JP3982017B2 - Defect inspection equipment - Google Patents

Defect inspection equipment Download PDF

Info

Publication number
JP3982017B2
JP3982017B2 JP21105797A JP21105797A JP3982017B2 JP 3982017 B2 JP3982017 B2 JP 3982017B2 JP 21105797 A JP21105797 A JP 21105797A JP 21105797 A JP21105797 A JP 21105797A JP 3982017 B2 JP3982017 B2 JP 3982017B2
Authority
JP
Japan
Prior art keywords
optical system
substrate
light
illumination
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21105797A
Other languages
Japanese (ja)
Other versions
JPH1151874A (en
Inventor
欣也 加藤
健雄 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP21105797A priority Critical patent/JP3982017B2/en
Publication of JPH1151874A publication Critical patent/JPH1151874A/en
Application granted granted Critical
Publication of JP3982017B2 publication Critical patent/JP3982017B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子等の製造過程における、ウェハ表面の傷、塗布ムラ等の欠陥を検出する欠陥検査装置に関する。
【0002】
【従来の技術】
従来より、ウェハ表面の傷、塗布ムラ等の欠陥検査には人手による目視検査が行われている。また、近年は自動的に検査を行うものとして、例えば、ウェハに照明した光の反射光によるウェハの像を画像処理装置に取り込み、ウェハ表面の欠陥を検出するものがある。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の装置では、以下のような問題点があった。即ち、人手による目視検査では個人差があり、非効率的であり、一般的に装置も大型である。また、反射光を用いた自動検査装置においては、特にウェハ表面の傷の検出において、反射光でウェハ表面を観察することから、傷の入り方によってはコントラストが低下して傷そのものが見えにくくなり検出できなくなってしまう。
【0004】
本発明は斯かる問題点に鑑みてなされるものであり、自動化による効率化を図ると共に、小型で簡易的であるにもかかわらず、検出精度の高い欠陥検査装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記問題を解決するために、本発明では、パターンが形成された基板を載置するステージと、前記基板を照明する第一の照明光学系と、前記基板を照明する第二の照明光学系と、前記第一の照明光学系からの照明光による前記基板からの回折光及び前記第二の照明光学系から照明光による前記基板からの散乱光を受光する受光光学系と、前記ステージを傾斜させる傾斜機構と、前記受光光学系で得られた前記基板の像に基づいて画像処理を行う画像処理装置とを備え、前記受光光学系は、第1反射鏡と第2反射鏡と検出器とを含み、前記第1反射鏡と前記第2反射鏡の間の光軸及び前記第2反射鏡と前記検出器の間の光軸の少なくともいずれか一方の光軸が、前記基板と交わる第一の照明光学系の光軸と前記基板と交わる前記受光光学系の光軸とがなす平面と同一平面上にないことを特徴とする欠陥検査装置を提供する。
【0006】
【発明の実施の形態】
以下、本発明の実施の形態を、図面を用いて説明する。
図1に示す欠陥検査装置では、第一の照明光学系1は、光源101、リレーレンズ102、表面反射鏡103及び球面反射鏡104で構成されている。光源101から射出された照明光は、リレーレンズ102を通り、表面反射鏡103で反射された後、球面反射鏡104に入射する。球面反射鏡104で反射された照明光は、ほぼ平行な光束となってウェハ2に向かう。ウェハ2は回転軸及び傾斜軸を持つステージ6により、ローテーション及びチルトが可能である。ウェハ2からは回折光が生じる。生じた回折光は、パターンのピッチにより回折角が異なる。そこで回折光が、受光光学系3に導かれるようにウェハ2が適宜チルトされる。チルトした時の様子を示したのが図2である。
【0007】
受光光学系3は、球面反射鏡301、表面反射鏡302、受光レンズ303及びCCD撮像素子を備えたCCDカメラ304で構成されている。そしてウェハ2の回折光による像をCCDカメラ304の撮像素子上に形成する。CCDカメラ304に入射する受光光学系3の光軸は、表面反射鏡302で紙面と垂直な面内に反射されることにより、ウェハ2を挟んだ第一の照明光学系1の光軸と受光光学系3の光軸とがなす平面、図1では紙面に平行な面とは異なる面内にある。これは、場合によってはウェハ2からの回折光のうち0次回折光、即ち正反射光が直接CCDカメラ304に入射し、画像処理に影響を与えるのを防ぐためである。
【0008】
CCDカメラ304で取り込んだ画像は、画像処理装置4にて適宜処理される。画像処理装置4は、検査中のウェハ2の像と、あらかじめ記憶させておいた欠陥のないウェハの像とを比較する。デフォーカスによるムラなどの欠陥がある場合はその部分の明暗の差から、その部分を欠陥として出力する。
今ここで、ウェハ2のパターンのピッチをp、照明光の波長をλ、回折次数をm、ウェハ2が水平の時、つまりウェハ2をチルトしてない時のウェハ面の法線を基準として、ウェハ2と交わる照明光学系1の光軸角度をθi、同様にウェハ2と交わる受光光学系3の光軸角度をθd、また、チルト角をθt、とすれば以下の式が成り立つ。
【0009】
【数1】

Figure 0003982017
【0010】
符号については図3に示すとおり、第一の照明光学系1の光軸角度θiは入射側に見込む角度方向をプラス、反射側に見込む角度方向をマイナスとし、受光光学系3の光軸角度θd、チルト角θtは、入射側に見込む角度方向をマイナス、反射側に見込む角度方向をプラスとしている。また、回折次数mはウェハへの入射光の正反射光を基準として入射側に見込む角度方向をマイナス、反射側に見込む角度方向をプラスとしている。チルト角θtが0度なら(数1)でθt=0とおいて
【0011】
【数2】
Figure 0003982017
【0012】
となり、一般的な入射角と回折角の関係を示す式になる。
図2に示したように、ウェハ2のチルトにより回折光が受光光学系3に導かれた時、(数1)の関係を満足している。取り込む回折光の次数は、マイナス一次及びマイナス二次である。
第一の照明光学系1の光源は例えばハロゲンランプである。光源から射出された光のうち、干渉フィルタによって白色光のうち、一部の波長域の光を取り出し、これを照明光として利用する。パターンのピッチと波長とが比例関係にあることから、年々進むパターンのピッチの微細化を考慮すれば波長は短いほうがよい。しかし、あまりに短いと未現像のレジストを感光させてしまうので、550nm付近の波長のものを照明光として使用している。
【0013】
レジストの塗布忘れ、剥離忘れ、塗布や剥離のムラを検出する際に、レジストの有無によるウェハの見え方の差が少ない場合がある。これはレジストのない所の光の強度と、ある所の干渉後の強度が一致するためである。この時は強度に差が出るように、干渉フィルタを交換して照明光の波長を変更する。波長を変更した場合、(数1)の関係を満足するようにウェハ2をチルトさせるのは言うまでもない。
【0014】
第一の照明光学系1及び受光光学系3は、球面反射鏡104を用いた反射型の光学系でテレセントリックな光学系である。第一の照明光学系1では、光源が球面反射鏡104の前側焦点位置、ウェハ面が後側焦点面とほぼ一致するように配置されている。受光光学系3では、球面反射鏡301の前側焦点面とウェハ面とが、また後側焦点面と受光レンズ303の入射瞳面をほぼ一致させている。それらによってテレセントリックな光学系を構成している。テレセントリックにするのは、CCDカメラ304で取り込んだ画像の見え方を、ウェハ全面に渡って同じにするためである。
【0015】
テレセントリックでない光学系では、ウェハ上の位置により、(数1)のウェハへの入射角θi+θt、回折角θd−θtがそれぞれ異なる。回折光の強度は入射光の入射角に依存して変化するため、同じ欠陥でもウェハ上の位置により見え方が異なる場合がある。しかし、図1に示す装置ではテレセントリックなので、ウェハ全面に渡って入射角θi+θt、回折角θd−θtが一様となる。故にウェハ上の位置にかかわらず同じ欠陥であれば見え方が同じになり、欠陥の特定に、より有利である。
【0016】
また、屈折系のテレセントリック光学系を用いると装置が大型化するため、球面反射鏡104を用いた反射型の光学系にすることで、装置を小型化している。ただ偏心光学系なので、球面反射鏡104に対する反射光の入射角は出来るだけ小さい方が望ましい。あまり大きいと非点収差が大きくなるからである。図1に示す装置では、10度になっている。
【0017】
第一の照明光学系1及び受光光学系3それぞれの光軸角度の値には、ある条件が必要となる。一般にウェハに対する入射角が大きくなると、入射角と回折角の差は大きくなり、照明光学系と受光光学系が離れていくことになる。しかし、入射角は90度を超えることがないので、入射角が90度の時の入射角と回折角の差より大きくなることはない。つまり、照明光学系1と受光光学系3との角度の差は、入射角90度の時の入射角と回折角との差より小さくならなければならない。
【0018】
また、入射角が一定なら、ピッチが小さいほど回折角が大きくなる。従って入射角と回折角との差が小さくなるので、最少ピッチの時の入射角と回折角との差より小さくなるように照明光学系1と受光光学系3とが設定されなければならない。
そこで検査対象の最小ピッチをp1とし、入射角が90度になった時の入射角と回折角の差θd+θiを求めると、ウェハへの入射角θi+θt=90と置けば、θt=90−θiだから、(数1)は、
【0019】
【数3】
Figure 0003982017
【0020】
となり、整理して、
【0021】
【数4】
Figure 0003982017
【0022】
となる。これが照明光学系1と受光光学系3の角度の差の最大値で、これより大きくなることはない。つまり以下が必要条件となる。
【0023】
【数5】
Figure 0003982017
【0024】
そして、θi、θdを設定すれば、チルト角θtは(数1)から容易に求められる。即ち(数1)を変形して、
【0025】
【数6】
Figure 0003982017
【0026】
【数7】
Figure 0003982017
【0027】
となる。
実際、(数5)で得られる条件の最大値に近い値を用いることは実際はあまりない。何故なら、検査対象の最小ピッチの時に入射角が90度に近くなるため、ウェハを照明する光量が極端に減り、検査に影響を及ぼすからである。ウェハへの入射角を小さくして光量を多くとるという点では、角度差はなるべく小さい方が良い。ただあまりに小さいと、今度は機械的に互いの光学系が干渉することになるので、干渉せず、かつ、角度差が小さくなるよう、第一の照明光学系1と受光光学系3とを配置するのが良い。
【0028】
例えば、検査対象ピッチをp=0.4〜1μm、λ=0.55μm、m=−1とすると、照明光学系1と受光光学系3の角度差は、68°以下にしなければならないことになる。機械的に干渉し始める角度差は、球面反射鏡104並びに球面反射鏡301の大きさ、焦点距離、取り付ける金物の形状によって異なるが、おおよそ35°位である。従って、角度差の範囲は35°〜68°、幅で約30°となる。ウェハを照明する光量を多くするには、角度差を35°に近い値にするのが良いことになる。仮に、角度差を40度として第一の照明光学系1の光軸角度を20度、受光光学系3の光軸角度を20度とすれば、チルト角は、p=0.4μmの時は47°、p=1μmの時は17°となる。また、第一の照明光学系1の光軸角度を60度、受光光学系3の光軸角度を−20度とすれば、チルト角は、p=0.4μmの時は7°、p=1μmの時は−23°となる。
【0029】
チルト角の範囲は、検査対象の最小ピッチから最大ピッチまでに対してプラスマイナスほぼ同等になるよう、第一の照明光学系1、受光光学系3が設定される場合もある。プラス側とマイナス側で極端に偏りがあると機械的に不都合になる場合があるからである。今、検査対象の最小ピッチをp1、その時のチルト角をθt、最大ピッチをp2とする。p2の時のチルト角は−θtとなる。(数1)より
【0030】
【数8】
Figure 0003982017
【0031】
【数9】
Figure 0003982017
【0032】
となり、両辺をそれぞれ足して整理すると、
【0033】
【数10】
Figure 0003982017
【0034】
となる。また、同様に両辺をそれぞれ引いて整理すると、
【0035】
【数11】
Figure 0003982017
【0036】
となり、(数10)及び(数11)から
【0037】
【数12】
Figure 0003982017
【0038】
を得る。また、(数10)、(数11)及び(数12)よりθd−θi、θd+θiが求まるので、ウェハのチルト範囲からθd、θiを特定することも出来る。
先と同様、検査対象ピッチをp=0.4〜1μm、λ=0.55μm、m=−1として、P=0.4μmの時のチルト角を+18°(p=1μmの時のチルト角は−18°)とすれば、(数12)よりθd−θi=−74.3°、(数10)または(数11)よりθd+θi=66.2°となり、θd=−4.1°、θi=70.3°となる。また、P=0.4μmの時のチルト角を+15°(p=1μmの時のチルト角は−15°)とすれば、θd−θi=−64°、θd+θi=40°となり、θd=−12°、θi=52°となる。チルト角が小さい方が、θd+θi、即ち第一の照明光学系1と受光光学系3との角度の差が小さくなり、先に述べたようにウェハを照明する光量の点から、より有利である。この時も、第一の照明光学系1と受光光学系3が機械的に干渉しないで、かつ、チルト角が小さくなるように配置されることはもちろんである。また、チルト角が少なくてすむので、機械的にもより有利となる。
【0039】
ウェハ2が回転してステージ6に乗せられた場合、回折光が図の紙面と垂直方向の角度成分を持つようになる。故にローテーション量が多すぎると回折光が受光光学系3から外れてしまい、ウェハ2の像を取り込めなくなってしまう。
ウェハ2のローテーション量の絶対量をδφ、回折光の紙面と垂直方向の角度成分をδθ、受光光学系3のウェハ側の開口数をNAとする。δφ、δθの単位はラジアンである。δθは、δφがごく小さければ、以下のように表せることがわかった。
【0040】
【数13】
Figure 0003982017
【0041】
ローテーションによりδθだけ角度成分を持った回折光は、受光光学系3の球面反射鏡で反射され、ほぼ光軸と平行にCCDカメラ304へと向かう。回折光は、CCDカメラ304に入射する際に入射瞳の外側にあるとけられてしまい、ウェハ2の像を得ることができなくなる。球面反射鏡からCCDカメラ304までは平行系であるから、CCDカメラ304の入射瞳面での回折光の位置はδθに、また、入射瞳の半径は受光光学系3のウェハ面でのNAにそれぞれ相当する。従って、ウェハ2がローテーションしても回折光がCCDカメラ304に入射するための条件は、
【0042】
【数14】
Figure 0003982017
【0043】
であり、(数13)より
【0044】
【数15】
Figure 0003982017
【0045】
となり、ローテーションは(数15)を満足する量であれば良い。例えばp=0.4μm、λ=0.55μm、m=−1、NA=0.01とすれば、(数15)より、δφ≦7.3ミリラアジンとなる。
図4(a)及び(b)は、図1に示す装置において、表面反射鏡302で光軸を紙面と平行でない面内に曲げる代わりに球面反射鏡301で光軸を曲げたもので、図4(a)では、紙面と垂直に、手前方向に回折光が反射されている。図4(b)は、図4(a)の装置を右側から見た図で、ウェハ2で紙面と垂直な面内に回折された光が、球面反射鏡301で紙面と平行な面に内に反射されている。この様な構成でも図1に示す装置と同等の効果を得られるのは勿論であるし、図5(a)及び(b)に示したように、球面反射鏡301から直接受光レンズ303、CCDカメラ304に回折光を取り込む構成を取っても何ら問題はない。
【0046】
なお、図4(a)、4(b)、5(a)及び5(b)に示した装置では、CCD撮像素子上に形成される像は上下、若しくは左右が反転した像となるが、画像処理の際に特に問題となるものではない。必要であれば表面反射鏡をもう1枚挿入するか、電気的な処理を施して正立像にすればよい。また、図1に示す装置においては、球面反射鏡を用いているが、反射型のフレネルゾーンプレートを用いても同様の効果を得ることが出来るのは勿論である。
【0047】
傷を検出するには散乱光を用いる。図1に示す装置おいて、第二の照明光学系5は、光源501、光ファイバー502、波長選択フィルタ503及びシリンドリカルレンズ504からなる。受光光学系は、回折光による欠陥検査の時と同じものを使用する。散乱光用の照明光学系5は、ウェハ2と交わる第一の照明光学系1の光軸と、ウェハ2と交わる受光光学系3の光軸とがなす平面と、ほぼ等しい平面内に配置されている。このように配置する理由は、装置自体をよりコンパクトにするためである。
【0048】
光源501から射出された光は、光ファイバー502を経由する。光ファイバー502の射出側の端面の形状は、紙面と垂直方向に細長いスリット状である。波長選択フィルタ503は、光源501から射出された白色光のうち、短波長の光を選択的に吸収し、未現像のレジストの感光を防いでいる。ファイバー502の端面から射出された光は、広がりを持つため、シリンドリカルレンズ504にてスリットの短手方向の面内で平行、もしくはほぼ平行な光にする。これによりファイバー502から射出された光を効率良くウェハ2に照射させることが出来る。
【0049】
その後、光はウェハ2で反射されるが、その際にパターンによる回折光と、傷がある場合には傷による散乱光が生じる。受光光学系3には、散乱光のみが入射すれば良いが、回折光が入射している場合はウェハ2をチルト、及びローテーションさせ、回折光が受光光学系3に入らないようにする。これにより、ウェハ上の傷によって生じた散乱光のみがCCDカメラ304に取り込まれる。結果、散乱光による傷の像が得られる。
【0050】
図1に示す装置においては、シリンドリカルレンズを用いているが、シリンドリカルレンズのかわりにセルフォックレンズを用いてもよい。この場合は複数個のセルフォックレンズを束ねたものが使用され、光ファイバーの端面はセルフォックレンズの焦点位置に配置される。光ファイバーから射出された光はセルフォックレンズで平行光束となってウェハに向かう。この時使用される光源等はシリンドリカルレンズを用いたときと同様である。また、セルフォックレンズの代わりにフライアイレンズを用いても同様の効果を得ることが出来る。
【0051】
【発明の効果】
以上のように本発明においては、回折光による基板の画像に基づいて画像処理を行うことで、効率的な自動欠陥検査が可能となる。特に照明光学系、受光光学系を固定とし、基板をチルトさせることによって、可動部分の少ない、コンパクトな装置を得ることが出来る。
【0052】
また、散乱光での検査の際に基板をローテーションさせることで、特に傷の検出に効果的である。
【図面の簡単な説明】
【図1】本発明の実施の形態を示す装置の構成図である。
【図2】ステージを傾けたときを示す図である。
【図3】符号を示す図である。
【図4】他の実施の形態を示した図である。
【図5】更に他の実施の形態を示した図である。
【符号の説明】
1 第一の照明光学系
2 基板
3 受光光学系
4 画像処理装置
5 第二の照明光学系
6 ステージ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a defect inspection apparatus for detecting defects such as scratches on a wafer surface and coating unevenness in a manufacturing process of a semiconductor element or the like.
[0002]
[Prior art]
Conventionally, visual inspection by hand is performed for inspection of defects such as scratches on the wafer surface and uneven coating. In recent years, automatic inspection includes, for example, a method in which an image of a wafer by reflected light of light illuminated on a wafer is taken into an image processing apparatus and a defect on the wafer surface is detected.
[0003]
[Problems to be solved by the invention]
However, the conventional apparatus has the following problems. That is, manual inspection has individual differences, is inefficient, and generally has a large apparatus. Also, in automatic inspection equipment using reflected light, the wafer surface is observed with reflected light, especially when detecting scratches on the wafer surface, so depending on how the scratch enters, the contrast decreases and the scratch itself becomes difficult to see. It can no longer be detected.
[0004]
The present invention has been made in view of such a problem, and aims to provide a defect inspection apparatus with high detection accuracy, while achieving efficiency through automation and being small and simple. .
[0005]
[Means for Solving the Problems]
In order to solve the above problem, in the present invention, a stage on which a substrate on which a pattern is formed is placed, a first illumination optical system that illuminates the substrate, and a second illumination optical system that illuminates the substrate, A light receiving optical system for receiving diffracted light from the substrate by illumination light from the first illumination optical system and scattered light from the substrate by illumination light from the second illumination optical system, and tilting the stage An inclination mechanism; and an image processing device that performs image processing based on the image of the substrate obtained by the light receiving optical system. The light receiving optical system includes a first reflecting mirror, a second reflecting mirror, and a detector. And at least one of the optical axis between the first reflecting mirror and the second reflecting mirror and the optical axis between the second reflecting mirror and the detector intersects the substrate. Light of the light receiving optical system intersecting the optical axis of the illumination optical system and the substrate DOO provides a defect inspection apparatus characterized by not on the plane the same plane formed by.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In the defect inspection apparatus shown in FIG. 1, the first illumination optical system 1 includes a light source 101, a relay lens 102, a surface reflecting mirror 103, and a spherical reflecting mirror 104. The illumination light emitted from the light source 101 passes through the relay lens 102, is reflected by the surface reflecting mirror 103, and then enters the spherical reflecting mirror 104. The illumination light reflected by the spherical reflector 104 becomes a substantially parallel light beam and travels toward the wafer 2. The wafer 2 can be rotated and tilted by a stage 6 having a rotation axis and an inclination axis. Diffracted light is generated from the wafer 2. The generated diffracted light has different diffraction angles depending on the pattern pitch. Therefore, the wafer 2 is appropriately tilted so that the diffracted light is guided to the light receiving optical system 3. FIG. 2 shows the state when tilted.
[0007]
The light receiving optical system 3 is composed of a spherical reflecting mirror 301, a surface reflecting mirror 302, a light receiving lens 303, and a CCD camera 304 provided with a CCD image pickup device. Then, an image of the diffracted light of the wafer 2 is formed on the image sensor of the CCD camera 304. The optical axis of the light receiving optical system 3 incident on the CCD camera 304 is reflected by the surface reflecting mirror 302 in a plane perpendicular to the paper surface, so that the optical axis of the first illumination optical system 1 sandwiching the wafer 2 is received. It is in a plane different from the plane formed by the optical axis of the optical system 3, that is, the plane parallel to the paper surface in FIG. This is to prevent 0th-order diffracted light, that is, specularly reflected light, from directly diffracted light from the wafer 2 from directly entering the CCD camera 304 and affecting image processing.
[0008]
An image captured by the CCD camera 304 is appropriately processed by the image processing device 4. The image processing apparatus 4 compares the image of the wafer 2 being inspected with the image of the wafer having no defect stored in advance. If there is a defect such as unevenness due to defocusing, that part is output as a defect from the difference in brightness of that part.
Here, the pitch of the pattern of the wafer 2 is p, the wavelength of the illumination light is λ, the diffraction order is m, and the normal of the wafer surface when the wafer 2 is horizontal, that is, when the wafer 2 is not tilted, is used as a reference. If the optical axis angle of the illumination optical system 1 intersecting with the wafer 2 is θi, the optical axis angle of the light receiving optical system 3 similarly intersecting with the wafer 2 is θd, and the tilt angle is θt, the following equation is established.
[0009]
[Expression 1]
Figure 0003982017
[0010]
As shown in FIG. 3, the optical axis angle θi of the first illumination optical system 1 is positive for the angle direction expected on the incident side, and negative for the reflection side, and the optical axis angle θd of the light receiving optical system 3 is negative. In the tilt angle θt, the angle direction seen on the incident side is minus, and the angle direction seen on the reflection side is plus. In addition, the diffraction order m is set such that the angle direction expected on the incident side with respect to the specularly reflected light of the incident light on the wafer is minus, and the angle direction expected on the reflection side is plus. If the tilt angle θt is 0 degree, set θt = 0 in (Equation 1).
[Expression 2]
Figure 0003982017
[0012]
Thus, a general relationship between the incident angle and the diffraction angle is obtained.
As shown in FIG. 2, when the diffracted light is guided to the light receiving optical system 3 by the tilt of the wafer 2, the relationship of (Equation 1) is satisfied. The orders of diffracted light to be taken in are negative primary and negative secondary.
The light source of the first illumination optical system 1 is, for example, a halogen lamp. Of the light emitted from the light source, light in a part of the wavelength region is extracted from the white light by the interference filter and used as illumination light. Since the pitch of the pattern and the wavelength are in a proportional relationship, the shorter the wavelength, the better the finer the pitch of the pattern that advances year by year. However, if it is too short, the undeveloped resist is exposed to light, so that a wavelength near 550 nm is used as illumination light.
[0013]
When detecting forgetting to apply resist, forgetting to remove resist, or unevenness of application or peeling, there may be a small difference in the appearance of the wafer depending on the presence or absence of the resist. This is because the intensity of light where there is no resist matches the intensity after interference at a certain place. At this time, the wavelength of the illumination light is changed by exchanging the interference filter so that the intensity differs. Needless to say, when the wavelength is changed, the wafer 2 is tilted so as to satisfy the relationship of (Equation 1).
[0014]
The first illumination optical system 1 and the light receiving optical system 3 are reflection type optical systems using the spherical reflector 104 and are telecentric optical systems. In the first illumination optical system 1, the light source is disposed so that the front focal position of the spherical reflector 104 and the wafer surface substantially coincide with the rear focal plane. In the light receiving optical system 3, the front focal plane of the spherical reflecting mirror 301 and the wafer surface are substantially aligned with the rear focal plane and the entrance pupil plane of the light receiving lens 303. These constitute a telecentric optical system. Telecentricity is used to make the appearance of the image captured by the CCD camera 304 the same over the entire surface of the wafer.
[0015]
In an optical system that is not telecentric, the incident angle θi + θt and the diffraction angle θd−θt to the wafer of (Equation 1) differ depending on the position on the wafer. Since the intensity of the diffracted light changes depending on the incident angle of the incident light, the same defect may appear differently depending on the position on the wafer. However, since the apparatus shown in FIG. 1 is telecentric, the incident angle θi + θt and the diffraction angle θd−θt are uniform over the entire wafer surface. Therefore, the same defect is visible regardless of the position on the wafer, which is more advantageous for identifying the defect.
[0016]
In addition, when a refractive telecentric optical system is used, the size of the device increases. Therefore, the size of the device is reduced by using a reflective optical system using the spherical reflector 104. However, since it is a decentered optical system, it is desirable that the incident angle of the reflected light with respect to the spherical reflector 104 be as small as possible. This is because astigmatism increases when the value is too large. In the apparatus shown in FIG. 1, it is 10 degrees.
[0017]
A certain condition is required for the values of the optical axis angles of the first illumination optical system 1 and the light receiving optical system 3. In general, when the incident angle with respect to the wafer is increased, the difference between the incident angle and the diffraction angle is increased, and the illumination optical system and the light receiving optical system are separated. However, since the incident angle does not exceed 90 degrees, it does not become larger than the difference between the incident angle and the diffraction angle when the incident angle is 90 degrees. That is, the difference in angle between the illumination optical system 1 and the light receiving optical system 3 must be smaller than the difference between the incident angle and the diffraction angle when the incident angle is 90 degrees.
[0018]
If the incident angle is constant, the diffraction angle increases as the pitch decreases. Accordingly, since the difference between the incident angle and the diffraction angle becomes small, the illumination optical system 1 and the light receiving optical system 3 must be set so as to be smaller than the difference between the incident angle and the diffraction angle at the minimum pitch.
Therefore, if the minimum pitch of the inspection object is p1 and the difference θd + θi between the incident angle and the diffraction angle when the incident angle is 90 degrees is obtained, if the incident angle θi + θt = 90 to the wafer is set, θt = 90−θi. , (Equation 1) is
[0019]
[Equation 3]
Figure 0003982017
[0020]
Be organized,
[0021]
[Expression 4]
Figure 0003982017
[0022]
It becomes. This is the maximum value of the angle difference between the illumination optical system 1 and the light receiving optical system 3, and does not become larger than this. In other words, the following conditions are necessary.
[0023]
[Equation 5]
Figure 0003982017
[0024]
If θi and θd are set, the tilt angle θt can be easily obtained from (Equation 1). That is, by transforming (Equation 1),
[0025]
[Formula 6]
Figure 0003982017
[0026]
[Expression 7]
Figure 0003982017
[0027]
It becomes.
Actually, it is not very common to use a value close to the maximum value of the condition obtained in (Equation 5). This is because the incident angle is close to 90 degrees when the inspection target is at the minimum pitch, and the amount of light that illuminates the wafer is extremely reduced, affecting the inspection. From the viewpoint of increasing the amount of light by reducing the angle of incidence on the wafer, it is preferable that the angle difference be as small as possible. However, if it is too small, the optical systems interfere with each other mechanically. Therefore, the first illumination optical system 1 and the light receiving optical system 3 are arranged so as not to interfere with each other and the angle difference is small. Good to do.
[0028]
For example, when the inspection target pitch is p = 0.4 to 1 μm, λ = 0.55 μm, and m = −1, the angle difference between the illumination optical system 1 and the light receiving optical system 3 must be 68 ° or less. Become. The angle difference at which mechanical interference starts varies depending on the size of the spherical reflector 104 and the spherical reflector 301, the focal length, and the shape of the hardware to be attached, but is approximately 35 °. Therefore, the range of the angle difference is 35 ° to 68 ° and the width is about 30 °. In order to increase the amount of light that illuminates the wafer, the angle difference should be close to 35 °. If the angle difference is 40 degrees, the optical axis angle of the first illumination optical system 1 is 20 degrees, and the optical axis angle of the light receiving optical system 3 is 20 degrees, the tilt angle is p = 0.4 μm. When 47 ° and p = 1 μm, the angle is 17 °. If the optical axis angle of the first illumination optical system 1 is 60 degrees and the optical axis angle of the light receiving optical system 3 is −20 degrees, the tilt angle is 7 ° when p = 0.4 μm, and p = When it is 1 μm, it becomes −23 °.
[0029]
The first illumination optical system 1 and the light receiving optical system 3 may be set so that the range of the tilt angle is approximately equal to plus or minus from the minimum pitch to the maximum pitch of the inspection target. This is because there may be mechanical inconvenience if there is an extreme deviation between the plus side and the minus side. Now, it is assumed that the minimum pitch to be inspected is p1, the tilt angle at that time is θt, and the maximum pitch is p2. The tilt angle at p2 is −θt. From (Equation 1) [0030]
[Equation 8]
Figure 0003982017
[0031]
[Equation 9]
Figure 0003982017
[0032]
Then, when both sides are added and organized,
[0033]
[Expression 10]
Figure 0003982017
[0034]
It becomes. Similarly, if you draw and organize both sides,
[0035]
[Expression 11]
Figure 0003982017
[0036]
From (Equation 10) and (Equation 11)
[Expression 12]
Figure 0003982017
[0038]
Get. Further, since θd−θi and θd + θi are obtained from (Equation 10), (Equation 11), and (Equation 12), θd and θi can be specified from the tilt range of the wafer.
As before, the inspection target pitch is p = 0.4 to 1 μm, λ = 0.55 μm, m = −1, and the tilt angle when P = 0.4 μm is + 18 ° (tilt angle when p = 1 μm) Is −18 °), θd−θi = −74.3 ° from (Equation 12), θd + θi = 66.2 ° from (Equation 10) or (Equation 11), and θd = −4.1 °. θi = 70.3 °. Further, if the tilt angle when P = 0.4 μm is + 15 ° (the tilt angle when p = 1 μm is −15 °), θd−θi = −64 °, θd + θi = 40 °, and θd = −. 12 ° and θi = 52 °. A smaller tilt angle is more advantageous in terms of the amount of light that illuminates the wafer, as described above, because θd + θi, that is, the angle difference between the first illumination optical system 1 and the light receiving optical system 3 is small. . Also at this time, it goes without saying that the first illumination optical system 1 and the light receiving optical system 3 are arranged so as not to mechanically interfere with each other and the tilt angle becomes small. Further, since the tilt angle is small, it is more advantageous mechanically.
[0039]
When the wafer 2 is rotated and placed on the stage 6, the diffracted light has an angle component perpendicular to the paper surface of the drawing. Therefore, if the rotation amount is too large, the diffracted light is detached from the light receiving optical system 3 and the image of the wafer 2 cannot be captured.
The absolute amount of the rotation amount of the wafer 2 is δφ, the angle component of the diffracted light in the direction perpendicular to the paper surface is δθ, and the numerical aperture on the wafer side of the light receiving optical system 3 is NA. The unit of δφ and δθ is radians. It was found that δθ can be expressed as follows if δφ is very small.
[0040]
[Formula 13]
Figure 0003982017
[0041]
The diffracted light having an angle component of δθ by the rotation is reflected by the spherical reflecting mirror of the light receiving optical system 3 and travels toward the CCD camera 304 substantially parallel to the optical axis. When the diffracted light is incident on the CCD camera 304, the diffracted light is taken outside the entrance pupil, and an image of the wafer 2 cannot be obtained. Since the spherical mirror to the CCD camera 304 are parallel systems, the position of the diffracted light on the entrance pupil plane of the CCD camera 304 is δθ, and the radius of the entrance pupil is NA on the wafer surface of the light receiving optical system 3. Each corresponds. Therefore, even if the wafer 2 is rotated, the condition for the diffracted light to enter the CCD camera 304 is as follows:
[0042]
[Expression 14]
Figure 0003982017
[0043]
From (Equation 13)
[Expression 15]
Figure 0003982017
[0045]
Therefore, the rotation may be an amount satisfying (Equation 15). For example, if p = 0.4 μm, λ = 0.55 μm, m = −1, and NA = 0.01, from (Equation 15), δφ ≦ 7.3 millilaazine is obtained.
4A and 4B show the apparatus shown in FIG. 1 in which the optical axis is bent by the spherical reflector 301 instead of bending the optical axis in a plane not parallel to the paper surface by the surface reflecting mirror 302. In 4 (a), the diffracted light is reflected in the front direction perpendicular to the paper surface. FIG. 4B is a view of the apparatus of FIG. 4A viewed from the right side. Light diffracted by the wafer 2 into a plane perpendicular to the paper surface is reflected by the spherical reflector 301 on a surface parallel to the paper surface. It is reflected in. Even with such a configuration, it is a matter of course that the same effect as that of the apparatus shown in FIG. 1 can be obtained, and as shown in FIGS. 5A and 5B, the light receiving lens 303 and the CCD are directly connected from the spherical reflector 301. There is no problem even if the camera 304 is configured to capture diffracted light.
[0046]
In the devices shown in FIGS. 4A, 4B, 5A, and 5B, the image formed on the CCD image sensor is an image that is vertically or horizontally reversed. There is no particular problem in image processing. If necessary, another surface reflecting mirror may be inserted or an electrical process may be performed to obtain an upright image. In addition, although the apparatus shown in FIG. 1 uses a spherical reflector, it is needless to say that the same effect can be obtained even if a reflective Fresnel zone plate is used.
[0047]
Scattered light is used to detect flaws. In the apparatus shown in FIG. 1, the second illumination optical system 5 includes a light source 501, an optical fiber 502, a wavelength selection filter 503, and a cylindrical lens 504. The light receiving optical system is the same as that used for defect inspection using diffracted light. The illumination optical system 5 for scattered light is arranged in a plane that is substantially equal to the plane formed by the optical axis of the first illumination optical system 1 that intersects the wafer 2 and the optical axis of the light receiving optical system 3 that intersects the wafer 2. ing. The reason for this arrangement is to make the device itself more compact.
[0048]
Light emitted from the light source 501 passes through the optical fiber 502. The shape of the end face on the emission side of the optical fiber 502 is a slit that is elongated in the direction perpendicular to the paper surface. The wavelength selection filter 503 selectively absorbs short-wavelength light among the white light emitted from the light source 501 to prevent the undeveloped resist from being exposed. Since the light emitted from the end face of the fiber 502 has a spread, the cylindrical lens 504 makes the light parallel or nearly parallel in the plane in the short direction of the slit. Thereby, the light emitted from the fiber 502 can be efficiently irradiated onto the wafer 2.
[0049]
Thereafter, the light is reflected by the wafer 2, and at that time, diffracted light due to the pattern and scattered light due to the scratch are generated when there is a scratch. Only scattered light needs to enter the light receiving optical system 3, but when diffracted light is incident, the wafer 2 is tilted and rotated so that the diffracted light does not enter the light receiving optical system 3. As a result, only the scattered light generated by the scratch on the wafer is taken into the CCD camera 304. As a result, an image of scratches caused by scattered light is obtained.
[0050]
In the apparatus shown in FIG. 1, a cylindrical lens is used, but a Selfoc lens may be used instead of the cylindrical lens. In this case, a bundle of a plurality of Selfoc lenses is used, and the end face of the optical fiber is arranged at the focal position of the Selfoc lens. Light emitted from the optical fiber is converted into a parallel light flux by the SELFOC lens and travels toward the wafer. The light source used at this time is the same as that when a cylindrical lens is used. The same effect can be obtained by using a fly-eye lens instead of the Selfoc lens.
[0051]
【The invention's effect】
As described above, in the present invention, efficient automatic defect inspection can be performed by performing image processing based on an image of a substrate by diffracted light. In particular, by fixing the illumination optical system and the light receiving optical system and tilting the substrate, it is possible to obtain a compact apparatus with few moving parts.
[0052]
In addition, the rotation of the substrate during inspection with scattered light is particularly effective for detecting scratches.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an apparatus showing an embodiment of the present invention.
FIG. 2 is a diagram showing a stage tilted.
FIG. 3 is a diagram illustrating symbols.
FIG. 4 is a diagram showing another embodiment.
FIG. 5 is a diagram showing still another embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 1st illumination optical system 2 Board | substrate 3 Light reception optical system 4 Image processing apparatus 5 2nd illumination optical system 6 Stage

Claims (6)

パターンが形成された基板を載置するステージと、
前記基板を照明する第一の照明光学系と、
前記基板を照明する第二の照明光学系と、
前記第一の照明光学系からの照明光による前記基板からの回折光及び前記第二の照明光学系から照明光による前記基板からの散乱光を受光する受光光学系と、
前記ステージを傾斜させる傾斜機構と、
前記受光光学系で得られた前記基板の像に基づいて画像処理を行う画像処理装置とを備え、
前記受光光学系は、第1反射鏡と第2反射鏡と検出器とを含み、前記第1反射鏡と前記第2反射鏡の間の光軸及び前記第2反射鏡と前記検出器の間の光軸の少なくともいずれか一方の光軸が、前記基板と交わる第一の照明光学系の光軸と前記基板と交わる前記受光光学系の光軸とがなす平面と同一平面上にないことを特徴とする欠陥検査装置。
A stage on which a substrate on which a pattern is formed is placed;
A first illumination optical system for illuminating the substrate;
A second illumination optical system for illuminating the substrate;
A light receiving optical system for receiving diffracted light from the substrate by illumination light from the first illumination optical system and scattered light from the substrate by illumination light from the second illumination optical system;
A tilt mechanism for tilting the stage;
An image processing device that performs image processing based on the image of the substrate obtained by the light receiving optical system;
The light receiving optical system includes a first reflecting mirror, a second reflecting mirror, and a detector, and an optical axis between the first reflecting mirror and the second reflecting mirror and between the second reflecting mirror and the detector. That at least one of the optical axes is not coplanar with the plane formed by the optical axis of the first illumination optical system intersecting the substrate and the optical axis of the light receiving optical system intersecting the substrate. A feature defect inspection device.
前記第一の照明光学系と、前記受光光学系とは、前記基板と交わる前記第一の照明光学系の光軸と、前記基板と交わる前記受光光学系の光軸とがなす平面は、前記基板の面と垂直に交わるように配置され、
前記傾斜機構は、前記基板面近傍の前記平面に垂直に交わる軸を傾斜軸として前記ステージを傾斜させることを特徴とする請求項1記載の欠陥検査装置。
The plane formed by the optical axis of the first illumination optical system that intersects the substrate and the optical axis of the light reception optical system that intersects the substrate is the first illumination optical system and the light reception optical system, It is arranged so that it intersects the surface of the board perpendicularly,
The defect inspection apparatus according to claim 1 , wherein the tilt mechanism tilts the stage with an axis perpendicular to the plane in the vicinity of the substrate surface as an tilt axis.
前記基板を照明する照明光の波長をλ、前記ステージが傾斜していない状態での前記基板の垂線と前記第一の照明光学系の光軸との角度をθi、前記基板の垂線と前記受光光学系の光軸との角度をθdとし、前記基板に形成されたパターンのピッチをP、受光する回折光の回折次数をmとしたとき、
ステージの傾斜角θtが以下の条件を満足するようにステージを傾斜させることを特徴とする請求項1又は2記載の欠陥検査装置。
sin(θd−θt)−sin(θi+θt)=mλ/P
The wavelength of illumination light for illuminating the substrate is λ, the angle between the normal of the substrate and the optical axis of the first illumination optical system when the stage is not tilted is θi, and the normal of the substrate and the light reception When the angle with the optical axis of the optical system is θd, the pitch of the pattern formed on the substrate is P, and the diffraction order of the received diffracted light is m,
The defect inspection apparatus according to claim 1 , wherein the stage is tilted so that the tilt angle θt of the stage satisfies the following condition.
sin (θd−θt) −sin (θi + θt) = mλ / P
前記ステージは、更に、前記ステージが傾斜していない状態での前記ステージの垂線の周りに回転させる回転機構を有することを特徴とする請求項1乃至請求項3のいずれか一項に記載の欠陥検査装置。  The defect according to any one of claims 1 to 3, wherein the stage further includes a rotation mechanism that rotates around a vertical line of the stage when the stage is not inclined. Inspection device. 前記第一の照明光学系および前記受光光学系は、実質的にテレセントリックな光学系であり、反射型の光収束素子を含むことを特徴とする請求項1乃至請求項4のいずれか一項に記載の欠陥検査装置。  The first illumination optical system and the light receiving optical system are substantially telecentric optical systems, and include a reflective light converging element. Defect inspection apparatus as described. 前記第二の照明光学系は、その光軸と前記受光光学系の光軸とがなす平面が、前記基板と交わる第一の照明光学系の光軸と、前記基板と交わる前記受光光学系の光軸とがなす平面と略重なるように配設されることを特徴とする請求項乃至請求項5のいずれか一項に記載の欠陥検査装置。The second illumination optical system has a plane formed by the optical axis of the light receiving optical system and the optical axis of the first illumination optical system that intersects the substrate, and the light receiving optical system of the light receiving optical system that intersects the substrate. defect inspection apparatus according to any one of claims 1 to 5, characterized in that it is arranged so as to substantially overlap with the plane formed by the optical axis.
JP21105797A 1997-08-05 1997-08-05 Defect inspection equipment Expired - Fee Related JP3982017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21105797A JP3982017B2 (en) 1997-08-05 1997-08-05 Defect inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21105797A JP3982017B2 (en) 1997-08-05 1997-08-05 Defect inspection equipment

Publications (2)

Publication Number Publication Date
JPH1151874A JPH1151874A (en) 1999-02-26
JP3982017B2 true JP3982017B2 (en) 2007-09-26

Family

ID=16599689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21105797A Expired - Fee Related JP3982017B2 (en) 1997-08-05 1997-08-05 Defect inspection equipment

Country Status (1)

Country Link
JP (1) JP3982017B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100389967B1 (en) * 2000-08-21 2003-07-02 김성남 Automatized defect inspection system
KR100856357B1 (en) * 2000-09-13 2008-09-04 가부시키가이샤 니콘 Apparatus and method for inspecting surface
JP4591802B2 (en) * 2000-09-13 2010-12-01 株式会社ニコン Surface inspection apparatus and method
KR20040039372A (en) 2001-09-21 2004-05-10 올림푸스 가부시키가이샤 Defect Inspection Apparatus
US7310141B2 (en) 2001-11-30 2007-12-18 International Business Machines Corporation Inspection device and inspection method for pattern profile, exposure system
JP4901090B2 (en) * 2004-10-06 2012-03-21 株式会社ニコン Defect inspection method and defect detection apparatus
US7643137B2 (en) 2003-03-26 2010-01-05 Nikon Corporation Defect inspection apparatus, defect inspection method and method of inspecting hole pattern
DE102004017690B4 (en) * 2004-04-10 2006-07-13 Leica Microsystems Jena Gmbh Apparatus and method for capturing an overall image of a surface of a semiconductor substrate
JP5287891B2 (en) * 2011-02-04 2013-09-11 株式会社ニコン Defect inspection method
JP5493029B2 (en) * 2013-04-12 2014-05-14 株式会社日立ハイテクノロジーズ Charged particle beam application equipment

Also Published As

Publication number Publication date
JPH1151874A (en) 1999-02-26

Similar Documents

Publication Publication Date Title
JP3692685B2 (en) Defect inspection equipment
US6512578B1 (en) Method and apparatus for surface inspection
KR100756099B1 (en) Apparatus and method for fabricating flat workpieces
EP0930498A2 (en) Inspection apparatus and method for detecting defects
US7372557B2 (en) Surface defect inspection apparatus and surface defect inspection method
JPH0727709A (en) Inspecting apparatus surface defect
JP3483948B2 (en) Defect detection device
JP5144401B2 (en) Wafer inspection equipment
US6147357A (en) Apparatus and method for inspecting the edge micro-texture of a semiconductor wafer
JP3982017B2 (en) Defect inspection equipment
JP2002062267A (en) Device for inspecting defect
US20090207245A1 (en) Disk inspection apparatus and method
JP2006017685A (en) Surface defect inspection device
JP2001305071A (en) Defect inspecting device
JP2003202302A (en) Surface defect-inspecting apparatus
JP3981895B2 (en) Automatic macro inspection device
JPH10339701A (en) Device and method for checking defect on substrate
JP2001289794A (en) Defect inspection device
JP3388285B2 (en) Inspection device
JP3893671B2 (en) Substrate defect inspection system
JP4411738B2 (en) Surface inspection device
JP2966729B2 (en) Light guide element and method of using the same
JPH0599639A (en) Inspection device for small unevenness of planar object
JP2000131239A (en) Defect inspecting device
JP2003302356A (en) Defect inspection apparatus and method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040723

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees