {W / tan Δθ}
Is.

【0007】更に、好ましい態様において、CCDカメ
ラの分解能Resとビーム拡がり角θLとの関係が、 Res > {λ/2θL 2} である。
Furthermore, in a preferred embodiment, the relationship between the resolution Res and the beam divergence angle θL of the CCD camera, is Res> {λ / 2θ L 2 }.

【0008】[0008]

【作用】上記構成を有するこの発明では、以下のように
作用・動作する。本発明による装置を例示する図1に示
すように、光源としてレーザー光を用い、検査位置まで
光ファイバでレーザー光を導き、凸レンズとシリンドリ
カルレンズを用いて、入射面に垂直、平行方向の拡がり
角が、それぞれ、θT、θL(θT>θL)のスリット光を
形成し、平面状被検査物に対して斜めから角度θ(入射
角φとすると、θ=90゜−φ)で入射させ、緩やかな
凹凸の部位と平滑な部位のわずかな反射角の違いを、検
査対象の位置からL2の距離に配置したスクリーン上に
投影し、位置情報に変換させる。したがって、検査対象
面が完全な平坦面であった場合、スクリーン上では光線
密度はマクロ的に均一であるが、欠陥部が存在すると、
図2に例示するように、光線密度の疎密が生じ、表面の
起伏状態に対応した光強度分布10が得られる。
According to the present invention having the above-mentioned structure, the following operations and operations are performed. As shown in FIG. 1 exemplifying the device according to the present invention, a laser beam is used as a light source, the laser beam is guided to an inspection position by an optical fiber, and a convex lens and a cylindrical lens are used to spread an angle of divergence in a direction perpendicular to and parallel to an incident surface. Respectively form slit lights of θ T and θ LT > θ L ) and are oblique to the plane inspection object at an angle θ (incident angle φ is θ = 90 ° −φ). It is made incident, and a slight difference in reflection angle between the site of gentle unevenness and the site of smoothness is projected on a screen arranged at a distance L2 from the position of the inspection object and converted into position information. Therefore, when the surface to be inspected is a completely flat surface, the light density is macroscopically uniform on the screen, but if there is a defective portion,
As illustrated in FIG. 2, the density of light rays becomes uneven, and a light intensity distribution 10 corresponding to the undulating state of the surface is obtained.

【0009】入射面に対し垂直方向の拡がり角θTは被
検査物の必要検査範囲に対応して選定し、凹または凸の
シリンドリカルレンズを用いて形成する。今、検査対象
面が完全な平坦面としたとき、凸レンズから出た光線が
スクリーン面上までの間で全く交わらないような光学系
を形成すれば、検査対象面上に微小な欠陥があっても、
像がボケること無く忠実に投影されることにになる。こ
の条件を達成するためには、光ファイバ出射端と凸レン
ズ間の距離がフランフォーファー領域にあればよく、コ
ア径aの100倍以上である。なお、凸レンズと検査対
象間の距離をL1とすると、つまり、 L1≧f≧100×a (1) の関係を満たすことが必要となる。
The divergence angle θT in the direction perpendicular to the incident surface is selected in accordance with the required inspection range of the object to be inspected, and is formed by using a concave or convex cylindrical lens. Now, when the surface to be inspected is a completely flat surface, if an optical system is formed so that the light rays emitted from the convex lens do not intersect at all up to the screen surface, there will be minute defects on the surface to be inspected. Also,
The image will be projected faithfully without blurring. In order to achieve this condition, the distance between the exit end of the optical fiber and the convex lens only needs to be in the Fraunhofer region, which is 100 times or more the core diameter a. When the distance between the convex lens and the inspection object is L1, that is, it is necessary to satisfy the relationship of L1 ≧ f ≧ 100 × a (1).

【0010】被検査物表面の検査を概略的に図示する図
3を用いて、この発明の好ましい態様の検査装置の原理
を説明する。図3に示すような傾きΔθを有する欠陥部
から反射する光線は、スクリーン上に投影される位置が
平坦であった場合より、 S1 = L2tan(Δθ) (2) だけシフトする。このシフト量が、欠陥領域Wからの投
影幅MW、 MW={(L1+L2)/L1×Wsinθ} (3) 以上であれば、光線が加算されて、光線密度が増加し、
スクリーン上で明るくなり、投影幅MW内に暗部が生じ
るため、欠陥形状を反映したコントラストが増強される
ことになる。つまり、S1>MW/2の条件を満たすよう
にL1,L2,θを設定すると、欠陥幅W以下と傾きΔθ
以上の凹凸欠陥が検出できることになる。この条件を書
き直すと次式の通りである。 {2L1L2/(L1+L2)sinθ} > {W/tanΔθ} (4) (4)式で示すように、スクリーンを十分遠方に置くこと
により、欠陥部と正常部のコントラストをはっきりさせ
ることができる。なお、スクリーンを十分遠方に置くこ
とができない場合、スクリーンと被検査物の間に凹面の
シリンドリカルレンズ等を置くことにより拡大率を大き
くすることが可能である。
The principle of the inspection apparatus according to the preferred embodiment of the present invention will be described with reference to FIG. 3 schematically showing the inspection of the surface of the object to be inspected. The light ray reflected from the defect portion having the inclination Δθ as shown in FIG. 3 shifts by S1 = L2tan (Δθ) (2) as compared with the case where the position projected on the screen is flat. If this shift amount is the projection width MW from the defect area W, MW = {(L1 + L2) / L1 × Wsinθ} (3) or more, the rays are added to increase the ray density,
Since it becomes bright on the screen and a dark portion is generated within the projection width MW, the contrast reflecting the defect shape is enhanced. That is, if L1, L2, and θ are set so as to satisfy the condition of S1> MW / 2, the defect width W or less and the inclination Δθ are set.
The above unevenness defects can be detected. Rewriting this condition gives the following equation. {2L1L2 / (L1 + L2) sinθ}> {W / tanΔθ} (4) As shown by the formula (4), the contrast between the defective portion and the normal portion can be made clear by placing the screen sufficiently far away. .. If the screen cannot be placed far away, it is possible to increase the magnification by placing a concave cylindrical lens or the like between the screen and the object to be inspected.

【0011】次に、スペックルノイズをの除去するこの
発明の好ましい態様の検査装置の機能を説明する。像が
拡大されるためCCDカメラの分解能を大きくでき、レ
ーザー等のコヒーレンシィの高い光源を用いた場合に生
じるスペックルノイズを除去できる。スペックルの平均
径は、波長λと光ビームの拡がり角θLを用いて、λ/
(4θL 2)で表わされるので、CCDカメラ5の分解能(R
es)を(5)式の関係を満たすものとすれば、画像のスペ
ックルノイズの影響を除去することが可能となる。 Res > {λ/2θL 2} (5) この態様では、形状の変化だけではなく、被検査物表面
での反射率の変化、例えば、異物欠陥や、傷欠陥などが
存在する場合でもスクリーン上の強度分布の変化として
捕らえることが可能となる。
Next, the function of the inspection apparatus of the preferred embodiment of the present invention for removing speckle noise will be described. Since the image is enlarged, the resolution of the CCD camera can be increased, and speckle noise that occurs when a light source with high coherency such as a laser is used can be removed. The average diameter of the speckle is λ /, using the wavelength λ and the spread angle θ L of the light beam.
Since it is represented by (4θ L 2 ), the resolution (R
If es) satisfies the relationship of the expression (5), it is possible to remove the influence of speckle noise of the image. Res> {λ / 2θ L 2 } (5) In this mode, not only the change in shape but also the change in the reflectance on the surface of the inspection object, for example, even if there is a foreign matter defect or a scratch defect, on the screen. Can be captured as a change in the intensity distribution of.

【0012】[0012]

【実施例】本発明を実施例に基づき説明する。図1は、
本発明の装置構成の1例を示す図である。波長633nmのH
e−Neレーザー光源2からの出射光を光ファイバ6(コ
ア径a=50μm)を用いて投光部に導き、凸レンズ7
(焦点距離20mm)を用いて僅かに拡がる光線束を形成す
る。この実施例ではビーム拡がり角度をθL=1.7度とし
た。この拡がり光線束を、平凹シリンドリカルレンズ8
を用いて、被検査物1への入射面に垂直方向をさらに拡
がり角をθT=66度とした。このスリット状の拡がり光
線束3を被検査物1に入射角86.2度(θ=3.8°)で入射
させ、表面反射光を白色スクリーン4に投影する。シリ
ンドリカルレンズ8と被検査物1、及び、被検査物1と
スクリーン4間の距離は、それぞれ、L1=270mm、L2
=1310mmとした。これらの位置関係は、上述の(1)、(4)
式を満足している。
EXAMPLES The present invention will be described based on examples. Figure 1
It is a figure which shows an example of the apparatus structure of this invention. H of wavelength 633 nm
Light emitted from the e-Ne laser light source 2 is guided to a light projecting portion using an optical fiber 6 (core diameter a = 50 μm), and a convex lens 7
(Focal length 20 mm) is used to form a slightly divergent bundle of rays. In this example, the beam divergence angle was θ L = 1.7 degrees. This divergent ray bundle is converted into a plano-concave cylindrical lens 8
Was used to set the divergence angle in the direction perpendicular to the incident surface to the inspection object 1 to θ T = 66 degrees. The slit-shaped spread light beam 3 is made incident on the inspection object 1 at an incident angle of 86.2 degrees (θ = 3.8 °), and the surface reflected light is projected on the white screen 4. The distances between the cylindrical lens 8 and the inspection object 1 and between the inspection object 1 and the screen 4 are L1 = 270 mm and L2, respectively.
= 1310 mm. The positional relationship between them is (1) and (4) above.
I am satisfied with the formula.

【0013】次に、測定結果を示す。表面に振幅約5μ
m(=H)、幅約1mm(=W)、角度約 0.2度(=Δθ)の皺状
の緩やかな凹凸が存在した20mm幅のウレタンゴムを被検
査物とし、表面に、上記光学系により光を照射し、スク
リーンに投影された表面反射像をエリアのCCDカメラ
5で取り込んだ画像を図4に示す。CCDカメラの分解
能はRes=500μmとしており、上記(5)式を満足してい
るため、画像にスペックルノイズの影響は全く見られな
かった。
Next, the measurement results will be shown. Amplitude of about 5μ on the surface
m (= H), width about 1mm (= W), angle about 0.2 degree (= Δθ) wrinkle-like gentle unevenness of 20mm urethane rubber was used as the object to be inspected, and the above optical system was used on the surface. An image obtained by irradiating light and capturing the surface reflection image projected on the screen by the CCD camera 5 in the area is shown in FIG. Since the resolution of the CCD camera is Res = 500 μm and the above expression (5) is satisfied, the effect of speckle noise was not seen at all in the image.

【0014】図4の像を画像処理装置により、2値化す
ると図5のような画像が得られ、凸部が白欠陥として認
識できるようになる。表面が全く平滑な凹凸欠陥のない
被検査物では、反射投影像の2値化では白欠陥は全く観
測されなかった。本実施例では画像処理装置9でカメラ
取り込み画像の2値化を行なったが、CCDの隣接画素
との光強度変化量で欠陥判定する方法等を用いた認識で
も構わない。
When the image of FIG. 4 is binarized by the image processing device, an image as shown in FIG. 5 is obtained, and the convex portion can be recognized as a white defect. No white defect was observed in the binarization of the reflection projection image in the inspected object having a completely smooth surface and no irregularity defect. In the present embodiment, the image taken in by the camera is binarized by the image processing device 9, but the image may be recognized by using a method such as a defect determination method based on the amount of change in light intensity with the adjacent pixel of the CCD.

【0015】本実施例では、前述の値を用いて、拡大投
影像の拡大率5.9倍を得た。拡大倍率は、スクリーンと
被検査物間の距離、被検査物とレンズ間距離、入射角、
光ビームの拡がり角を変更することにより任意に選べ
る。また、像の明るさは入射角により決まり、前述の入
射角では約70%の表面反射率を得た。この反射率はフレ
ネルの反射係数から求められ、例えば、反射率50%以上
得るためには、入射角φが10度以下でなければならな
い。実際の製造ラインを適用する場合、50%以上の反射
率があれば、通常の照明下でも十分に像が観察できる。
In the present embodiment, the above-mentioned values are used to obtain a magnifying power of 5.9 times the magnified projected image. The magnification is the distance between the screen and the inspection object, the distance between the inspection object and the lens, the incident angle,
It can be arbitrarily selected by changing the divergence angle of the light beam. The brightness of the image was determined by the incident angle, and the surface reflectance of about 70% was obtained at the above-mentioned incident angle. This reflectance is obtained from the Fresnel reflection coefficient. For example, in order to obtain a reflectance of 50% or more, the incident angle φ must be 10 degrees or less. When applying an actual production line, if the reflectance is 50% or more, an image can be sufficiently observed even under normal illumination.

【0016】[0016]

【発明の効果】本発明は、平面状物の緩やかな凹凸検査
装置であり、僅かな拡がり角を有するスリット状のレー
ザー光を使用することにより、緩やかな凹凸、異物、傷
の欠陥が検査可能であり、検出が必要とされる欠陥の最
小形状を与えれば、高精度で欠陥を認識でき、光学系も
簡単できかつ簡易に操作できて工場の製造ライン等で使
用できる簡便な検査装置として使用でき、しかも大きな
面積の凹凸欠陥などは容易に検出できると共に、ミリオ
ーダーサイズでも検出できる。
INDUSTRIAL APPLICABILITY The present invention is a gradual unevenness inspection device for a flat object, and by using a slit-shaped laser beam having a slight divergence angle, it is possible to inspect gradual unevenness, foreign matter, and flaw defects. Therefore, if the minimum shape of the defect that needs to be detected is given, the defect can be recognized with high accuracy, the optical system can be easily and easily operated, and it can be used as a simple inspection device that can be used in factory production lines. In addition, it is possible to easily detect irregularities and defects having a large area, and it is possible to detect even a millimeter order size.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明による検査装置の1実施例の概
略構成図である。
FIG. 1 is a schematic configuration diagram of an embodiment of an inspection apparatus according to the present invention.

【図2】図2は、本発明の原理説明図である。FIG. 2 is an explanatory diagram of the principle of the present invention.

【図3】図3は、被検査物表面の作用を説明する凹凸欠
陥の拡大図である。
FIG. 3 is an enlarged view of a concavo-convex defect for explaining the action of the surface of the inspection object.

【図4】図4は、欠陥部の拡大投影の画像図である。FIG. 4 is an image diagram of enlarged projection of a defect portion.

【図5】図5は、拡大投影像の2値化画像処理した画像
図である。
FIG. 5 is an image diagram obtained by performing binarized image processing on an enlarged projection image.

【符号の説明】[Explanation of symbols]

1 被検査物 2 He-Neレーザー光源 3 スリット状の拡がり光線束 4 スクリーン 5 CCDカメラ 6 光ファイバ 7 凸レンズ 8 シリンドリカルレンズ 9 画像処理装置 10 強度分布 1 Inspected object 2 He-Ne laser light source 3 Slit-shaped divergent light beam bundle 4 Screen 5 CCD camera 6 Optical fiber 7 Convex lens 8 Cylindrical lens 9 Image processor 10 Intensity distribution

───────────────────────────────────────────────────── フロントページの続き (72)発明者 須賀 忠 神奈川県川崎市多摩区登戸3816番地三菱レ イヨン株式会社東京研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tadashi Suga 3816 Noborito, Tama-ku, Kawasaki-shi, Kanagawa Mitsubishi Rayon Co., Ltd. Tokyo Research Laboratory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 波長λのレーザー光源と、該レーザー光
を導くコア径aの光ファイバと、該光ファイバからの出
射光を実質的に平行にする、焦点距離fが100×a以
上の凸レンズと、該凸レンズからのレーザー光を一方向
に拡大して平面状被検査物表面に入射させるシリンドリ
カルレンズと、該被検査物表面からの反射光を映すスク
リーンと、該スクリーン上の像を撮影するエリア型又は
ライン型CCDカメラと、該CCDカメラからの画像デ
ータを処理する画像処理部とから構成される、欠陥幅が
W、欠陥面の平均傾斜角がΔθである緩やかな凹凸欠陥
表面を有する被検査物に対する凹凸検査装置において、 該凸レンズが、光ファイバ端から焦点距離以上離れたと
ころに配置され、 該シリンドリカルレンズが、該凸レンズからの出射光
を、入射面内で僅かな拡がり角(2θL)をもち、それ
に垂直な方向に必要な検査幅を得る拡がり角(2θT
を持つ概略スリット光に形成し、該概略スリット光を平
面状被検査物表面に斜めから入射角φで入射させ、表面
形状を反映して表面反射した光をスクリーン上に投影さ
せ、該画像処理部が、スクリーン上の投影像の画像デー
タを処理し、濃淡検査を行なって欠陥部位を判定する平
面状物の緩やかな凹凸検査装置。
1. A convex lens having a focal length f of 100 × a or more, which makes a laser light source having a wavelength λ, an optical fiber having a core diameter a for guiding the laser light, and light emitted from the optical fiber substantially parallel to each other. And a cylindrical lens that expands the laser light from the convex lens in one direction and makes it incident on the surface of the flat object to be inspected, a screen that reflects light reflected from the surface of the object to be inspected, and an image on the screen is captured. It has a gentle uneven defect surface having a defect width W and an average inclination angle of the defect surface of Δθ, which is composed of an area-type or line-type CCD camera and an image processing unit that processes image data from the CCD camera. In an unevenness inspection device for an object to be inspected, the convex lens is arranged at a position separated by a focal length or more from an optical fiber end, and the cylindrical lens emits light emitted from the convex lens. Morphism plane a slight divergence angle (2 [Theta] L) has, it spread angle to obtain a test width required in a direction perpendicular (2 [Theta] T)
To form a rough slit light having an angle of incidence, and the rough slit light is obliquely incident on the surface of the flat inspection object at an incident angle φ, and the surface-reflected light reflecting the surface shape is projected on a screen, and the image processing is performed. A part is a device for inspecting gradual unevenness of a planar object which processes image data of a projected image on a screen and performs a density inspection to determine a defective portion.
【請求項2】 欠陥幅がW、欠陥面の平均傾斜角がΔθ
である検出対象の凹凸欠陥の形状と、凸レンズと検出対
象の凹凸欠陥間距離L1、検出対象の凹凸欠陥とスクリ
ーン間距離L2の関係が、シリンドリカルレンズからの
入射光と被検査物表面の法線とのなす入射角φ、角度θ
=90゜−φとすると、 {2L1L2/(L1+L2)sinθ} > {W/tanΔθ} であることを特徴とする特許請求範囲請求項1記載の平
面状物の緩やかな凹凸検査装置。
2. The defect width is W and the average inclination angle of the defect surface is Δθ.
The relationship between the shape of the unevenness defect of the detection target, the distance L1 between the convex lens and the unevenness defect of the detection target, and the relationship between the unevenness defect of the detection target and the distance L2 between the screens are the incident light from the cylindrical lens and the normal line to the surface of the inspection object. Angle of incidence φ and angle θ
= 90 ° −φ, {2L1L2 / (L1 + L2) sinθ}> {W / tanΔθ}. The gradual unevenness inspection device for a flat object according to claim 1, characterized in that:
【請求項3】 前記CCDカメラの分解能Resとビーム
拡がり角θLとの関係が、 Res > {λ/2θL 2} であることを特徴とする特許請求範囲請求項1及び2記
載の平面状物の凹凸検査装置。
3. The planar shape according to claim 1, wherein the relationship between the resolution Res of the CCD camera and the beam divergence angle θ L is Res> {λ / 2θ L 2 }. Concavity and convexity inspection device for objects.
JP3262431A 1991-10-09 1991-10-09 Inspection device for small unevenness of planar object Pending JPH0599639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3262431A JPH0599639A (en) 1991-10-09 1991-10-09 Inspection device for small unevenness of planar object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3262431A JPH0599639A (en) 1991-10-09 1991-10-09 Inspection device for small unevenness of planar object

Publications (1)

Publication Number Publication Date
JPH0599639A true JPH0599639A (en) 1993-04-23

Family

ID=17375695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3262431A Pending JPH0599639A (en) 1991-10-09 1991-10-09 Inspection device for small unevenness of planar object

Country Status (1)

Country Link
JP (1) JPH0599639A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100894819B1 (en) * 2007-10-10 2009-04-24 울산대학교 산학협력단 Apparatus of measuring deformation of microelement using similar triangles and method there of
JP2012242207A (en) * 2011-05-18 2012-12-10 Utsunomiya Univ Shape inspection device
WO2017134958A1 (en) * 2016-02-05 2017-08-10 東レ株式会社 Inspection device for sheet-like objects, and inspection method for sheet-like objects
KR20180022886A (en) 2016-05-23 2018-03-06 신닛테츠스미킨 카부시키카이샤 Shape measuring device and shape measuring method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100894819B1 (en) * 2007-10-10 2009-04-24 울산대학교 산학협력단 Apparatus of measuring deformation of microelement using similar triangles and method there of
JP2012242207A (en) * 2011-05-18 2012-12-10 Utsunomiya Univ Shape inspection device
WO2017134958A1 (en) * 2016-02-05 2017-08-10 東レ株式会社 Inspection device for sheet-like objects, and inspection method for sheet-like objects
KR20180022886A (en) 2016-05-23 2018-03-06 신닛테츠스미킨 카부시키카이샤 Shape measuring device and shape measuring method
US10605591B2 (en) 2016-05-23 2020-03-31 Nippon Steel Corporation Shape measurement apparatus and shape measurement method

Similar Documents

Publication Publication Date Title
JP4511978B2 (en) Surface flaw inspection device
JP3692685B2 (en) Defect inspection equipment
JPH06294750A (en) Optical substrate inspecting device
JPH07117496B2 (en) Surface inspection method
JP2009085691A (en) Inspection device
JPH06241758A (en) Flaw inspection device
JP2000097873A (en) Surface defect inspecting device
JP2002214158A (en) Defect detecting method and detecting device for transparent plate-like body
JPH11316195A (en) Surface defect detecting device of transparent plate
TWI817991B (en) Optical system, illumination module and automated optical inspection system
JP3982017B2 (en) Defect inspection equipment
JPH0599639A (en) Inspection device for small unevenness of planar object
JP2006017685A (en) Surface defect inspection device
JPH0882602A (en) Method and apparatus for inspecting fault of plate glass
JP3078784B2 (en) Defect inspection equipment
JP7448808B2 (en) Surface inspection device and surface inspection method
JP3048342B2 (en) Device for detecting bubbles in transparent plates
JPH09105724A (en) Surface inspection device
JP2001041719A (en) Inspection device and method of transparent material and storage medium
JP5471157B2 (en) Method and apparatus for detecting adhering matter on glass plate surface
JP2000028535A (en) Defect inspecting device
JPS58184116A (en) Examining method of defect on surface of light-transmittable object
JP2002014058A (en) Method and apparatus for checking
JP6086277B2 (en) Pattern inspection apparatus and illumination optical system used therefor
JPH1183465A (en) Surface inspecting method and device therefor