JPS59108430A - Binary-ternary value converting circuit - Google Patents

Binary-ternary value converting circuit

Info

Publication number
JPS59108430A
JPS59108430A JP57218610A JP21861082A JPS59108430A JP S59108430 A JPS59108430 A JP S59108430A JP 57218610 A JP57218610 A JP 57218610A JP 21861082 A JP21861082 A JP 21861082A JP S59108430 A JPS59108430 A JP S59108430A
Authority
JP
Japan
Prior art keywords
binary
transistor
output
gate
operational amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57218610A
Other languages
Japanese (ja)
Inventor
Koji Oka
浩二 岡
Shigeto Suzuki
茂人 鈴木
Minoru Nakamura
穣 中村
Masaru Hashirano
柱野 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57218610A priority Critical patent/JPS59108430A/en
Publication of JPS59108430A publication Critical patent/JPS59108430A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/08Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
    • H03K19/094Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors
    • H03K19/09425Multistate logic

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Logic Circuits (AREA)

Abstract

PURPOSE:To make an intermediate level generating section stable against load fluctuation and to use the section in common to other circuits by regulating the intermediate level potential to a constant voltage by an operational amplifier and connecting the operational amplifier to an upper and a lower level generating circuit via a gate. CONSTITUTION:An output of FETs 9, 10 is at ''L'' when inputs I1, I2 are (phi, phi), at ''H'' when (11) and at a high impedance state when at intermediate levels (01), (10). On the other hand, a potential, VCC (H) is split by resistors 15, 16, and an intermediate level potential regulated into a constant voltage and extracted by the operational amplifier 11 whose output voltage is fed back to an inverting input is outputted to an output terminal OUT via transfer gate 12, since an NAND gate 13 goes to ''L'' when the inputs I1, I2 go to (01). Further, when the input is at (10), since the transfer gate 12 is also closed, the high impedance state is formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は2値のデータ信号を3値のデータ信号に変換す
る2値−3値変換回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a binary-to-ternary conversion circuit that converts a binary data signal into a ternary data signal.

従来例の構成とその問題点 第1図は従来の2値−3値変換回路を示すものであり、
1はインバータ、2は入力NORゲート、3はPMO3
)ランジスタ(以下P MOS T rと記す)、4は
NMO8)ランジスタ(以下NMOS T rと記す)
、6.6は抵抗、■1.I2はそれぞれ第1.第2の2
値データ入力、OUTは3値データ出力である。
Configuration of conventional example and its problems Figure 1 shows a conventional binary-to-ternary conversion circuit.
1 is inverter, 2 is input NOR gate, 3 is PMO3
) transistor (hereinafter referred to as PMOSTr), 4 is NMO8) transistor (hereinafter referred to as NMOSTr)
, 6.6 is resistance, ■1. I2 is the first . second 2
Value data input and OUT are ternary data outputs.

インバータ1は第1の2値データ人力■1 を入力とし
、出力をP MOS T r 3のゲートに印加し、N
ORゲート2は第1と第2の2値テータ入力■1゜I2
を入力とし、出力をNMO8Tr4のゲートに印加して
いる。また、PMO3Tr3のソースは電源3 S − Vccに、ドレインはNMOS T r 4のドレイン
に接続し、とこから出力を得、NMOS T r 4の
ソースは接地され、抵抗5は電源Vccと出力端子OU
T間に。
Inverter 1 inputs the first binary data 1, applies the output to the gate of P MOS T r 3, and
OR gate 2 receives first and second binary data input ■1°I2
is input, and the output is applied to the gate of NMO8Tr4. In addition, the source of PMO3Tr3 is connected to the power supply 3 S - Vcc, and the drain is connected to the drain of NMOS Tr 4, from which output is obtained, the source of NMOS Tr 4 is grounded, and the resistor 5 is connected to the power supply Vcc and the output terminal OU.
Between T.

抵抗6は出力端子OUTと接地間に接続されている。A resistor 6 is connected between the output terminal OUT and ground.

第1図において、第1.第2の2値テ−タ入カ■1.■
2が共にロウレベル°′L″′の時、インバータ1、U
ORゲート2の出力は共にハイレベル゛H′。
In FIG. 1, 1. Second binary data input ■1. ■
When both inverters 1 and 2 are at low level °'L''', inverters 1 and U
The outputs of OR gate 2 are both at high level ``H''.

となり、PMO8Tr3は非導通、NMOS T r 
4は導通となる。このときの出力0UTid、” L 
”  になる。データ人力11.I2が°゛L″“、“
°H°゛の時、インバータ1 。
Therefore, PMO8Tr3 is non-conductive, and NMOS Tr3 is non-conductive.
4 is conductive. At this time, the output 0UTid, "L
”.Data human power 11.I2 is °゛L”“,“
When °H°゛, inverter 1.

NORゲート2の出力はそれぞれ・・H” 、 ”L・
・となり、NMOS T r 4は共に非導通となる。
The outputs of NOR gate 2 are respectively...H", "L"
・So both NMOS T r 4 become non-conductive.

このとき出力○UTは抵抗5,6で分割された中間電位
“M″′となる。第1の2値データ人力11がH″、第
2の2値テータ入カニ、が“H′”またはL”の時、イ
ンバータ1、NORゲート2の出力は共にL”となり、
PMO8Tr3.NMO8Tr4 はそれぞれ導通、非
導通となる。このとき出力OUTは′H′″に々る。
At this time, the output UT becomes the intermediate potential "M"' divided by the resistors 5 and 6. When the first binary data input 11 is H'' and the second binary data input is H' or L, the outputs of the inverter 1 and NOR gate 2 are both L,
PMO8Tr3. NMO8Tr4 becomes conductive and non-conductive, respectively. At this time, the output OUT reaches ``H''.

この様に2値テータ入力11.I2に応じて2−3値の
データを出力することができる。
In this way, binary data input 11. Data of 2-3 values can be output according to I2.

しかしながら」−記従来の2値−3値変換回路は下記の
問題点を有している。即ち、PMO3Tr 。
However, the conventional binary-to-ternary conversion circuit has the following problems. That is, PMO3Tr.

NMOS T rが共に非導通の状態で、出力として抵
抗分割された中間電位11M”′のレベルを出力してい
る場合、この“M′″レベルは出力端子0UTK接続す
る負荷抵抗の値によって変動する。この欠点を小さくす
るためには、抵抗5,6の値を小さくすれば良いが、こ
の場合抵抗5,6で消費される電流が大きくなる。さら
に2値−3値変換回路が複数個必要な場合、°“Ml+
レベルを発生する抵抗がそれぞれの回路で必要であるた
め、消費電流もその回路の数だけ増加する。
When both NMOS T r are in a non-conducting state and output the level of the intermediate potential 11M'' which is divided by the resistance, this "M'" level varies depending on the value of the load resistance connected to the output terminal 0UTK. .In order to reduce this drawback, the values of the resistors 5 and 6 can be reduced, but in this case, the current consumed by the resistors 5 and 6 increases.Moreover, multiple binary-to-ternary conversion circuits are required. If , °“Ml+
Since each circuit requires a resistor to generate a level, current consumption also increases by the number of circuits.

発明の目的 本発明は、上述の問題点に鑑み、負荷によるM″。purpose of invention In view of the above-mentioned problems, the present invention provides M'' depending on the load.

レベルの変動が少なく、また、2値−3値変換回路を複
数個使用する場合、”M”レベル発生部を共用化できる
2値−3値変換回路を提供することを目的とするもので
ある。
The object of the present invention is to provide a binary-to-ternary conversion circuit that has little level fluctuation and can share an "M" level generation section when a plurality of binary-to-ternary conversion circuits are used. .

発明の構成 6ページ 本発明は、”H” 、 ”、L”  レベルを出力する
PMO8Tr、 N MOS Trと、”M”  レベ
ルを出力するオペアンプと、PMOS T r 、 N
MOS T rのON、OFFを制御する第1論理回路
と、“M″ルベル出力を制御する第2論理回路とトラン
スファーゲートがら成る2値−3値変換回路であり、オ
ペアンプとトランスファーゲートの使用により負荷にょ
る“1M+”レベルの変動を抑え、また、複数個の2値
−3値変換回路を使用する場合11h7[1ルベル発生
回路を共用できるものである。
Structure of the Invention Page 6 The present invention consists of a PMO8Tr, NMOS Tr that outputs "H", ", L" level, an operational amplifier that outputs "M" level, and a PMOS Tr, NMOS Tr that outputs "M" level.
This is a binary-to-ternary conversion circuit consisting of a first logic circuit that controls ON/OFF of MOS TR, a second logic circuit that controls the "M" level output, and a transfer gate. By using an operational amplifier and a transfer gate, This suppresses fluctuations in the "1M+" level due to load, and also allows the 11h7[1 level generating circuit to be used in common when a plurality of binary-to-ternary conversion circuits are used.

実施例の説明 第2図は本発明の第1の実施例における2値−3値変換
回路を示す。第2図において、7はインバータ、8は2
人力NORゲート、9はPMO3Tr110はNMOT
r 、11はオペアンプ、12はトランスファーゲート
、13は2人カNANDデー1・、14はインバータ、
15.16は抵抗である。
DESCRIPTION OF EMBODIMENTS FIG. 2 shows a binary-to-ternary conversion circuit according to a first embodiment of the present invention. In Figure 2, 7 is an inverter, 8 is 2
Manual NOR gate, 9 is PMO3Tr110 is NMOT
r, 11 is an operational amplifier, 12 is a transfer gate, 13 is a two-person NAND data 1, 14 is an inverter,
15.16 is the resistance.

11112 ハ第11 第2(7)2値チー1人力fO
UTll−11,3値出力である。
11112 Ha No. 11 No. 2 (7) Binary Chi 1-manpower fO
UTll-11, ternary output.

以上の様に構成された2値−3値変換回路の動6ベ1.
ジ 作を以下に説明する。
The operation of the binary-to-ternary conversion circuit configured as described above is 1.
The work is explained below.

データ人力11.I2が共に“′L″”で出力OUTが
II L H,データ入力I、、I2が”H″″、H″
′又は”H”。
Data human power 11. Both I2 are “L”, output OUT is II L H, data input I, I2 is “H”, H”
' or "H".

”L″“で出力OUTが′H″°の場合の動作は従来例
と同じである。データ入力■11■2がパL′″、°“
H″′の時、従来例と同様にPMOS T 瓜NMO8
T r 10 は共に非導通である。この時、NAND
ゲート13はII L II、インバータ14は°°H
″でトランスファゲート12は導通し出力OUTは、抵
抗15.16で分割された中間電位゛M″レベルとなる
The operation when the output is "H" at "L" is the same as the conventional example. Data input ■11■2 is par L''', °“
When H''', PMOS T 瓜NMO8 as in the conventional example
Both T r 10 are non-conductive. At this time, NAND
Gate 13 is II L II, inverter 14 is °°H
'', the transfer gate 12 becomes conductive and the output OUT becomes the intermediate potential divided by the resistors 15 and 16 at the level ``M''.

以上の様に本実施例によれば、゛M″レベルをオペアン
プで発生しているため、負荷にょる゛Ml+レベルの変
動は小さく、また、抵抗15.16による消費電流も少
なくできる。さらに、トランスファーゲートにより、出
力端子と”Ml+レベル発生回路の接続、切断を行って
いるため、3値出力回路を複数個必要な場合、との°゛
M″M″発生回路は共用化でき、素子数、消費電流の低
減が図れる。
As described above, according to this embodiment, since the "M" level is generated by the operational amplifier, the variation in the "Ml+ level due to the load is small, and the current consumption by the resistors 15 and 16 can also be reduced.Furthermore, The transfer gate connects and disconnects the output terminal and the "Ml+ level generation circuit," so when multiple ternary output circuits are required, the "M" and "M" generation circuits can be shared, reducing the number of elements. , current consumption can be reduced.

第3図は本発明の第2の実施例を示す2値−3値変換回
路である。第2図の第1実施例と異なる713− のはインバータ7の変わりにデータ人力11.I2を入
力する2人力NORゲート1フを設けた点である。
FIG. 3 shows a binary-to-ternary conversion circuit showing a second embodiment of the present invention. The difference from the first embodiment shown in FIG. 2 is that the inverter 7 is replaced by a data input 11. The point is that a two-man powered NOR gate 1 is provided to input I2.

上記の様に構成された第2の実施例において、第1の実
施例と異なるのは、データ人力I、、I2が“°L”、
 、 IIHI+の時で、NANDゲート17は“′H
″′。
In the second embodiment configured as described above, the difference from the first embodiment is that the data input I, I2 is "°L",
, IIHI+, the NAND gate 17 is “'H”
″′.

NORゲート8は°゛L″′を出力し、PMO8Tr9
゜NMO3Tr10は共に非導通で、かつ、NANDゲ
ート13は“H′′、インバータ14は°′L″′を出
力し、トランスファゲート12も非導通とし、出力OU
Tをハイインピーダンス状態にできる点である。
NOR gate 8 outputs °゛L''', PMO8Tr9
゜NMO3Tr10 are both non-conductive, the NAND gate 13 outputs "H'', the inverter 14 outputs °'L"', the transfer gate 12 is also non-conductive, and the output OU
The point is that T can be placed in a high impedance state.

以上の様に本実施例では、NANDゲート17を設ける
ことにより、3値出力の他に・・イインピーダンス状態
をつくることができる。
As described above, in this embodiment, by providing the NAND gate 17, it is possible to create an impedance state in addition to the three-value output.

発明の効果 本発明の2値−3値変換回路は、新たにオペアンプとト
ランスファーゲートを設けることにより、“°M′ルベ
ルの負荷による変動を抑えることができ、捷だ、2値−
3値変換回路を複数個使用する場合゛M”レベル発生回
路を共用化でき、その実用的効果は大きい。
Effects of the Invention By newly providing an operational amplifier and a transfer gate, the binary-to-three-value conversion circuit of the present invention can suppress fluctuations due to load in "°M" level, making it possible to easily convert binary to three-value conversion circuits.
When a plurality of three-value conversion circuits are used, the "M" level generation circuit can be shared, which has a great practical effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の2値−3値変換回路の電気的結線図、第
2図は本発明の第1の実施例における2値−3値変換回
路の電気的結線図、第3図は本発明の第2の実施例にお
ける2値−3値変換回路の電気的結線図である。 7・・・・・・インバータ、8・・・・・・NORゲー
ト、9・・・−−−PMO8Tr  、 I CL・・
・−NMO8Tr  、 11−・−オペアンプ、12
・・・・・・トランスファーゲート、13・・・・・・
NANDゲート、14・・・・・・インバータ、15・
・・・・抵抗、16・・・・・・抵抗、17・・・・・
・NANDゲート。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 餓 3 M
FIG. 1 is an electrical connection diagram of a conventional binary-to-ternary conversion circuit, FIG. 2 is an electrical connection diagram of a binary-to-ternary conversion circuit according to the first embodiment of the present invention, and FIG. 3 is an electrical connection diagram of a conventional binary-to-ternary conversion circuit. FIG. 7 is an electrical wiring diagram of a binary-to-ternary conversion circuit in a second embodiment of the invention. 7...Inverter, 8...NOR gate, 9...---PMO8Tr, ICL...
・-NMO8Tr, 11-・-Op Amp, 12
...Transfer Gate, 13...
NAND gate, 14... Inverter, 15.
...Resistance, 16...Resistance, 17...
・NAND gate. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
3M

Claims (1)

【特許請求の範囲】 ソースを電源に接続したPMOSトランジスタと、前記
PMOSトランジスタのドレインにドレインを接続し、
ソースを接地したNM○Sトランジスタと、反転入力端
子と出力端子とが接続され、電源と接地間の中間電位を
非反転入力とするオペアンプと、そのオペアンプの出力
を入力とし、その出力端子が前記NMO8)ランジスタ
およびPMO3)ランジスタのドレインに接続されたト
ランスファーゲートと、2つの2値データ入力に応じて
、前記PMO3)ランジスタと、NMOSトランジスタ
の一方を導通とする第1の状態と共に非導通と第2の状
態に切換える第1論理回路と、前記2値データ入力によ
り、前記PMO8)ランジスタ、NMO8)ランジスタ
の非導通時に前記トランスファゲートを導通させる第2
論理回路を備え、前記PMOSトランジスタ、NMO8
)う2べ一゛ ンジスタのドレインより出力を得ることにより前記2値
データ入力を3値データ出力に変換することを特徴とす
る2値−3値変換回路。
[Claims] A PMOS transistor whose source is connected to a power supply, a drain connected to the drain of the PMOS transistor,
An NM○S transistor whose source is grounded, an inverting input terminal, and an output terminal are connected to each other, an operational amplifier whose non-inverting input is an intermediate potential between the power supply and the ground, and the output of the operational amplifier is the input, and its output terminal is connected to the A transfer gate connected to the drains of the NMOS transistor and the PMO transistor, and a first state in which one of the PMO transistor and the NMOS transistor is conductive, as well as a non-conductive state and a second state in response to two binary data inputs. a first logic circuit that switches to a state of 2, and a second logic circuit that makes the transfer gate conductive when the PMO transistor 8) and the NMO transistor 8) are non-conductive according to the binary data input;
comprising a logic circuit, the PMOS transistor, NMO8
) A binary-to-ternary conversion circuit, characterized in that the binary data input is converted into a ternary data output by obtaining an output from the drain of a second-level transistor.
JP57218610A 1982-12-13 1982-12-13 Binary-ternary value converting circuit Pending JPS59108430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57218610A JPS59108430A (en) 1982-12-13 1982-12-13 Binary-ternary value converting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57218610A JPS59108430A (en) 1982-12-13 1982-12-13 Binary-ternary value converting circuit

Publications (1)

Publication Number Publication Date
JPS59108430A true JPS59108430A (en) 1984-06-22

Family

ID=16722647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57218610A Pending JPS59108430A (en) 1982-12-13 1982-12-13 Binary-ternary value converting circuit

Country Status (1)

Country Link
JP (1) JPS59108430A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0261620A2 (en) * 1986-09-23 1988-03-30 Alcatel SEL Aktiengesellschaft Circuit arrangement and bus circuit with a large bandwidth, and a component for a broadband switching network
JPS63202117A (en) * 1987-02-17 1988-08-22 Hitachi Ltd Pulse generator
JPS6454936A (en) * 1987-08-26 1989-03-02 Matsushita Electric Ind Co Ltd Binary/ternary value converting circuit
JPS6454935A (en) * 1987-08-26 1989-03-02 Matsushita Electric Ind Co Ltd Binary/ternary value conversion circuit
JPH01276924A (en) * 1988-03-24 1989-11-07 At & T And Philips Telecommun Bv Binary-trinary converter
JPH02123645U (en) * 1989-03-24 1990-10-11
JP2007060478A (en) * 2005-08-26 2007-03-08 New Japan Radio Co Ltd Binary/ternary conversion circuit
JP2014241499A (en) * 2013-06-11 2014-12-25 オンキヨー株式会社 Pulse synthesis circuit
JP2016511608A (en) * 2013-03-07 2016-04-14 クアルコム,インコーポレイテッド Voltage mode driver circuit for N-phase system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0261620A2 (en) * 1986-09-23 1988-03-30 Alcatel SEL Aktiengesellschaft Circuit arrangement and bus circuit with a large bandwidth, and a component for a broadband switching network
JPS63202117A (en) * 1987-02-17 1988-08-22 Hitachi Ltd Pulse generator
JPS6454936A (en) * 1987-08-26 1989-03-02 Matsushita Electric Ind Co Ltd Binary/ternary value converting circuit
JPS6454935A (en) * 1987-08-26 1989-03-02 Matsushita Electric Ind Co Ltd Binary/ternary value conversion circuit
JPH01276924A (en) * 1988-03-24 1989-11-07 At & T And Philips Telecommun Bv Binary-trinary converter
JPH02123645U (en) * 1989-03-24 1990-10-11
JP2007060478A (en) * 2005-08-26 2007-03-08 New Japan Radio Co Ltd Binary/ternary conversion circuit
JP4664774B2 (en) * 2005-08-26 2011-04-06 新日本無線株式会社 Binary / ternary conversion circuit
JP2016511608A (en) * 2013-03-07 2016-04-14 クアルコム,インコーポレイテッド Voltage mode driver circuit for N-phase system
JP2014241499A (en) * 2013-06-11 2014-12-25 オンキヨー株式会社 Pulse synthesis circuit
US9287867B2 (en) 2013-06-11 2016-03-15 Onkyo Corporation Pulse synthesizing circuit

Similar Documents

Publication Publication Date Title
US5519309A (en) Voltage to current converter with extended dynamic range
US4584492A (en) Temperature and process stable MOS input buffer
DE69008075D1 (en) CMOS low voltage output coupling assembly.
KR890004500A (en) Output buffer
JPS59108430A (en) Binary-ternary value converting circuit
JP2652061B2 (en) Intermediate potential generation circuit
KR930020850A (en) Level conversion circuit
EP0270219A2 (en) Reduced parallel EXCLUSIVE OR and EXCLUSIVE NOR gate
US4672239A (en) Sample-and-hold circuit arrangement
JP2793891B2 (en) AB class push-pull drive circuit
KR920003670A (en) D / A Converter
JP2734551B2 (en) Power supply voltage conversion circuit
KR940012851A (en) Differential current source circuit
EP0206405A2 (en) Nor gate with logical low output clamp
JPS6134690B2 (en)
JPS6028074B2 (en) Static MIS memory
JPH0612856B2 (en) Amplifier circuit
JPS6313203B2 (en)
JPH0315854B2 (en)
JP2771182B2 (en) Stabilized power supply circuit
JPH0245377B2 (en)
JPH048661Y2 (en)
JPH0683039B2 (en) comparator
JP2570801B2 (en) Input buffer circuit
JPH0317122B2 (en)