JP2734551B2 - Power supply voltage conversion circuit - Google Patents

Power supply voltage conversion circuit

Info

Publication number
JP2734551B2
JP2734551B2 JP63219368A JP21936888A JP2734551B2 JP 2734551 B2 JP2734551 B2 JP 2734551B2 JP 63219368 A JP63219368 A JP 63219368A JP 21936888 A JP21936888 A JP 21936888A JP 2734551 B2 JP2734551 B2 JP 2734551B2
Authority
JP
Japan
Prior art keywords
circuit
power supply
supply voltage
voltage conversion
reference voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63219368A
Other languages
Japanese (ja)
Other versions
JPH0270264A (en
Inventor
洋紀 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP63219368A priority Critical patent/JP2734551B2/en
Publication of JPH0270264A publication Critical patent/JPH0270264A/en
Application granted granted Critical
Publication of JP2734551B2 publication Critical patent/JP2734551B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Static Random-Access Memory (AREA)
  • Control Of Electrical Variables (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Dc-Dc Converters (AREA)
  • Amplifiers (AREA)
  • Dram (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は外部電源より与えられた電圧を変換して所定
電圧を得る電源電圧変換回路に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply voltage conversion circuit for converting a voltage supplied from an external power supply to obtain a predetermined voltage.

〔従来の技術〕[Conventional technology]

従来知られている差動増幅器を用いた電源電圧変換回
路として、第10図に示す回路がある。この電源電圧変換
回路は、1986年10月発行の雑誌「アイ・イー・イー・イ
ー・ジャーナル・オブ・ソリッド・ステート・サーキッ
ト(IEEE,Journal of Solid State Circuits)」,第21
巻第5号の608頁に示されている。この回路は、まずFET
Q11〜Q15からなる基準電圧発生回路1で、所望の基準電
圧VREFを発生する。この基準電圧発生回路1でつくられ
た電圧VREFは、FETQ2,Q3,Q6〜Q9からなる差動増幅器2
の反転入力端子に入力され、この差動増幅器2で電源電
圧変換回路の出力電圧VOUTと電圧VREFとの差電圧を増幅
する。この差動増幅器2の出力は負荷駆動回路3に入力
される。この負荷駆動回路3は、ソースが電源電圧VCC
に、ドレインが出力VOUTに接続され、ゲートに差動増幅
器2からの出力が接続されたPチャネル型MISFET(以下
PMISFETという)Q20が用いられている。
As a power supply voltage conversion circuit using a conventionally known differential amplifier, there is a circuit shown in FIG. This power supply voltage conversion circuit is described in the magazine "IEEE, Journal of Solid State Circuits", published in October 1986, 21st edition.
Vol. 5, page 608. This circuit starts with FET
A desired reference voltage V REF is generated by a reference voltage generation circuit 1 including Q 11 to Q 15 . The voltage V REF generated by the reference voltage generating circuit 1 is applied to a differential amplifier 2 composed of FETs Q 2 , Q 3 , Q 6 to Q 9.
, And the differential amplifier 2 amplifies the difference voltage between the output voltage V OUT of the power supply voltage conversion circuit and the voltage V REF . The output of the differential amplifier 2 is input to the load drive circuit 3. In the load driving circuit 3, the source is the power supply voltage V CC
A P-channel MISFET having a drain connected to the output V OUT and a gate connected to the output from the differential amplifier 2
) Q 20 has been used as PMISFET.

この電源電圧変換回路の動作は次のように行われる。
出力電圧VOUTが電圧値VREFより低い時は、差動増幅器2
の出力がロウレベルになり、負荷駆動回路3であるPMIS
FETQ20が導通して電流が供給され、出力電圧VOUTの電圧
レベルが上がる。逆に、出力電圧VOUTのレベルが所望の
レベルより高い時は差動増幅器2の出力がハイレベルに
なり負荷駆動回路3が非導通になり、出力電圧VOUTへの
電流の供給が止まる。このようにして出力電圧が基準電
圧VREFのレベルに保たれる。
The operation of the power supply voltage conversion circuit is performed as follows.
When the output voltage V OUT is lower than the voltage value V REF , the differential amplifier 2
Becomes low level, and the load driving circuit 3 PMIS
FETQ 20 conducts and supplies current, increasing the voltage level of output voltage V OUT . Conversely, when the level of the output voltage V OUT is higher than the desired level, the output of the differential amplifier 2 goes high, the load drive circuit 3 becomes non-conductive, and the supply of current to the output voltage V OUT stops. In this way, the output voltage is maintained at the level of the reference voltage VREF .

第10図の電源電圧変換回路は、外部から与えられた電
源電圧VCCを変換して出力電圧VOUTをつくり、この出力
電圧VOUTのレベルを任意の回路に供給するのである。
Power supply voltage converting circuit of FIG. 10 converts the power supply voltage V CC given from the outside making the output voltage V OUT, is to supply the level of the output voltage V OUT to any circuit.

この電源電圧変換回路のうち基準電圧発生回路1に
は、第10図のようにFETQ11〜Q15で構成された回路や、
第11図のようにR1,R2の抵抗分割により基準電圧を得る
回路等があるが、いずれの回路も定常電流パスが存在す
る。
The reference voltage generating circuit 1 of the power supply voltage converting circuit, the circuit and constituted by FETs Q 11 to Q 15 as Figure 10,
As shown in FIG. 11, there is a circuit for obtaining a reference voltage by dividing the resistances of R 1 and R 2 , and both circuits have a steady current path.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

このように従来の電源電圧変換回路で大きな容量を持
つ負荷を駆動しようとした場合、負荷駆動回路3を駆動
能力の大きなものにする必要がある。その結果、差動増
幅器2も負荷駆動回路3に応じて駆動能力を持たせねば
ならないため、消費電力の増大を招く。このことは、例
えば電源電圧変換回路をメモリに適用しビット線の駆動
に用いるというように、大負荷容量の駆動を要する期間
がメモリの全動作のうちのある一期間であり、その他の
期間では比較的小さな容量を定電圧に保っておくだけで
よいような場合に適用する時には消費電力の無駄とな
る。
Thus, when trying to drive a load having a large capacity with the conventional power supply voltage conversion circuit, the load driving circuit 3 needs to have a large driving capability. As a result, the differential amplifier 2 also needs to have a driving capability in accordance with the load driving circuit 3, which causes an increase in power consumption. This means that the period during which the drive of the large load capacitance is required is one period of the entire operation of the memory, and the other period is, for example, when the power supply voltage conversion circuit is applied to the memory and used for driving the bit line. When applied to a case where only a relatively small capacitance needs to be kept at a constant voltage, power consumption is wasted.

また、電源電圧変換回路に用いられる基準電圧発生回
路1は定常電流パスが存在するので、電源電圧変換回路
内の単位電源電圧変換回路の数に応じて多数の基準電圧
発生回路が同時に用いられるとやはり消費電流の無駄に
つながる。
Further, since the reference voltage generation circuit 1 used in the power supply voltage conversion circuit has a steady current path, if a large number of reference voltage generation circuits are used simultaneously according to the number of unit power supply voltage conversion circuits in the power supply voltage conversion circuit. Again, this leads to waste of current consumption.

本発明の目的は、このような問題を解決し、大負荷容
量の駆動を必要としない場合に消費電力を低減すると共
に、基準電圧発生回路の消費電流の低減をした電源電圧
変換回路を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a power supply voltage conversion circuit which solves such a problem and reduces power consumption when driving of a large load capacity is not required, and also reduces current consumption of a reference voltage generation circuit. It is in.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の電源電圧変換回路の構成は、基準電圧発生回
路と、この基準電圧発生回路の出力を入力端子の一方に
接続した差動増幅器と、この差動増幅器の出力を入力し
て負荷を駆動する負荷駆動回路とからなり、前記差動増
幅器のもう一方の入力端子には前記負荷駆動回路の出力
電圧を帰還接続した単位電源電圧変換回路を複数個備
え、これら単位電源電圧変換回路の出力端を共通接続し
て出力端子とし、駆動すべき負荷容量の大きさに応じて
前記複数の単位電源電圧変換回路のうちの所要数を選択
して出力する電源電圧変換回路において、前記基準電圧
発生回路は、この基準電圧発生回路に形成した定電流経
路にスイッチ回路を設け、このスイッチ回路に制御信号
を印加して前記基準電圧発生回路の活性/非活性を制御
するようにしたことを特徴とする。
The configuration of the power supply voltage conversion circuit according to the present invention includes a reference voltage generation circuit, a differential amplifier having an output of the reference voltage generation circuit connected to one of input terminals, and a load driven by inputting an output of the differential amplifier. And a plurality of unit power supply voltage conversion circuits connected in a feedback manner to the output voltage of the load drive circuit at the other input terminal of the differential amplifier. The output terminals of these unit power supply voltage conversion circuits A power supply voltage conversion circuit for selecting and outputting a required number of the plurality of unit power supply voltage conversion circuits according to the magnitude of a load capacitance to be driven, wherein the reference voltage generation circuit Describes that a switch circuit is provided in a constant current path formed in the reference voltage generation circuit, and a control signal is applied to the switch circuit to control activation / inactivation of the reference voltage generation circuit. And butterflies.

〔作用〕[Action]

本発明の電源電圧変換回路によれば、大負荷容量駆動
を要する時には駆動能力の大きい負荷駆動回路を持つ単
位電源電圧変換回路で所望の出力電圧を得、それ以外の
比較的小さい負荷容量を駆動する時には、電源電圧変換
回路の差動増幅器中あるいは差動増幅器と負荷駆動回路
の両方の中に設けたスイッチを切り換えることにより、
駆動能力の小さい負荷駆動回路を持つ単位電源電圧変換
回路で所望の出力電圧を得ているので、大負荷容量の駆
動をしない時に消費電力で所望の定電圧を出力すること
ができる。
According to the power supply voltage conversion circuit of the present invention, when a large load capacity drive is required, a desired output voltage is obtained by a unit power supply voltage conversion circuit having a load drive circuit having a large drive capacity, and the other relatively small load capacity is driven. To do this, switch the switch provided in the differential amplifier of the power supply voltage conversion circuit or in both the differential amplifier and the load drive circuit.
Since a desired output voltage is obtained by a unit power supply voltage conversion circuit having a load driving circuit having a small driving ability, a desired constant voltage can be output with power consumption when driving a large load capacity is not performed.

また、単位電源電圧変換回路を差動増幅器中あるいは
差動増幅器と負荷駆動回路の両方の中に設けたスイッチ
によって非活性化した際に、同時に基準電圧発生回路も
内部に設けたスイッチ回路に入れた制御信号により非活
性化して、低消費電力化がはかられる。
Also, when the unit power supply voltage conversion circuit is deactivated by a switch provided in the differential amplifier or in both the differential amplifier and the load drive circuit, the reference voltage generation circuit is simultaneously placed in the switch circuit provided therein. Inactivated by the control signal, the power consumption can be reduced.

〔実施例〕〔Example〕

次に、本発明の電源電圧変換回路及び基準電圧発生回
路の実施例について図面を用いて説明する。
Next, embodiments of the power supply voltage conversion circuit and the reference voltage generation circuit of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の回路図であり、基準電圧
発生回路11,12、差動増幅器21,22、およびPMISFETQ31,Q
32からなる負荷駆動回路とから構成される。差動増幅器
21,22の一方の入力端子に基準電圧発生回路11,12からの
出力VREF、もう一方の入力端子に、この電源電圧変換回
路の出力電圧VOUTの帰還信号が入力され、また差動増幅
器21,22の出力は負荷駆動回路であるPMISFETQ31,Q32
ゲートに入力されて単位電源電圧変換回路を構成してい
る。この単位電源電圧変換回路は出力端子10で2台並列
に接続され、電圧VOUTを出力する。なお、基準電圧発生
回路11,12は、必要な基準電圧を与える回路であればど
のような形式の回路でもよい。
FIG. 1 is a circuit diagram of an embodiment of the present invention, in which reference voltage generating circuits 11 and 12, differential amplifiers 21 and 22, and PMISFETs Q 31 and Q
32 load driving circuits. Differential amplifier
The output signal V REF from the reference voltage generation circuits 11 and 12 is input to one of the input terminals 21 and 22, the feedback signal of the output voltage V OUT of the power supply voltage conversion circuit is input to the other input terminal. the output of 21 and 22 are inputted to the gate of the PMISFETQ 31, Q 32 is a load driving circuit and constitute a unit power supply voltage conversion circuit. Two unit power supply voltage conversion circuits are connected in parallel at an output terminal 10 and output a voltage VOUT . Note that the reference voltage generation circuits 11 and 12 may be any type of circuit as long as the circuit supplies a required reference voltage.

本実施例に用いられる差動増幅器21,22は、一例とし
て第2図に示す回路がある。この回路は、一般にカレン
トミラー型と呼ばれるタイプの差動増幅器である。ま
た、負荷駆動回路3としては、PMISFETが用いられてい
るが、このPMISFETに限ることはなく、Nチャネル型MIS
FET(以下NMISFETという)やバイポーラトランジスタ、
あるいは複数の素子よりなる回路が用いられる。
The differential amplifiers 21 and 22 used in this embodiment include, for example, a circuit shown in FIG. This circuit is a differential amplifier of a type generally called a current mirror type. Further, although a PMISFET is used as the load driving circuit 3, the present invention is not limited to this PMISFET, and may be an N-channel type MISFET.
FET (hereinafter referred to as NMISFET), bipolar transistor,
Alternatively, a circuit including a plurality of elements is used.

これら基準電圧発生回路、差動増幅器、負荷駆動回路
についての説明は以下のすべての実施例について共通に
あてはまることである。
The description of the reference voltage generating circuit, the differential amplifier, and the load driving circuit applies to all of the following embodiments.

第1図の実施例では、負荷駆動能力の大きい負荷駆動
回路、いいかえるとコンダクタンスの大きいPMISFETQ31
を有する第1の回路と、駆動能力の比較的小さい負荷駆
動回路、すなわちコンダクタンスの小さいPMISFETQ32
有する第2の回路との2個の単位電源電圧変換回路を有
し、これら第1,第2の回路には各々の活性/非活性を制
御する信号φA1A2が入力される。
In the embodiment shown in FIG. 1, a load driving circuit having a large load driving capability, in other words, a PMISFETQ 31 having a large conductance is used.
And a second circuit having a PMISFETQ 32 having a small conductance, that is, a first circuit having a small driving capability, that is, a second circuit having a PMISFETQ 32 having a small conductance. Are supplied with signals φ A1 and φ A2 for controlling the activation / deactivation of each circuit.

この第1図の回路の使用方法をメモリへの応用例によ
り説明する。ビット線の充電時のように大きな負荷を駆
動する必要のある場合は、信号φA1を適当なレベルに設
定して第1回路の基準電圧発生回路11及び差動増幅器21
を活性化し、定電圧を供給する。この第1の回路は能力
の大きい負荷駆動回路を有するので大負荷駆動に有効で
ある。次に、メモリのスタンバイ時のように、大きな負
荷駆動を必要としな場合は、信号φA1により第1の回路
を非活性化し、逆に第2の回路を信号φA2により活性化
して定電圧を供給する。第2の回路は能力の小さい負荷
駆動回路を有し、従って負荷駆動回路を駆動する差動増
幅器22の消費電流も小さくて済み、低消費電力化に有効
である。
The method of using the circuit of FIG. 1 will be described with reference to an application to a memory. When it is necessary to drive a large load such as when charging a bit line, the signal φ A1 is set to an appropriate level to set the reference voltage generation circuit 11 and the differential amplifier 21 of the first circuit.
And supply a constant voltage. This first circuit is effective for driving a large load because it has a load driving circuit having a large capacity. Next, when a large load drive is not required, as in the case of memory standby, the first circuit is deactivated by the signal φ A1 and conversely, the second circuit is activated by the signal φ A2 to maintain the constant voltage. Supply. The second circuit has a load driving circuit with a small capacity, so that the current consumption of the differential amplifier 22 for driving the load driving circuit can be reduced, which is effective in reducing power consumption.

差動増幅器への制御信号φの導入方法の一例を、第
2図により説明する。図では、ソースを接地し、ドレイ
ンをソースカップルの差動入力部トランジスタQ2,Q3
ソースに接続したNMISFETQ1を有し、このNMISFETQ1のゲ
ートに制御信号φを入れ、回路活性化の時にはφ
ハイレベルにしてNMISFETQ1を導通させ、非活性化の時
にはφをロウレベルにしてNMISFETQ1を非導通にす
る。このように回路の活性/非活性を制御することがで
きるが、差動増幅器の形式が変われば信号による制御の
方法も変わる。
An example of a method for introducing the control signal phi A to the differential amplifier, illustrated by Figure 2. In the figure, the source is grounded, has a NMISFETQ 1 with a drain connected to the source of the differential input section transistors Q 2, Q 3 of the source-coupled, put a control signal phi A to the gate of the NMISFETQ 1, circuit activation to conduct NMISFETQ 1 by the phi a high level at the time of, at the time of deactivation to nonconductive NMISFETQ 1 by the phi a low level. Although the activation / inactivation of the circuit can be controlled in this way, if the type of the differential amplifier changes, the control method using signals also changes.

このように、本実施例の電源電圧変換回路は駆動しな
ければならない負荷の大きさに対応する適当な負荷駆動
回路を用いて定電圧VOUTを出力するので、一つの電源電
圧変換回路により定電圧を出力する場合に比べ低消費電
力で動作を行わせることができる。
As described above, since the power supply voltage conversion circuit of the present embodiment outputs the constant voltage VOUT using the appropriate load drive circuit corresponding to the size of the load to be driven, the power supply voltage conversion circuit is controlled by one power supply voltage conversion circuit. The operation can be performed with lower power consumption than in the case of outputting a voltage.

第3図は本発明の第2の実施例の回路図であり、第2
の回路の方の差動増幅器22を制御する信号φA2をなく
し、この第2の回路を常に活性化させておくものであ
る。この場合、スタンバイ時等に駆動しなければならな
い負荷が小さいために第2の回路2の負荷駆動能力が小
さくて済み、その結果消費電流が小さい場合には、制御
信号が少なくなるという利点がある。
FIG. 3 is a circuit diagram of a second embodiment of the present invention.
Eliminating the signal phi A2 for controlling the differential amplifier 22 towards circuit, but to be always activates the second circuit. In this case, since the load that must be driven during standby or the like is small, the load driving capability of the second circuit 2 can be small. As a result, when the current consumption is small, there is an advantage that the control signal is reduced. .

第4図は本発明の第3の実施例の回路図で、n個(n
≧2)の単位電源電圧変換回路を並列に接続した例であ
る。それぞれの基準電圧発生回路11〜1n、差動増幅器21
〜2nおよびPMISFETQ31〜Q3nを有し、駆動しなければな
らない負荷の容量値が数段回に分かれている時等に、そ
れぞれの負荷容量値にあわせた負荷駆動回路を持つ単位
電源電圧変換回路を切り替えて使用するものである。
FIG. 4 is a circuit diagram of a third embodiment of the present invention.
This is an example in which unit power supply voltage conversion circuits of ≧ 2) are connected in parallel. Each reference voltage generation circuit 11-1n, differential amplifier 21
22n and PMISFETQ 31 Q 3n , and when the load capacitance value to be driven is divided into several stages, etc., the unit power supply voltage conversion having a load drive circuit corresponding to each load capacitance value The circuit is switched and used.

第5図は本発明の第4の実施例の回路図で、負荷駆動
回路3を非活性時に確実に遮断する回路を設けたもので
ある。具体的には、ソースを外部電源VCCに、ドレイン
を負荷駆動回路であるPMISFETQ31,Q32のゲートに接続
し、ゲートにその制御信号φSi(i:正の整数)を入れた
PMISFETQ41,Q42を設けている。このPMISFETQ41,Q42を含
む単位電源電圧変換回路が選択された場合は、制御信号
φSiをハイレベルにしてQ41,Q42を非導通にしておく。
逆に単位電源電圧変換回路が非選択となった場合には、
信号φSiをロウレベルにしてPMISFETQ41,Q42を導通さ
せ、負荷駆動回路のPMISFETQ31,Q32のゲートをハイレベ
ルとし、当該単位電源電圧変換回路を完全に非活性とす
る。なお信号φSiは信号φAiと同じでもよいし別の信号
であってもよい。
FIG. 5 is a circuit diagram of a fourth embodiment of the present invention, in which a circuit for surely shutting off the load driving circuit 3 when inactive is provided. Specifically, the source was connected to the external power supply V CC , and the drain was connected to the gates of the PMISFETs Q 31 and Q 32 as load drive circuits, and the control signal φ Si (i: a positive integer) was input to the gate.
The PMISFETQ 41, Q 42 are provided. This PMISFETQ 41, when the unit power supply voltage converting circuit including a Q 42 is selected, the Q 41, Q 42 and the control signal phi Si to a high level keep the non-conductive.
Conversely, if the unit power supply voltage conversion circuit is not selected,
The signal φ Si is set to low level to turn on the PMISFETs Q 41 and Q 42 , the gates of the PMISFETs Q 31 and Q 32 of the load drive circuit are set to high level, and the unit power supply voltage conversion circuit is completely deactivated. The signal φ Si may be the same as the signal φ Ai or another signal.

第6図は本発明の第5の実施例の回路図で、負荷駆動
回路3をPMISFETQ31,Q32でなくバイポーラトランジスタ
Q21,Q22にした例である。
Figure 6 is a 5 in the circuit diagram of an embodiment of a bipolar transistor without a load driving circuit 3 is PMISFETQ 31, Q 32 of the present invention
This is an example in which Q 21 and Q 22 are set.

第7図は本発明の第6の実施例の回路図で、第11図の
R1,R2の抵抗分割による基準電圧発生回路に適用し、基
準電圧発生回路の定常電流パスにスイッチ回路であるPM
ISFETQ18を設け、制御信号φによりこの回路の活性/
非活性を制御できるようにしたものである。
FIG. 7 is a circuit diagram of a sixth embodiment of the present invention.
Applied to the reference voltage generation circuit by resistance division of R 1 , R 2 , PM circuit which is a switch circuit in the steady current path of the reference voltage generation circuit
The ISFETQ 18 provided in the circuit by the control signal phi R activity /
Inactivity can be controlled.

本実施例の電源電圧変換回路を用いる際、例えば第1
図の基準電圧発生回路に本実施例の基準電圧発生回路を
使用した場合について説明する。第1図で信号φA1によ
り第1の回路が非活性化された時、信号φをハイレベ
ルにして基準電圧発生回路を非活性化し、定常電流パス
を遮断することによって電流を流さないようにする。こ
の第1の回路が活性化された時には信号φをロウレベ
ルにして基準電圧発生回路を活性化し、電源電圧変換回
路を動作させる。こうして、単位電源電圧変換回路が使
用されない時に基準電圧発生回路も非活性化し、その消
費電流を低減することができる。これは、例えば、第4
図のように多数の単位電源電圧変換回路が同時に用いら
れる際に特に有効である。なお、基準電圧発生回路の活
性/非活性を制御するスイッチ回路は第7図のタイプの
ものに限らない。
When using the power supply voltage conversion circuit of the present embodiment, for example, the first
The case where the reference voltage generation circuit of this embodiment is used for the reference voltage generation circuit shown in FIG. In FIG. 1, when the first circuit is deactivated by the signal φ A1 , the signal φ R is set to the high level to deactivate the reference voltage generation circuit, and the current is prevented from flowing by cutting off the steady current path. To When this first circuit is activated to activate the reference voltage generating circuit and a signal phi R to the low level, to operate the power supply voltage conversion circuit. Thus, when the unit power supply voltage conversion circuit is not used, the reference voltage generation circuit is also inactivated, and the current consumption can be reduced. This is, for example, the fourth
This is particularly effective when a large number of unit power supply voltage conversion circuits are used simultaneously as shown in the figure. The switch circuit for controlling the activation / inactivation of the reference voltage generation circuit is not limited to the type shown in FIG.

第8図は本発明の第7の実施例の回路図で、第7図の
スイッチ回路Q18をNMISFETQ19にした例である。この構
成では制御の仕方が変わり、基準電圧発生回路を非活性
とする時にはφをロウレベルとし、活性化する時には
φをハイレベルとすればよい。
In the circuit diagram of a seventh embodiment of FIG. 8 is the present invention, an example in which the switch circuit Q 18 of Figure 7 to NMISFETQ 19. In this configuration change the manner of control, and the low level of phi R is when the reference voltage generation circuit deactivated, may be a phi R to the high level when activated.

第9図は本発明の第8の実施例の基準電圧発生回路の
回路図で、第10図のFETQ11,Q12の代りに、ゲート制御信
号φを接続したFETQ11,Q12が用いられたものである。
第9図と第10図を比較するとわかるように、新たにスイ
ッチ回路としてトランジスタを付加しなくとも、既に基
準電圧発生回路内のトランジスタのゲートに制御信号φ
を入れて本発明を実現することもできる。
Figure 9 is a circuit diagram of a reference voltage generating circuit of the eighth embodiment of the present invention, instead of the FETs Q 11, Q 12 of FIG. 10, FETs Q 11, Q 12 connected to the gate control signal phi R is used It was done.
As can be seen by comparing FIGS. 9 and 10, the control signal φ is already applied to the gate of the transistor in the reference voltage generating circuit without adding a transistor as a switch circuit.
The present invention can also be realized by inserting R.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明の電源電圧変換回路を用
いることにより、スタンバイ時等の大きな負荷容量を駆
動しない時の電源電圧変換回路の消費電流を大幅に削減
することができる。
As described above, by using the power supply voltage conversion circuit of the present invention, current consumption of the power supply voltage conversion circuit when a large load capacitance is not driven, such as during standby, can be significantly reduced.

また、本発明の電源電圧変換回路をメモリに適用した
シミュレーション結果によると、差動増幅器部分の消費
電流は増幅器内のソースを接地し、ドレインをソースカ
ップルの差動入力部トランジスタのソースに接続したMI
SFET(Q1)のゲート幅Wにほぼ比例しているので、従来
の電源電圧変換回路に比べて、スタンバイ時に電源電圧
変換回路の差動増幅器のサイズが小さくなった割合だけ
消費電流が小さくなるという効果が得られる。また、ス
イッチ回路により切替えられる基準電圧発生回路を用い
ることにより、多数の基準電圧発生回路を用いる必要が
生じた場合にも、使用していない基準電圧発生回路の定
常電流をなくして低消費電力化をはかられるという効果
がある。
According to a simulation result in which the power supply voltage conversion circuit of the present invention was applied to a memory, the current consumption of the differential amplifier portion was such that the source in the amplifier was grounded, and the drain was connected to the source of the source-coupled differential input transistor. MI
Since it is almost proportional to the gate width W of the SFET (Q 1 ), the current consumption is reduced by the ratio that the size of the differential amplifier of the power supply voltage conversion circuit becomes smaller during standby compared to the conventional power supply voltage conversion circuit. The effect is obtained. Also, by using a reference voltage generation circuit switched by a switch circuit, even when a large number of reference voltage generation circuits need to be used, the steady current of the unused reference voltage generation circuits is eliminated to reduce power consumption. It has the effect of being able to peel off.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の回路ブロック図、第2図は
第1図に用いる差動増幅器の一例の回路図、第3図〜第
6図は本発明の第2〜第5の実施例の回路ブロック図、
第7図〜第9図は第1図の基準電圧発生回路の三例を示
す回路図、第10図は従来例の電源電圧変換回路の回路
図、第11図は従来の抵抗分割による基準電圧発生回路の
図である。 1,11,12−−−1n……基準電圧発生回路、2,21,22−−−
2n……差動増幅器、3……負荷駆動回路、10……出力端
子、Q2,Q4,Q5,Q11〜Q18,Q20,Q31,Q32−−−Q3n,Q41,Q42
……PMISFET、Q1,Q3,Q19……NMISFET、Q21,Q22……バイ
ポーラトランジスタ、R1,R2……抵抗。
FIG. 1 is a circuit block diagram of one embodiment of the present invention, FIG. 2 is a circuit diagram of an example of a differential amplifier used in FIG. 1, and FIGS. 3 to 6 are second to fifth embodiments of the present invention. Circuit block diagram of the embodiment,
7 to 9 are circuit diagrams showing three examples of the reference voltage generating circuit of FIG. 1, FIG. 10 is a circuit diagram of a conventional power supply voltage conversion circuit, and FIG. 11 is a conventional reference voltage by resistance division. It is a figure of a generation circuit. 1,11,12--1n ... Reference voltage generation circuit, 2,21,22-
2n ...... differential amplifier, 3 ...... load driving circuit, 10 ...... output terminal, Q 2, Q 4, Q 5, Q 11 ~Q 18, Q 20, Q 31, Q 32 --- Q 3n, Q 41 , Q 42
…… PMISFET, Q 1 , Q 3 , Q 19 … NMISFET, Q 21 , Q 22 … Bipolar transistor, R 1 , R 2 … Resistance.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基準電圧発生回路と、この基準電圧発生回
路の出力を入力端子の一方に接続した差動増幅器と、こ
の差動増幅器の出力を入力して負荷を駆動する負荷駆動
回路とからなり、前記差動増幅器のもう一方の入力端子
には前記負荷駆動回路の出力電圧を帰還接続した単位電
源電圧変換回路を複数個備え、これら単位電源電圧変換
回路の出力端を共通接続して出力端子とし、駆動すべき
負荷容量の大きさに応じて前記複数の単位電源電圧変換
回路のうちの所要数を選択して出力する電源電圧変換回
路において、前記基準電圧発生回路は、この基準電圧発
生回路に形成した定電流経路にスイッチ回路を設け、こ
のスイッチ回路に制御信号を印加して前記基準電圧発生
回路の活性/非活性を制御するようにしたことを特徴と
する電源電圧変換回路。
1. A reference voltage generating circuit, a differential amplifier having an output of the reference voltage generating circuit connected to one of input terminals, and a load driving circuit for inputting an output of the differential amplifier and driving a load. The other input terminal of the differential amplifier is provided with a plurality of unit power supply voltage conversion circuits in which the output voltage of the load drive circuit is connected in a feedback manner, and the output terminals of the unit power supply voltage conversion circuits are connected in common and output. A power supply voltage conversion circuit for selecting and outputting a required number of the plurality of unit power supply voltage conversion circuits in accordance with the magnitude of the load capacitance to be driven. A power supply voltage converter, wherein a switch circuit is provided in a constant current path formed in the circuit, and a control signal is applied to the switch circuit to control activation / inactivation of the reference voltage generation circuit. Road.
JP63219368A 1988-08-31 1988-08-31 Power supply voltage conversion circuit Expired - Lifetime JP2734551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63219368A JP2734551B2 (en) 1988-08-31 1988-08-31 Power supply voltage conversion circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63219368A JP2734551B2 (en) 1988-08-31 1988-08-31 Power supply voltage conversion circuit

Publications (2)

Publication Number Publication Date
JPH0270264A JPH0270264A (en) 1990-03-09
JP2734551B2 true JP2734551B2 (en) 1998-03-30

Family

ID=16734321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63219368A Expired - Lifetime JP2734551B2 (en) 1988-08-31 1988-08-31 Power supply voltage conversion circuit

Country Status (1)

Country Link
JP (1) JP2734551B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7362078B2 (en) 2004-12-07 2008-04-22 Ricoh Company, Ltd. Power supply circuit
KR100847503B1 (en) * 2003-12-26 2008-07-22 가부시키가이샤 리코 Constant voltage power supply

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH087636B2 (en) * 1990-01-18 1996-01-29 シャープ株式会社 Voltage drop circuit of semiconductor device
KR100565941B1 (en) 1997-06-16 2006-03-30 가부시키가이샤 히타치세이사쿠쇼 Semiconductor Integrated Circuit Device
JP3739006B1 (en) 2004-11-04 2006-01-25 ローム株式会社 Power supply device and portable device
JP3710468B1 (en) 2004-11-04 2005-10-26 ローム株式会社 Power supply device and portable device
JP3710469B1 (en) 2004-11-04 2005-10-26 ローム株式会社 Power supply device and portable device
JP4619866B2 (en) * 2005-05-31 2011-01-26 株式会社リコー Constant voltage power supply circuit and operation control method of constant voltage power supply circuit
JP2008309948A (en) * 2007-06-13 2008-12-25 Sharp Corp Electronic device
JP4673350B2 (en) * 2007-09-04 2011-04-20 株式会社リコー DC power supply
JP4739382B2 (en) * 2008-09-11 2011-08-03 富士通セミコンダクター株式会社 Voltage supply circuit and semiconductor memory
JP5864220B2 (en) * 2011-11-11 2016-02-17 ルネサスエレクトロニクス株式会社 Semiconductor integrated circuit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62189695A (en) * 1986-02-17 1987-08-19 Hitachi Ltd Semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100847503B1 (en) * 2003-12-26 2008-07-22 가부시키가이샤 리코 Constant voltage power supply
US7362078B2 (en) 2004-12-07 2008-04-22 Ricoh Company, Ltd. Power supply circuit
US7550955B2 (en) 2004-12-07 2009-06-23 Ricoh Company, Ltd. Power supply circuit

Also Published As

Publication number Publication date
JPH0270264A (en) 1990-03-09

Similar Documents

Publication Publication Date Title
JP2734551B2 (en) Power supply voltage conversion circuit
KR980004992A (en) Current / voltage changer, sense amplifier using it, and sensing method
JP2000306382A5 (en)
JP3123463B2 (en) Level conversion circuit
JPH10163846A (en) Driving circuit
JP2802512B2 (en) High-speed digital-to-analog converter
US5706006A (en) Operational amplifier incorporating current matrix type digital-to-analog converter
US5889430A (en) Current mode transistor circuit
JPH0621732A (en) Operational amplifier
US20210109554A1 (en) Simultaneous low quiescent current and high performance ldo using single input stage and multiple output stages
JP2737943B2 (en) Power supply voltage conversion circuit
JP2643325B2 (en) Power supply voltage conversion circuit
US20030122621A1 (en) Reconfigurable dual-mode multiple stage operational amplifiers
JPH10285001A (en) Comparator circuit
US5486780A (en) Tri-stateable current mirror sense amplifier
KR960038968A (en) Power supply voltage generation circuit of semiconductor memory device
JPH0360523A (en) Sense amplifier circuit
JP3540872B2 (en) Starting circuit
KR100536575B1 (en) Array power supply circuit
JPH09167929A (en) Semiconductor integrated circuit provided with operatonal amplifier circuit
JPS6146614A (en) Semiconductor integrated circuit device
JP3370256B2 (en) Divider and clock generation circuit
JP2000196420A (en) Comparator and control method therefor
JP3050168B2 (en) Duty control circuit
KR0183926B1 (en) D/a converter used for source decreasing apparatus